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Lecture 4: Closeness Testing and Independence Testing

Last time, we discussed the L2-tester, where given distributions p and q over [n], with ‖q‖2 ≤ b, we can

distinguish between (i) p = q and (ii) ‖p− q‖2 > ε with sample complexity:

O

(
b

ε2
+

1

ε

)
samples. (1)

By converting an L1-separation to an L2-separation, we also saw how we could use the L2-tester to perform

identity testing with L1-separation of ε in O(
√
n/ε2) samples.

In identity testing, we want to determine whether p is the same as a known distribution q. Today, we will

consider a similar problem of closeness testing, where q is not known a priori. We’ll also show how we can

use closeness testing to perform independence testing, to determine whether a distribution is an independent

(product) distribution. Let’s quickly recap the technique we saw last time.

1 Flattening technique

Because the number of samples depends on the bound b, we would like to control the L2-norm of q. This

leads to a flattening technique, where we transform q into a flatter distribution q′ with smaller L2-norm.

In particular, given q = (q1, . . . , qn), we can distribute the probability mass of each bin into a number of

sub-bins so that the overall distribution becomes more uniform.

To do this, we split the ith bin into dqi · ne bins. Then, having expanded the domain from [n] to [n′],

where n′ =
∑n

i=1dqi ·ne, we can also transform any distribution p into a new distribution p′ on [n′] as follows:

draw an element from p and assign it to one of its sub-bins uniformly at random. Here were a few important

properties of this transformation:

• it preserves L1-distance, ‖p− q‖1 = ‖p′ − q′‖1

• we can simulate draws from p′ and q′ by using draws from p and q

• the domain expands by at most by a constant factor, n′ ≤ 2n.

Because q′ is flatter, we obtain a better upper bound b, and because this transformation only expands the

domain by a constant factor, when we convert the ε-separation in L1 into an (ε/
√
n)-separation in L2, the

new (ε/
√
n′)-separation is only a constant factor smaller as well.

2 Closeness testing

In closeness testing, we aim to distinguish between (i) p = q and (ii) ‖p−q‖1 > ε, where p and q are arbitrary

unknown distributions. Because q is unknown, we don’t know how to flatten q as we did for identity testing.

Instead, we can use samples from q to approximately determine qi for the heavy bins, before applying the

flattening technique again.

Here’s a quick sketch of our approach. Draw k i.i.d. samples from q. Let S be this multiset of samples

and define ai = {x ∈ S : x = i} to be the number of samples landing in the ith bin. We then split the ith

bin into (ai + 1) sub-bins. If we define the transformation of p and q into pS and qS as above, then we have

the following properties:
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• it preserves L1-distance, ‖p− q‖1 = ‖pS − qS‖1

• we can simulate draws from pS and qS by using draws from p and q

• the domain expands to n′ = n+ |S|.

As our goal of this flattening transformation is to reduce the bound of the L2-norm of qS , we compute:

‖qS‖22 =

n∑
i=1

(ai + 1)

(
qi

ai + 1

)2

=

n∑
i=1

q2i
ai + 1

. (2)

But ‖qS‖2 is random; we would like an upper bound that holds with high probability. To do this, let’s bound

the expectation and appeal to Markov’s inequality (since ‖qS‖2 is a non-negative random variable).

If S is drawn i.i.d. from q of size k, we claim that in expectation, E
[
‖qS‖22

]
≤ 1/(k + 1). By Markov,

Pr

[
‖qS‖2 ≥

√
100

k

]
= Pr

[
‖qS‖22 ≥

100

k

]
≤ k

100(k + 1)
.

In particular, this shows that with 99% probability,

‖qS‖2 = O

(
1√
k

)
. (3)

The following is just the technical proof of the claim:

Claim 1. If S is drawn i.i.d. from q with |S| = k, then in expectation, the L2-norm of qS is bounded:

E
[
‖qS‖22

]
≤ 1

k + 1
.

Proof. Assuming i.i.d. draws from q, we take expectations on both sides of Equation 2,

E
[
‖qS‖22

]
=

n∑
i=1

q2i · E
[

1

ai + 1

]
.

We can compute this, since ai ∼ Bin(qi, k).

E
[

1

ai + 1

]
=

k∑
j=0

Pr(ai = j) · 1

j + 1
=

∫ 1

0

k∑
j=0

Pr(ai = j) · xj dx

=

∫ 1

0

k∑
j=0

(
k

j

)
qji (1− qi)k−j · xj dx

=

∫ 1

0

(
qix+ (1− qi)

)k
dx =

1

k + 1

1

qi

(
1 + qi(x− 1)

)k+1
∣∣∣∣1
0

≤ 1

qi

1

k + 1
.

Then, when we sum over i ∈ [n], because q is a distribution, we have:

E
[
‖qS‖22

]
≤

n∑
i=1

qi
k + 1

=
1

k + 1
.
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2.1 Sample complexity for closeness testing

Consider the sample complexity bound for L2-tester given by Equation 1. Suppose that we have a total

budget of k samples to discover the heavy bins. From Equation 3, we can let the L2-bound β = O(1/
√
k).

Also, given an L1-separation, we can obtain an L2-separation lower bound,

‖pS − qS‖1 > ε ⇒ ‖pS − qS‖2 > ε/
√
n+ k.

Combining these two bounds, we obtain an overall sample complexity bound:

O

(
n+ k

ε2
√
k

+

√
n+ k

ε

)
samples.

It follows that any gains we obtain by using more than n samples to flatten the L2-norm is overtaken by

the losses from the increased domain size. In particular, let us use min(k, n) samples in the flattening step.

Thus, we can assume that ‖qS‖2 = O
(

1/
√

min(k, n)
)

. There are two domains:

• k ≥ n. Then, ‖qS‖2 = O (1/
√
n) leads to a sample complexity O

(√
n/ε2

)
.

• k ≤ n. Then, ‖qS‖2 = O(1/
√
k) leads to a sample complexity O(n/ε2

√
k). Using a constant fraction

of our sample budget for the flattening step, we lower bound k = Ω(n/ε2
√
k), which implies that√

k = Ω(n1/3/ε2/3). Replacing
√
k, we get a sample complexity O(n2/3/ε4/3).

Combining these, we obtain an overall sample complexity of:

O

(√
n

ε2
+
n2/3

ε4/3

)
samples. (4)

3 Independence testing

In independence testing, we’ll consider a distribution p over the product space [n]× [m], where n ≥ m. We’d

like to distinguish between two cases: (i) p is a product distribution (i.e. the coordinates of p are indendent)

and (ii) p is ε-far in total variation from any product distribution.

We can define the product distribution q = p1 ⊗ p2 where p1 and p2 are the marginal distributions of

p. Samples from q can be generated by taking two independent samples (x1, y1), (x2, y2) ∼ p and returning

(x1, y2). Notice that if p is indeed a product distribution, then p = q. But if p is ε-far from any product

distribution, then dTV (p, q) > ε. It follows that we can perform independence testing on p by applying

closeness testing to p and q. Of course, a direct application of Equation 4 gives an upper bound:

O

(√
nm

ε2
+

(nm)2/3

ε4/3

)
samples.

But, perhaps we can do better, because we know that q is a product distribution; instead of flattening q

directly, we can flatten the marginals p1 and p2 first.

In order to do this, suppose we have a budget k to flatten p1 and p2. Let’s say we use min(k1, n) and

min(k2,m) i.i.d. samples S1 and S2 drawn from p1 and p2, respectively. Letting S = S1 t S2, we define

qS = (p1)S1
⊗ (p2)S2

. The L2-norm of a product distribution µ⊗ ν is the product of the norms ‖µ‖‖ν‖:

‖µνT‖22 = tr
(
(µνT)T(µνT)

)
= tr

(
νµTµνT

)
= tr

(
µTµνTν

)
= ‖µ‖22‖ν‖22.

So, if follows that we have an upper bound on the L2-norm of qS ,

‖qS‖2 = ‖p1,S1‖2 × ‖p2,S2‖2 = O

(
1√
k1k2

)
.
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Like before, we should only ever use at most k1 = O(n) and k2 = O(m) samples for flattening. If our budget

k is sufficiently large, then we may use k1 = n and k2 = m samples to flatten, leading to a sample complexity

of O(
√
nm/ε2). But if k ≤ n + m, then we need on the order of nm/ε2

√
k1k2 many samples. Again, we

could take a constant fraction of samples for the flattening step, so

k = Ω

(
nm

ε2
√
k1k2

)
≥ Ω

(√
nm

ε2

)
≥ Ω(m),

because n ≥ m. It follows that we have sufficiently many samples to let k2 = Θ(m). This means that the

overall sample complexity to independence testing is:

O

(√
nm

ε2
+
n2/3m1/3

ε4/3

)
samples. (5)

In this way, we saved a factor of m1/3 in the low-budget domain k ≤ n+m, and we will see in later weeks

that this is in fact optimal.

4 Lower bounds

We now present some lower bound techniques for uniformity testing and closeness testing. We start by

providing some intuition and we follow with more rigorous proofs. The lower bounds show that the testers

are information-theoretic optimal up to a constant factor.

4.1 Intuition

4.1.1 Uniformity testing

Recall that in uniformity testing, given a distribution p over [n], we aim to distinguish between (i) p = Un

and (ii) ‖p − Un‖1 > ε. We saw an upper bound of O(
√
n/ε2) samples. Suppose that during testing, we

make k i.i.d. draws from p,

X1, X2, . . . , Xk
i.i.d.∼ p.

We say that there is a pairwise collision if an element of [n] is sampled twice (i.e. there exists i 6= j such

that Xi = Xj). Likewise, a 3-wise collision occurs if an element is sampled thrice.

Let’s compute the expected number of pairwise collisions:

E

∑
i<j

1{Xi = Xj}

 =
∑
i<j

∑
s∈[n]

Pr[Xi = s] Pr[Xj = s] =

(
k

2

) ∑
s∈[n]

p2s =

(
k

2

)
‖p‖22.

Therefore, when p is uniform, the expected number of collisions is around k2/n. And more generally, the

expected number of r-wise collisions for r ∈ [k] is:

E

[ ∑
i1<···<ir

1{Xi1 = · · · = Xir}

]
=

(
k

r

)
‖p‖rr.

In particular, the expected number of 3-wise collisions when p is uniform is k3/n2. Thus, by Markov, k needs

to be roughly n2/3 before we expect to see a single 3-wise collision with constant probability. Assuming that

the number of samples required is much smaller than n, or even n2/3, then most information about p will

come from observing its pairwise collisions.

This means that to distinguish between (i) p is uniform and (ii) p is ε-far from uniform, we should compare

the number of pairwise collisions. If p is ε-far from the uniform distribution, then ‖p‖22 > (1 + ε2)/n, and it

follows that the number of pairwise collisions is at least k2(1 + ε2)/n.
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Since pairwise collisions are akin to a Poisson process, the standard deviations are the square roots of

the means. Then, in the worst case, we need to distinguish between

k2

n
±
√
k2

n
and

k2(1 + ε2)

n
±
√
k2(1 + ε2)

n

many pairwise collisions. To tell apart the distributions, the difference in the means needs to be much greater

than at least the standard deviations, so k must be sufficiently large to satisfy

k2ε2

n
�
√
k2

n
.

It follows that we need k �
√
n/ε2 many samples, matching the upper bound.

4.1.2 Closeness testing

In closeness testing, recall that we aim to distinguish between (i) p = q and (ii) ‖p− q‖1 > ε, where p and q

are any unknown distributions over [n]. If a test draws k � n samples from p and q, then most of the signal

to distinguish between (i) and (ii) will be based on counting pairwise collisions.

Given k draws from p and q, we can test whether the collisions occur mostly within distribution (draws

from p colliding with draws from p, or q with q; this suggests that p 6= q) or between distributions (p

colliding with q or q colliding with p; this suggests that p = q). In particular, let Xi and Yi be the number

of draws from bin i under p and q, respectively. Then, the statistic X2
i + Y 2

i is approximately the number

of within-distribution collisions in bin i and XiYi + YiXi the number of between-distribution collisions.

We saw in the previous lecture how this motivated the following statistic:

Z =
∑
i∈[n]

(X2
i + Y 2

i )− (XiYi + YiXi) =
∑
i∈[n]

(Xi − Yi)2.

In fact, when Xi ∼ Poi(k · pi) and Yi ∼ Poi(k · qi), then a slightly modified statistic has expectation:∑
i∈[n]

E
[
(Xi − Yi)2 −Xi − Yi

]
= k2‖p− q‖22.

It follows that using Θ(k) samples from p and q, we expect a signal on the order of k2ε2/n to help us

distinguish between the two cases (i) and (ii).

However, let’s consider a hard case for p and q, assuming that k � n. Suppose that half of the probability

mass falls uniformly into the first k bins for both p and q. That is, for all i, j ∈ [k], we have:

pi = qj ≈
1

k
.

Then, in either case where the remaining half of the probability mass (i) matches up or (ii) diverges, these

first k bins will add significant noise to our test statistic.

In particular, when we draw k times from p and q to perform closeness testing, half of those draws will fall

into the first k bins. We already saw that the expected number of pairwise collisions from k draws coming

out of a uniform distribution over k elements is around k2/k. And as a result, we expect to see around

k ±
√
k collisions in these first k bins occurring both within distribution and between distribution.

Although in expectation, these different types of collisions cancel out, the standard deviation remains on

the order of
√
k, contributing to the noise of our test statistic. In this case, our statistic will be:

k2‖p− q‖22 ± Ω(
√
k).
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Because we need to ensure that the mean of our test statistic for the two cases (i) and (ii) can dominate the

noise, we need k2ε2/n�
√
k. It follows that the sample complexity is at least k � n2/3/ε4/3.

While we just gave intuition as to what distributions would be hard to distinguish under this strategy of

comparing the types of pairwise collisions, it is important to ensure that the tester doesn’t know that the

hardness comes from the first k bins (otherwise, they could just ignore these collisions). Instead, these hard

distributions must be randomly chosen from ensembles of distributions. For closeness testing, we’ll consider

the following adversarial setup:

(i) If p = q, then for each element i ∈ [n]:

• with probability k
n , let pi = qi = 1

k .

• otherwise, let pi = qi = ε
n

(ii) If ‖p− q‖ > ε, then for each element i ∈ [n]:

• with probability k
n , let pi = qi = 1

k .

• otherwise, let either pi = 2ε
n and qi = 0, or pi = 0 and qi = 2ε

n .

Notice that in both cases, there is a k
n probability for each element i ∈ [n] that pi = qi = 1

k . In expectation,

around k of the bins will have a constant fraction of the probability mass, leading to the hardness coming

from the noise on the order of Ω(
√
k). One of the issue here is that p and q defined in this way may not be

normalized probability distributions. We will deal with this when we prove the lower bound rigorously.

4.2 Proof sketch of uniformity testing lower bounds

To prove lower bounds for uniformity, we consider an adversary method. Let X be a random bit:

• if X = 0, let p = Un

• if X = 1, take p from some ensemble D such that ‖p− Un‖1 > ε with high probability.

Our goal is to construct this adversary method in such a way that it is information-theoretically impos-

sible for any algorithm to reliably determine the hidden bit X in a given number of samples, that is, to solve

the uniformity testing problem.

Notice that it is important to have an adversarial ensemble D. This is because it would only take O(1/ε2)

samples to distinguish between (i) p is uniform and (ii) p is some fixed distribution q where dTV (q, Un) > ε.

Given such a q, there exists a set A ⊂ [n] such that |q(A)− Un(A)| > ε, so we would only need to estimate

p(A) up to error ε/2, which uses O(1/ε2) samples.

Following this intuition that we want to construct p such that it is close to the uniform distribution, we

consider an ensemble D where pi = 1±ε
n . Let us first Poissonize:

• pick X and p

• take Poi(k) samples from p, and let Ai be the number of samples from bin i

• return Y = f(A1, . . . , An) ∈ {0, 1} as the output of an algorithm guessing X

We want to show that the mutual information between X and the output of the samples, A1, . . . , An, is small.

In particular, we want to show I(X;A1, . . . , An) = o(1). If so, by the information processing inequality, we
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must also have I(X;Y ) = o(1). Since I(X;Y ) = H(X)−H(X|Y ), and H(X) = 1, if the algorithm is almost

always correct, then H(X|Y ) is small.1

The computation of the mutual information I(X;A1, . . . , An) is complicated and we would like to avoid

it. Therefore, we want the case where Ai’s are conditionally independent on X, because if so, then we have,

I(X;A1, . . . , An) ≤
n∑

i=1

I(X;Ai)

and it is much easier to compute each individual I(X;Ai).

Now the question is: Are Ai’s conditionally independent on X?

• If X = 0, yes. Each bin has probability 1/n, and because of the Poissonization, the Ai’s are indepen-

dently distributed as Poisson random variables Ai ∼ Poi(kpi).

• if X = 1, no. This is because pi’s are no longer independent: p is a probability distribution, and pi’s

need to add up to 1.

The solution is to use non-normalized distribution p, that is, a list of probabilities assigned to each

domain element. To sample from p, we have Ai ∼ Poi(kpi) independently, and we can now take pi = 1±ε
n

independently of each other.

It will take a bit of work to relate this new problem back to the original testing problem. But, at least

we now have the desired conditional independence. We will resume in the next lecture.

1If we can find an algorithm that has some nontrivial predictive power about what X is, then I(X;Y ) = Ω(1), and this can

lead to a proof by contradiction.
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