
COMS W6998-5: Algorithms through Geometric Lens (Fall’17) October 18, 2017

Lecture 13 – Graph Coloring (end), Spectral Graph Theory I

Instructors: Alex Andoni, Ilya Razenshteyn Scribes: Geelon So

In today’s lecture, we finish up our discussion on graph coloring from last time. Specifically, we left

Lemma 7 in the previous lecture notes unproven. Then, we’ll shift gears to begin talking about spectral

graph theory.

1 Graph Coloring

To quickly recap the previous lectures, we’ve seen that if a graph G with n vertices is 3-colorable, then

there must be a collection of vectors x1, . . . , xn ∈ Rn such that

1. ||xi|| = 1, and

2. for every edge (i, j) in G, 〈xi, xj〉 = −1
2 .

The intuition is made clearer from the following diagram, where condition (1) restricts us to the unit

sphere, and condition (2) says that any edge must be 120◦ apart, corresponding to the 3 colors. This

embedding of the graph into Rn places adjacent vertices relatively far apart from each other.

Figure 1: An embedding of the vertices of G into Rn, where adjacent
vertices are placed 120◦ away from each other.

We saw that using semidefinite programming (SDP), we can find an independent set I in polynomial

time (then we color the independent set with a single color, and iterate on the rest of the graph). In the

analysis from last class, we left unproved the following claim.

Claim 1. We can find an independent set I such that |I| ≥ Ω
(

n
∆1/3 lnn

)
, where ∆ is the max degree of

any vertex of G.

The way we’ll prove this is by cutting our collection of {x1, . . . , xn} by a random hyperplane of Rn,

and taking all the vertices on one side of the hyperplane. The hope is that since adjacent vertices are far

apart, we won’t capture too many edges. However, a cut through the origin may not be good enough.
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For example, in Figure 2 we can see that any cut through the origin will contain an edge with probability

1/2 (it just depends on which side of the hyperplane we take).

cut

Figure 2: A random hyperplane through the origin easily fails to
obtain an independent set.

So, instead of taking cuts through the origin, let’s take hyperplanes lifted some distance off the origin:

‘lifted’ cut

Figure 3: A random hyperplane some distance away from the origin
does a better job at cutting the graph.

In this manner, once we’ve found a subset of {x1, . . . , xn} containing relatively few edges, call it V , then

we can pick out an independent set I ⊂ V . Our goal will be to determine how far we should ‘lift’ these

hyperplanes so that we cut out many edges, but not so much that we also cut out too many vertices of

the whole graph.

Formally, we represent a random hyperplane by a random vector g ∈ Rn, sampled according to an

n-dimensional Gaussian distribution: g = (g1, . . . , gn) ∼ N (0, 1)n. The set of points V that is captured

by the lifted hyperplane is defined to be

V := {i a vertex of G : 〈xi, g〉 ≥ t},

where t is a distance parameter we hope to determine. Once we obtain V , we can find an independent

set I ⊆ V . That is,

I := {i ∈ V : i has no neighbors in V }.

Let’s proceed with the analysis.
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Step 1: Let’s bound the expected size of V , which is

E[|V |] =

n∑
i=1

Pr [〈xi, g〉 ≥ t] = nPr [〈x, g〉 ≥ t] ,

where x is any one of the xi’s. And since N (0, 1)n is spherically symmetric, without loss of generality,

we may assume x = (1, 0, . . . , 0), in which case,

E[|V |] = nPr[g1 ≥ t] = n ·Θ
(

1

t
· e−t2/2

)
, (1)

where the latter bound applies when t ≥ 1.

Step 2: Now, let’s find the expected size of an independent set in V :

E[|I|] = E

[
n∑

i=1

1{i∈I}

]
=

n∑
i=1

Pr[i ∈ I],

where the probability that i is contained in the selected independent set I is given by

Pr[i ∈ I] = Pr[i ∈ V ] · Pr
[
no neighbors of i are contained in V

∣∣ i ∈ V ]︸ ︷︷ ︸
s

.

If we call the latter term s, then it follows that s must be parametrized by our choice of t. Suppose that

we can bound s ≥ 1
2 . Then, E[|I|] becomes

E[|I|] ≥
n∑

i=1

Pr[i ∈ V ] · 1

2
=

1

2
E[|V |] = Θ

(
n · 1

t
· e−t2/2

)
. (2)

This is the term we’re hoping to provide a lower bound on. So now, we should bound s from below.

Step 3: The probability that no neighbors of i are contained in V is the complement of the probability

at least one neighbor of i is in V . We can apply union bound here, obtaining

s = 1− Pr
[
∃ some neighbor of i ∈ V

∣∣ i ∈ V ]
≥ 1−∆ Pr

[
j ∈ V

∣∣ i ∈ V ],
where j is an arbitrary neighbor of i, and ∆ bounds the number of neighbors vertex i may have. Rewriting

the latter term in terms of xi, xj , and g, we get

Pr
[
j ∈ V

∣∣ i ∈ V ] = Pr
[
〈xj , g〉 ≥ t

∣∣ 〈xi, g〉 ≥ t].
Now, let’s compute this last term. Because g is spherically symmetric, we may assume that xi and xj
are placed as in Figure 4. Then the above probability becomes

Pr
[
j ∈ V

∣∣ i ∈ V ] = Pr

[
−1

2
g1 +

√
3

2
g2 ≥ t

∣∣∣∣ g1 ≥ t

]
≤ Pr

[
−1

2
t+

√
3

2
g2 ≥ t

]
= Pr

[
g2 ≥

√
3t
]
.
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xi = (1, 0, 0, . . . , 0)

(
−1

2 ,
√

3
2 , 0, . . . , 0

)
= xj g = (g1, g2, . . . , gn)

Figure 4: Spherical symmetry allows us to assume that xi, xj , and
g are in this configuration.

Applying the same tail probability bound for Gaussians, we obtain

Pr
[
j ∈ V

∣∣ i ∈ V ] ≤ Θ

(
1√
3t
· e−3t2/2

)
≤ Θ

(
e−3t2/2

)
.

So, finally, we obtain

s ≥ 1−∆Θ
(
e−3t2/2

)
. (3)

Step 4. At this point, if we want to bound s ≥ 1
2 , this means that we require

1

2
≤ ∆Θ

(
e−3t2/2

)
= ∆Θ

(
e−t

2/2
)3
,

which implies we want to choose t so that

Θ

(
1

∆1/3

)
≤ e−t2/2. (4)

In particular, we obtain √
2

3
ln Θ(∆) ≤ t.

All that’s left to do is to plug Equation 4 back into Equation 2 to get a bound E[|I|]. We obtain

E[|I|] ≥ Θ

(
n · 1

t
· e−t2/2

)
≥ Ω

(
n

∆1/3
√

lnn

)
,

since we may bound ∆ with n. This completes the proof of Claim 1.

2 Spectral Graph Theory

So far, the relationship between graph theory and linear algebra has been relatively ad hoc—we’ve found

it useful to ‘embed’ a specific graph problem into the language of linear algebra. And from there, we can

borrow existing machinery to find a solution.
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But now, we’ll start to view graphs more as linear-algebraic objects in their own right. For example,

every undirected graph naturally gives rise to an adjacency matrix, fully encapsulating everything about

that graph. Unsurprisingly, there’s a lot we can learn about a graph under this framework.

2.1 Motivation: Diffusion

Consider a graph with n vertices. We’ll imagine that each vertex represents a different state of an n-state

system. At each time step, we may move from the ith state to the jth state only if i and j are connected

by an edge. Furthermore, suppose that we’ll move to any adjacent vertex with equal probability.

After moving for some time, we can now ask where we’re likely to end up. That is, how has our

probability mass diffused throughout the n states? Equivalently, what is the probability distribution of

a random walker’s position on a graph at time t? (We’ve formulated this question probabilistically, but

we can ask the analogous question for the diffusion of physical mass).

To answer this, let’s define an initial distribution at time t = 0: for each vertex j, assign a probability

mass of xj(0), where we naturally require

n∑
j=1

xj(0) = 1.

Define xj(t) to be the probability mass of vertex j at time t; x(t) is a probability vector of length n.

Claim 2. Let Aij be an indicator for when j is adjacent to i. Let dj be the degree of vertex j. Then,

xi(t+ 1) =
n∑

j=1

Aij
1

dj
xj(t).

The claim above is easily reasoned out. The mass on vertex i must all come from vertices adjacent

to it. Each of these neighboring vertices j has mass xj(t), but since vertex j itself has dj neighbors, only
1
dj

of the mass goes to vertex i.

While the formalism is perhaps a bit clunky, it does take on the form of matrix multiplication. In

particular, we can make notation more compact by defining the adjacency and degree matrices:

Definition 3. Let G be an undirected graph with n vertices. The adjacency matrix of G is the n × n
symmetric matrix A where

Aij =

{
1 (i, j) is an edge in G

0 otherwise.

Definition 4. Let G be as above. The degree matrix of G is the n× n diagonal matrix D where

Di = di,

and di is the degree of the ith vertex.

It follows from Claim 2 that

x(t+ 1) = AD−1x(t),

5



and so, by induction, we obtain x(t) by applying the linear map AD−1 to the initial distribution t times:

x(t) =
[
AD−1

]t
x(0).

Finally, we can also try to find the stationary distribution x∗, which is naturally a distribution where

x∗ = AD−1x∗. Let’s rewrite D−1 as D−
1
2D−

1
2 , so we obtain

x∗ = AD−
1
2D−

1
2x∗.

We can now let y∗ = D−
1
2x∗, so that y∗ = D−

1
2AD−

1
2 y∗, where M = D−

1
2AD−

1
2 is a symmetric matrix.

We can compute the iterated applications of a matrix M and/or find its stationary distribution by

calculating its eigenvalues/eigenvectors. This is just one of the motivations for us to study spectral graph

theory (the spectrum is the set of eigenvalues of a matrix).

2.2 The Spectral Theorem

Let’s review some linear algebra.

Definition 5. Let M ∈ Rn×n be a real n × n matrix. A nonzero vector v ∈ Rn is an eigenvector of M

if there exists some λ ∈ R such that Mv = λv. Such a λ is called an eigenvalue of v.

If we view M as a linear transformation, then an eigenvector is a vector that is merely scaled by M .

This property of eigenvectors makes it very easy for us to calculate an iterated application of M , recalling

to one of our questions at the end of the previous section. Here, applying M to an eigenvector t times is

just multiplying by a scalar t times, M tv = λtv.

Notice that if v is an eigenvector of M , then rv is another eigenvector of M for any r ∈ R, simply

because M(rv) = λ(rv). While there may be uncountably many eigenvectors, the number of eigenvalues

is much smaller.

Claim 6. Let M as above. There are at most n eigenvalues of M .

To see this, note that the condition Mv = λv is equivalent to (M − λI)v = 0. Since v is nonzero,

this implies det(M − λI) = 0. Finally, det(M − λI) is a degree n polynomial in λ, so it has at most n

roots including multiplicity. While in general, these roots might be complex, under certain conditions,

we have:

Theorem 7 (Spectral Theorem). If M ∈ Rn×n is a symmetric n × n matrix, then there exists an

orthonormal eigenbasis of M . That is, there is a set of n eigenvectors of M , say v1, . . . , vn, that are

pairwise orthogonal and normalized to unit length. Furthermore, the corresponding set of eigenvalues

λ1, . . . , λn are real. Without loss of generality, we may assume

λ1 ≤ λ2 ≤ · · · ≤ λn.

Claim 8. Let M , vi’s, and λi’s as above. We may rewrite M in its orthonormal eigenbasis as

M =

n∑
i=1

λivi · vTi .
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(Note that v · vTi is the outer product, and not the inner product). In particular, M represented in its

eigenbasis is a diagonal matrix where the ith term is λi.

Proof as exercise.

While the spectral theorem asserts the existence of certain eigenvectors, its proof (which we defer to

a linear algebra textbook) gives a way of construction. This involves defining the Rayleigh quotient of a

matrix M and vector x.

Definition 9. Let M ∈ Rn×n be a symmetric n×n matrix, and x ∈ Rn a vector. The Rayleigh quotient

R(M,x) is

R(M,x) :=
〈Mx, x〉
||x||22

=
xTMx

||x||22
.

If the context of M is clear, we’ll suppress its notation and write R(x) instead.

One property of the Rayleigh quotient is that it maps eigenvectors to its corresponding eigenvalues.

That is, if v is an eigenvector of M , with eigenvalue λ, then

R(v) =
〈Mv, v〉
||v||2

=
〈λv, v〉
||v||2

= λ
||v||2

||v||2
= λ.

Another important property is that it is scale invariant, in the sense that R(x) = R(rx) for all nonzero

r ∈ R− {0}. This follows from

R(rx) =
〈Mrx, rx〉
||rx||2

=
r2〈Mx, x〉
r2||x||2

=
〈Mx, x〉
||x||2

= R(x).

From these two properties and the spectral theorem, we can show:

Proposition 10. Let M , vi, and λi be as in Theorem 7. Denote the maximal eigenvalue λn by λmax.

Let

v∗ = arg max
v∈Rn

R(v).

Then, v∗ is an eigenvector of M with eigenvalue λmax.

Of course, a proof of the spectral theorem generally uses Proposition 10 as a lemma. But for now,

let’s not quibble about circularity.

Proof of Proposition 10. Since the Rayleigh quotient is scale-invariant, we can restrict our attention to

the unit sphere Sn−1 instead of all of Rn. So, we may assume that

v∗ = arg max
v∈Sn−1

R(v).

(As an aside, this implies the existence of v∗, since Sn−1 is compact and R(v) is continuous). The spectral

theorem gives us an orthonormal eigenbasis, v1, . . . , vn ∈ Rn, so we can represent v∗ as (α1, . . . , αn)eig in

the eigenbasis.1 In other words,

v∗ =

n∑
i=1

αivi.

1The notation (α1, . . . , αn)eig is nonstandard—we just use it here to specify when a vector is expanded in the eigenbasis.
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From Claim 8, M is diagonal in its eigenbasis, so we readily see that Mv∗ = (λ1α1, . . . , λnαn)eig. Com-

puting the Rayleigh quotient is now easy. Since v∗ ∈ Sn−1 is unit length, it follows that

R(v∗) = 〈Mv∗, v∗〉 =

n∑
i=1

λiα
2
i .

And because v∗ is unit,
∑n

i=1 α
2
i = 1. Therefore, R(v∗) is actually a convex combination of the λi’s, so it

is bounded above by λmax.

By assumption, v∗ achieves this maximum. Suppose the maximal eigenvalue is unique (so that λi < λn
for all i < n). Then the αi’s for i < n must be zero, implying that v∗ = vn, up to signs (in other words,

v∗ is a linear combination over the unique eigenvector with eigenvalue λmax). In this case, we’ve shown

that v∗ is actually the eigenvector vn with eigenvalue λmax.

But in general, more than one vi may have eigenvalue λmax. In this case, v∗ turns out to be a linear

combination over all these vi’s. It is straightforward to compute Mv∗ = λmaxv∗, verifying that v∗ is an

eigenvector with eigenvalue λmax.

In Proposition 10, we produced the eigenvector/value pair (v∗, λmax) by finding a vector that maxi-

mized R(v) over v ∈ Sn−1. We can induct on this procedure (which is actually how the spectral theorem

is usually proved2).

Let W = span(v∗). Now, we restrict Rn to the orthogonal complement of W , denoted by

W⊥ := {v ∈ Rn : 〈v, w〉 = 0 for all w ∈W}.

For example, if v∗ = vn, then the orthogonal complement would correspond to all vectors that have a

zero entry in the nth coordinate of the eigenbasis. Explicitly,

W⊥ = {(α1, . . . , αn−1, 0)eig ∈ Rn}.

Crucially, the orthogonal complement of W is an invariant subspace under action by M . Put more simply,

for any v ∈ W⊥, the image Mv is contained in W⊥. This is especially clear with the example where

v∗ = vn. In this case, M just scales the ith coordinate by λi, so Mv is indeed in W⊥. Summarized neatly,

Claim 11. Let w1, . . . wk ∈ Rn be a collection of eigenvectors of M . Let W = span(w1, . . . , wk) be the

subspace generated over these wi’s. Then W⊥ is invariant under action by M :

MW⊥ ⊆W⊥.

As a result, once we’ve found the first v∗, call it wn, we can restrict our analysis to the orthogonal

complement of span(wn). In particular, this implies that we can compute the pair (wn−1, λn−1) by

wn−1 = arg max
w∈span(wn)⊥

R(w),

2Again, let’s not worry about circularity. But as an aside, it is interesting that here, even if we treat the spectral
theorem as a black box, the knowledge it provides us—that an orthonormal eigenbasis exists—will actually let us produce
an orthonormal eigenbasis.
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and R(wn−1) = λn−1. In general,

wi = arg max
w∈span(wn,...,wi+1)⊥

R(w),

and R(wi) = λi. By the iterative application of Proposition 10, we’ve constructed an orthonormal

eigenbasis of M , given by {w1, . . . , wn}.

9


