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Background

Lloyd’s method (Lloyd, 1982) is an algorithm to k-means cluster a dataset.
At each step, the algorithm proposes k centers, say Wy, ..., W, € R? Each
data point Is mapped to its closest center, partitioning the dataset into &
clusters. The update sets each center to the mean of its cluster data.

Bottou and Bengio (1995) define the online Lloyd’s method where the data
come in a stream. At each step, the center W; is set to the mean of all pre-
vious data points that had mapped to the ith center: it maintains a counter
N, and if W; is the center closest to the next data point X, the update is:
1
Nie= Nit1 and Wi Wi— < (W; - X).
Motivating question: the convergence properties of algorithms such as on-
ine Lloyd’s is unknown. What is the behavior of online k-means algorithms

given a never-ending stream of data from an underlying data distribution?

The online k-means algorithm

Algorithm online k-means
Initialize: k arbitrary distinct centers W = (W, ..., W;) € R¥*4

for iterationn =0,1,2, ...
do sample data point X ~ p
identify closest center ¢ <= arg min¢ i ||[W; — X|
update closest center W; < W, — H; - (WZ- — X)

S

Theorem

Let p have bounded support on R¢ and f its k-means cost function. Assume
that the set of stationary points {V f = 0} is topologically nice. If the sequence

of (stochastic) learning rates (Hf”))gio satisfies some mild and reasonable con-
ditions, then the iterates W) asymptotically converge:

W™ —w|| =0 as.

limsup inf
n—oo Vf(w)=0

In fact, a well-conditioned variant of online Lloyd's asymptotically converges.

A step of online k-means
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Figure 1. Three centers, the orange dots, partition R?. A random data point X, the gray
dot, lands in the lower right Voronoi cell. An online k-means update will nudge that center
W; toward X. In expectation, the center W, will move toward the mean of its Voronoi cell.

The k-means cost function

Let w = (wy, ..., w;) € R be a k-tuple of centers. Define V;(w) be the
Voronoi cell corresponding to points with w; as the closest center.
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Connection to gradient descent

The gradient of f with respect to the ¢th center turns out to be:

Vo f(w) = [

Vi(w)
= Pi(w) - (wz‘ — Mz‘(w))7

where P;(w) and M;(w) are the mass and the mean of the ¢+th Voronoi cell.
Notice that a gradient descent step pushes w; toward M;(w).

(w; — ) p(z) dz

Our contributions

Computation of the gradient

Computing the derivative of the k-means cost function with respect to w
Is not straightforward because the both the domain of integration and the
iIntegrand depend on w. Surprisingly, the shifting boundaries of the Voronoi
cells do not contribute to the gradient: points that jump between two cells
under small perturbations must be fairly equidistant to either centers. They
contribute nothing to the first-order change in the k-means cost, which is
what the gradient computes.

Convergence with non-uniform and stochastic learning rates

Standard technigues from optimization can analyze SGD with uniform learn-
Ing rates, but are insufficient for the variant performed by online k-means,
which has center-specific learning rates. We extend the techniques from
Bertsekas and Tsitsiklis (2000) to cover non-uniform learning rates.

The key property that we shall require for convergence is that it a center W;
is far from the mean of its Voronoi cell, then with constant probability, it is
updated at a rate not too much slower than the rest of the centers.

Online Lloyd’s algorithm

To design an online version of Lloyd’s algorithm with asymptotic guarantees,
we start from the interpretation of Lloyd’s algorithm as preconditioned gra-
dient descent. Then, we define an online Lloyd’s algorithm as its stochastic
analog, which concurrently keeps an estimate of the preconditioner. We
prove the consistency of our estimator to the Lloyd preconditioner, lending
our algorithm the interpretation of a natural extension of Lloyd’s.
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