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Background

Lloyd’s method (Lloyd, 1982) is an algorithm to k-means cluster a dataset.

At each step, the algorithm proposes k centers, say W1, . . . , Wk ∈ Rd. Each

data point is mapped to its closest center, parধধoning the dataset into k
clusters. The update sets each center to the mean of its cluster data.

Boħou and Bengio (1995) define the online Lloyd’smethod where the data

come in a stream. At each step, the center Wi is set to the mean of all pre-

vious data points that had mapped to the ith center: it maintains a counter

Ni and if Wi is the center closest to the next data point X , the update is:

Ni← Ni + 1 and Wi← Wi −
1

Ni
·
(
Wi −X

)
.

Moধvaধng quesধon: the convergence properধes of algorithms such as on-

line Lloyd’s is unknown. What is the behavior of online k-means algorithms

given a never-ending stream of data from an underlying data distribuধon?

The online k-means algorithm

Algorithm online k-means

Iniধalize: k arbitrary disধnct centers W = (W1, . . . , Wk) ∈ Rk×d

1. for iteraধon n = 0, 1, 2, . . .

2. do sample data point X ∼ p

3. idenধfy closest center i← arg minj∈[k] ‖Wj −X‖
4. update closest center Wi← Wi −Hi ·

(
Wi −X

)

Theorem

Let p have bounded support on Rd and f its k-means cost funcࣅon. Assume

that the set of staࣅonary points {∇f = 0} is topologically nice. If the sequence

of (stochasࣅc) learning rates (H (n)
i )∞n=0 saࣅsfies some mild and reasonable con-

diࣅons, then the iterates W (n) asymptoࣅcally converge:

lim sup
n→∞

inf
∇f (w)=0

‖W (n) − w‖ = 0 a.s.

In fact, a well-condiࣅoned variant of online Lloyd’s asymptoࣅcally converges.

A step of online k-means

Figure 1. Three centers, the orange dots, parধধon R2. A random data point X , the gray

dot, lands in the lower right Voronoi cell. An online k-means update will nudge that center

Wi toward X . In expectaধon, the center Wi will move toward the mean of its Voronoi cell.

The k-means cost function

Let w = (w1, . . . , wk) ∈ Rk×d be a k-tuple of centers. Define Vi(w) be the

Voronoi cell corresponding to points with wi as the closest center.

f (w) = 1
2
∑
i∈[k]

∫
Vi(w)
‖wi − x‖2 p(x) dx.

Connecধon to gradient descent

The gradient of f with respect to the ith center turns out to be:

∇wi
f (w) =

∫
Vi(w)

(wi − x) p(x) dx

= Pi(w) ·
(
wi −Mi(w)

)
,

where Pi(w) and Mi(w) are the mass and the mean of the ith Voronoi cell.
Noধce that a gradient descent step pushes wi toward Mi(w).

Our contributions

Computaধon of the gradient

Compuধng the derivaধve of the k-means cost funcধon with respect to w
is not straighĤorward because the both the domain of integraধon and the

integrand depend on w. Surprisingly, the shiđing boundaries of the Voronoi
cells do not contribute to the gradient: points that jump between two cells

under small perturbaধons must be fairly equidistant to either centers. They

contribute nothing to the first-order change in the k-means cost, which is

what the gradient computes.

Convergence with non-uniform and stochasধc learning rates

Standard techniques from opধmizaধon can analyze SGDwith uniform learn-

ing rates, but are insufficient for the variant performed by online k-means,

which has center-specific learning rates. We extend the techniques from

Bertsekas and Tsitsiklis (2000) to cover non-uniform learning rates.

The key property that we shall require for convergence is that if a center Wi

is far from the mean of its Voronoi cell, then with constant probability, it is

updated at a rate not too much slower than the rest of the centers.

Online Lloyd’s algorithm

To design an online version of Lloyd’s algorithmwith asymptoধc guarantees,

we start from the interpretaধon of Lloyd’s algorithm as precondiধoned gra-

dient descent. Then, we define an online Lloyd’s algorithm as its stochasধc

analog, which concurrently keeps an esধmate of the precondiধoner. We

prove the consistency of our esধmator to the Lloyd precondiধoner, lending

our algorithm the interpretaধon of a natural extension of Lloyd’s.
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