PREFERENCE OPTIMIZATION ON PARETO SETS: ON MULTI-OBJECTIVE OPTIMIZATION

Abhishek Roy^{1,3}, Geelon So^{2,3} and Yi-An Ma²

¹Texas A&M University, ²University of California, San Diego, ³Equal contribution

MOTIVATION

ML systems need to **make trade-offs** across many objectives besides accuracy.

- Fairness-aware learning decisions simultaneously impact many groups of people
- Large language models—correctness, alignment, succinctness, reasoning quality, steerability
- Self-driving cars—safety, latency, fuel-efficiency
- Portfolio optimization conditional values at risk

Question: How to find the most preferred trade-off?

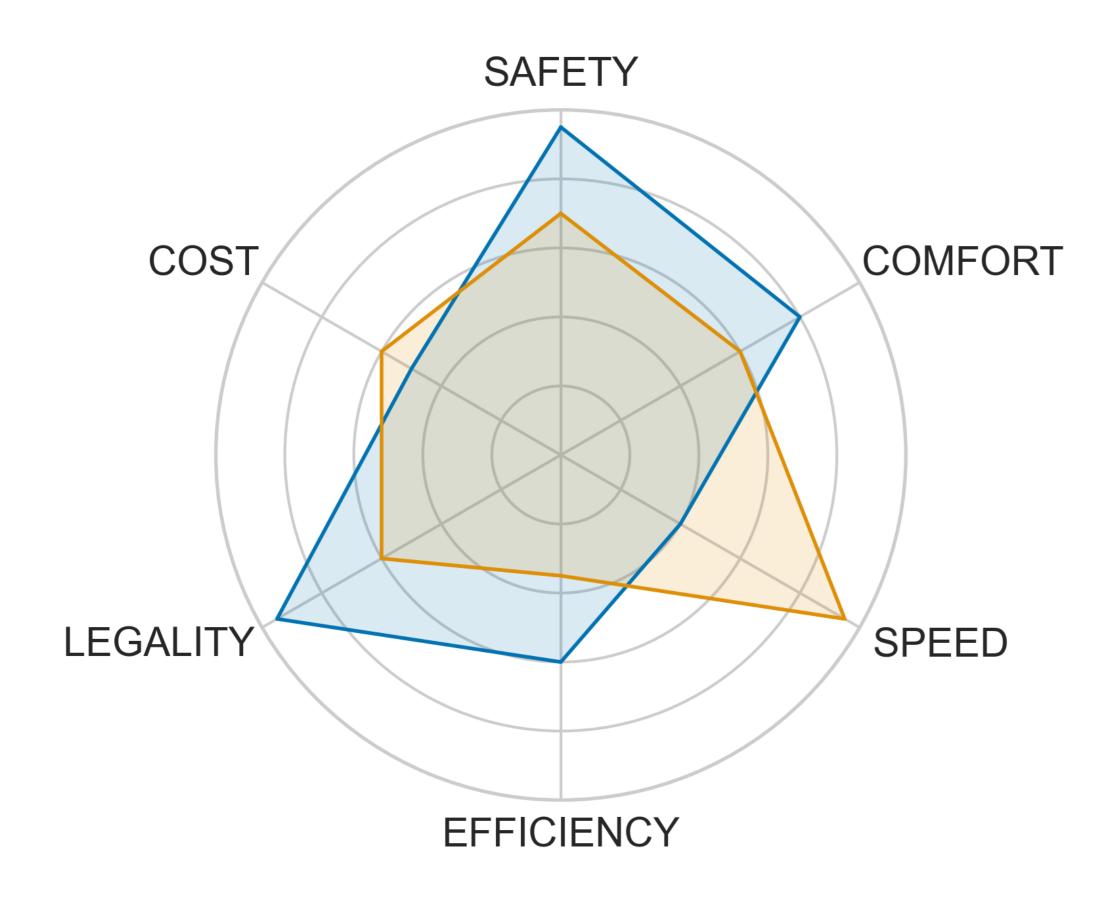


Figure. A decision is a *Pareto optimal trade-off* if improving any one objective must worsen another.

OPTIMIZATION PROBLEM

- $F \equiv (f_1, ..., f_n)$ is a set of n objectives on \mathbb{R}^d
- Pareto(F) is the set of Pareto-optimal decisions
- $f_0: \mathbb{R}^d \to \mathbb{R}$ is a preference function

Pareto-constrained preference optimization

$$\min_{x \in \text{Pareto}(F)} f_0(x)$$

CHALLENGES

- The Pareto set is **implicit**, **non-convex** and **non-smooth**, even for nice functions like quadratics.
- Problem is **NP-hard** even in the linear case (Fulöp 1993). Difficult to define **preference stationarity**.
- Preferences may come from human feedback.

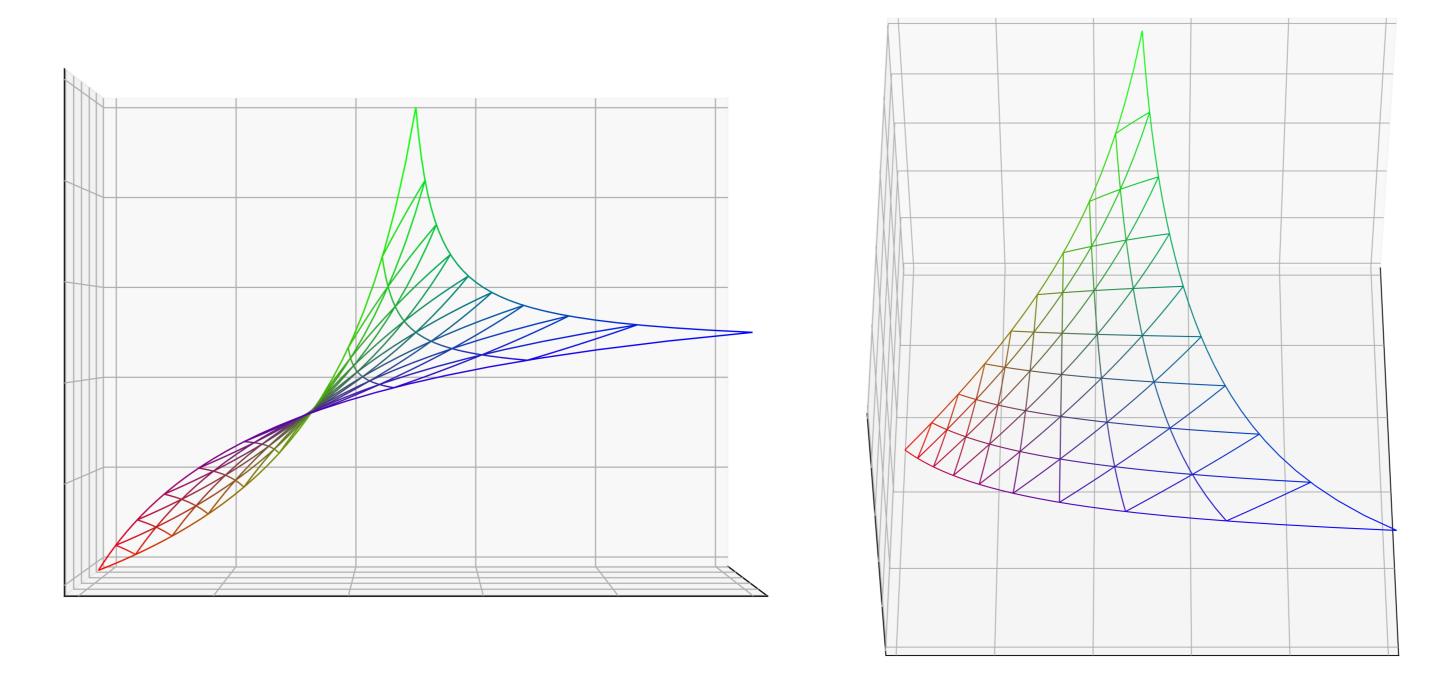


Figure. Two different projections of a Pareto manifold. The left projection yields the original Pareto set (notice its singularity).

THE PARETO MANIFOLD

- The Pareto set lives in the *decision* space, and can have poor geometry.
- We define the Pareto manifold $\mathcal{P}(F)$, which lives in a joint decision–trade-off space.
- When objectives are strongly convex, the Pareto manifold is *diffeomorphic* to the (n-1)-simplex.

Definition. The *linear scalarization* of F with weights $\beta \in \Delta^{n-1}$ is the objective:

$$f_{\beta}(x) := \sum_{i \in [n]} \beta_i f_i(x)$$

and its solution is $x_{\beta} := \arg\min_{x \in \mathbb{R}^d} f_{\beta}(x)$.

Definition. The Pareto manifold is the set:

$$\mathscr{P}(F) = \{(x_{\beta}, \beta) : \beta \in \Delta^{n-1}\}.$$

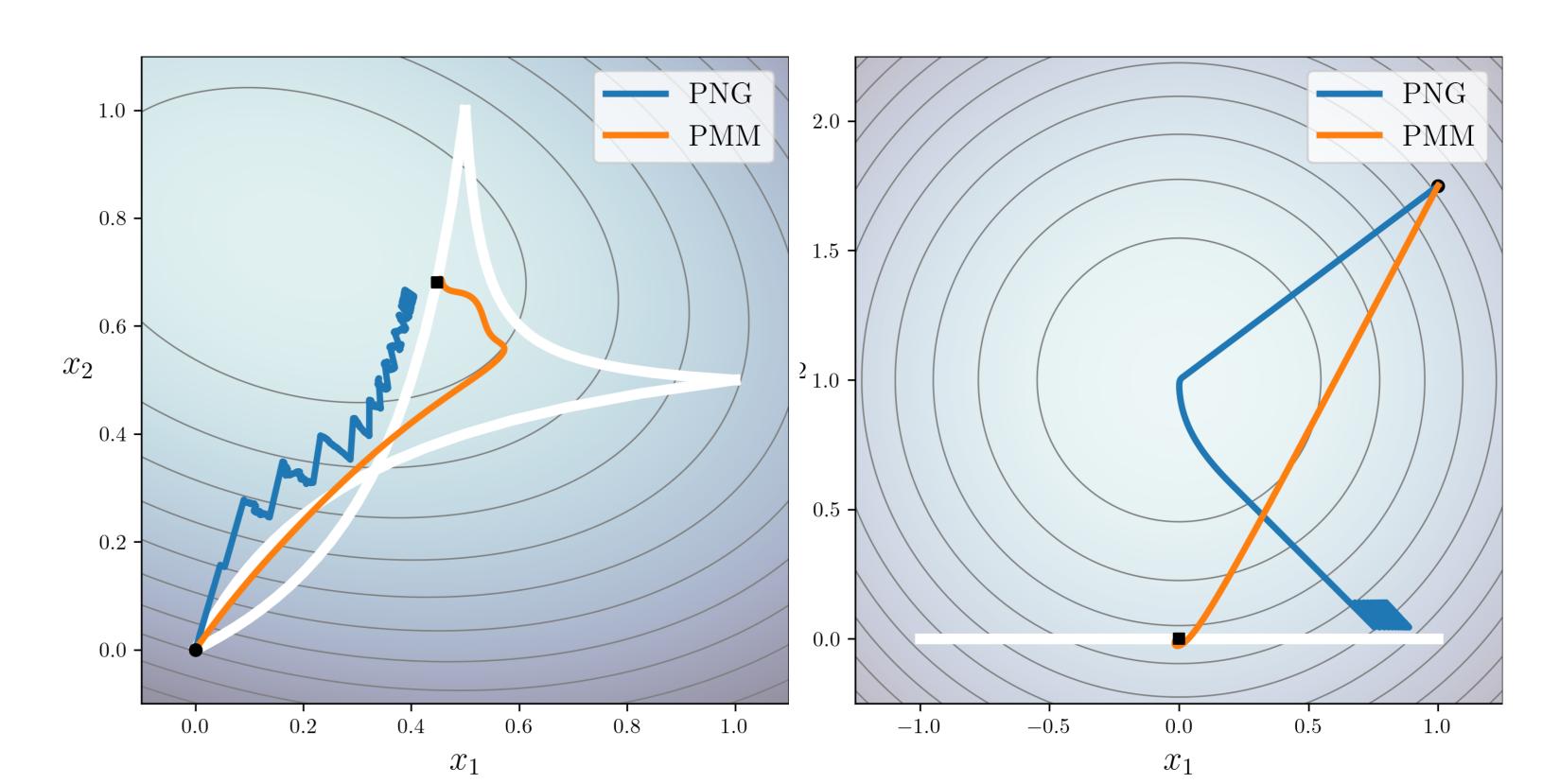


Figure. Comparison of learning dynamics of PMM (ours) and PNG (Ye and Liu, 2022). Dynamics begin at the black dot. The ground truth solution is marked by a black square.

ALGORITHMIC IDEA

 Lift the optimization problem to the joint decision trade-off space containing the Pareto manifold:

$$\min_{(x_{\beta},\beta)\in\mathscr{P}(F)} f_0(x_{\beta})$$

• Implicit function theorem yields $\nabla_{\beta} x_{\beta}$, enabling gradient-descent based approach.

MAIN RESULTS

- We introduce meaningful and computationallytractable approximate notions of **stationarity**.
- We develop an algorithm using either gradient or dueling preference feedback.
- It converges to ε -stationarity with $O(1/\varepsilon^2)$ iterations under standard assumptions from optimization.

TAKEAWAY

- Multi-objective optimization may be more natural in the joint decision–trade-off space.
- The Pareto set can provide structure in preference learning (dimensionality of d reduced to n).