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Motivation

Question: How do we define realistic data generating processes?

We don’t generally have a good answer to this question, which
contributes to the . We often end up:

= requiring unrealistic/excessively restrictive assumptions, or
= coming to overly pessimistic conclusions.

't is hard to formalize settings that are general enough to capture
real-world scenarios but sufficiently constrained to be tractable.

Classical frameworks: statistical (i.i.d.) and worst-case settings

complexity of task

/ these settings are too hard

hardness of learning setting

Classical learning theory says that the i.i.d. setting is ‘easy’ and
worst-case is very hard. Very little is known in between, but the
aim of or s to fill in the gap.

Problem setting

Let n : X — ) a target function where X’ is an instance space
and Y Is a finite label space.

Online classification loop (realizable) Forn=1,2,...

" some process generates an instance X,
= the learner makes a prediction Y,
= the ground truth is revealed Y;, = n(X,,)

Goal of the learner The mistake rate eventually vanishes:
N

lim sup %Z 1{?@ £ Yn} = 0. (%)

We say that the learner is online consistent on (X, n).

Research goals

= Study the nearest neighbor rule under general settings
= Understand what makes different sequences of data hard

Summary

We study the nearest neighbor rule (1-NN) and show that it
learns under settings far broader than previously known.

In the language of non-worst-case analysis, sequences on which
the 1-NN rule does not learn are extremely rare—under suitable
classes of measures, they have measure zero.

Supported by NSF 115-2211386

Department of Computer Science and Engineering, UC San Diego

Figure 1. A mutually-labeling ball cover.

The nearest neighbor rule

Let X have a separable metric p and finite Borel measure v.

* X = (X,), Is an instance sequence generated by a process.
= X = (X,,), is a corresponding nearest neighbor process, where:

~

X, € argmin p(X,, x).

reXo,
= The nearest neighbor rule predicts using the label:

~

Y, = n(X,).

points are surrounded by other points of the same
class, provided we zoom in enough.

A class of budgeted processes

Definition. A stochastic process X is ergodically dominated by
v If for any € > 0, there exists 0 > 0 such that:

N
V(A) <o = lim sup ik > 1{Xn S A} < € a.s.
N—00 n=1

We say X is ergodically continuous with respect to v at rate €(9).

A class of bounded-precision processes

Definition. A stochastic process X is uniformly dominated by
v If for any € > 0, there exists ¢ > 0 such that:

Pr(X,cA ( Xen) <€ as.

We say it is uniformly absolutely continuous w.r.t. v at rate (d).

V(A)<d —=

Learning in the worst-case setting

Let (X, p) be a totally bounded metric space. Fixn: X — V.

Proposition. The nearest neighbor rule is consistent on (X, n) for
every X if and only if the classes are positively separated:

inf z,z’) > c > 0.
n(z)#n(z’) 4 )

= Roughly speaking, if and only If the inductive bias is correct.
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Figure 2. Let n(x) = 1{z > 0}. The nearest neighbor rule makes a mistake
every single round on the sequence X,, = (—1/3)".

Learning over nice functions

Theorem. Let (X, p, v) be equipped with a separable metric p and
a finite Borel measure v. Let n have negligible boundary. When
X is ergodically dominated by v, then:

N
lim sup %2:1 l{n(Xn) + n(Xn)} =0 a.s.

N —00 —
A\ - 4

the nearest neighbor rule is online consistent for (X, n).

= Here, the inductive bias is correct almost everywhere.

Learning over all functions

Theorem. Additionally, let (X, p, ) be upper doubling but n be
any measurable function. When X is uniformly dominated by v,

N
lim sup %z:l 1{77(Xn) + n(Xn)} = () a.s.

N —00

J/

~

the nearest neighbor rule is online consistent for (X, n).

= Here, the Inductive bias can be correct nowhere.

Geometric notions

= The margin of a point x with respect to n is:

margin, (z) = inf p(x,z’).

n(')#n(z)
* We say x is on the boundary dn if margin, (x) = 0.
= We say that n has negligible boundary it v(0n) = 0.
= Aset U C X Is mutually-labeling if:
diam(U) < %glf] margin, ().
If x ¢ On, then B(z, margin, (x)/3) is mutually-labeling.
= The space (X, p,v) is upper doubling with dimension d if:

= any ball can be covered by 27 balls with half its radius,
= r-balls have O(r?) mass.
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