

Motivation

Question: How do we define *realistic* data generating processes?

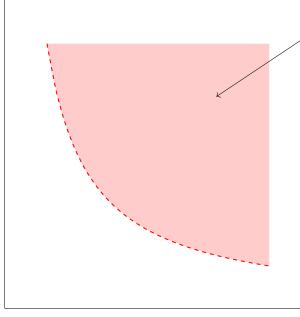
We don't generally have a good answer to this question, which contributes to the theory-practice gap. We often end up:

- requiring unrealistic/excessively restrictive assumptions, or
- coming to overly pessimistic conclusions.

It is hard to formalize settings that are general enough to capture real-world scenarios but sufficiently constrained to be tractable.

Classical frameworks: statistical (i.i.d.) and worst-case settings

complexity of task



these settings are too hard

hardness of learning setting

Classical learning theory says that the i.i.d. setting is 'easy' and worst-case is very hard. Very little is known in between, but the aim of smoothed or non-worst-case analysis is to fill in the gap.

Problem setting

Let $\eta: \mathcal{X} \to \mathcal{Y}$ a target function where \mathcal{X} is an instance space and \mathcal{Y} is a finite label space.

Online classification loop (realizable) For n = 1, 2, ...

- some process generates an instance X_n
- the learner makes a prediction \hat{Y}_n
- the ground truth is revealed $Y_n = \eta(X_n)$

Goal of the learner The mistake rate eventually vanishes:

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbf{1} \left\{ \hat{Y}_n \neq Y_n \right\} = 0.$$

We say that the learner is online consistent on (X, η) .

Research goals

- Study the nearest neighbor rule under general settings
- Understand what makes different sequences of data hard

Summary

We study the nearest neighbor rule (1-NN) and show that it learns under settings far broader than previously known.

In the language of non-worst-case analysis, sequences on which the 1-NN rule does not learn are extremely rare—under suitable classes of measures, they have measure zero.

Online Consistency of the Nearest Neighbor Rule

Sanjoy Dasgupta

dasgupta@ucsd.edu

Geelon So geelon@ucsd.edu

Department of Computer Science and Engineering, UC San Diego

 (\star)

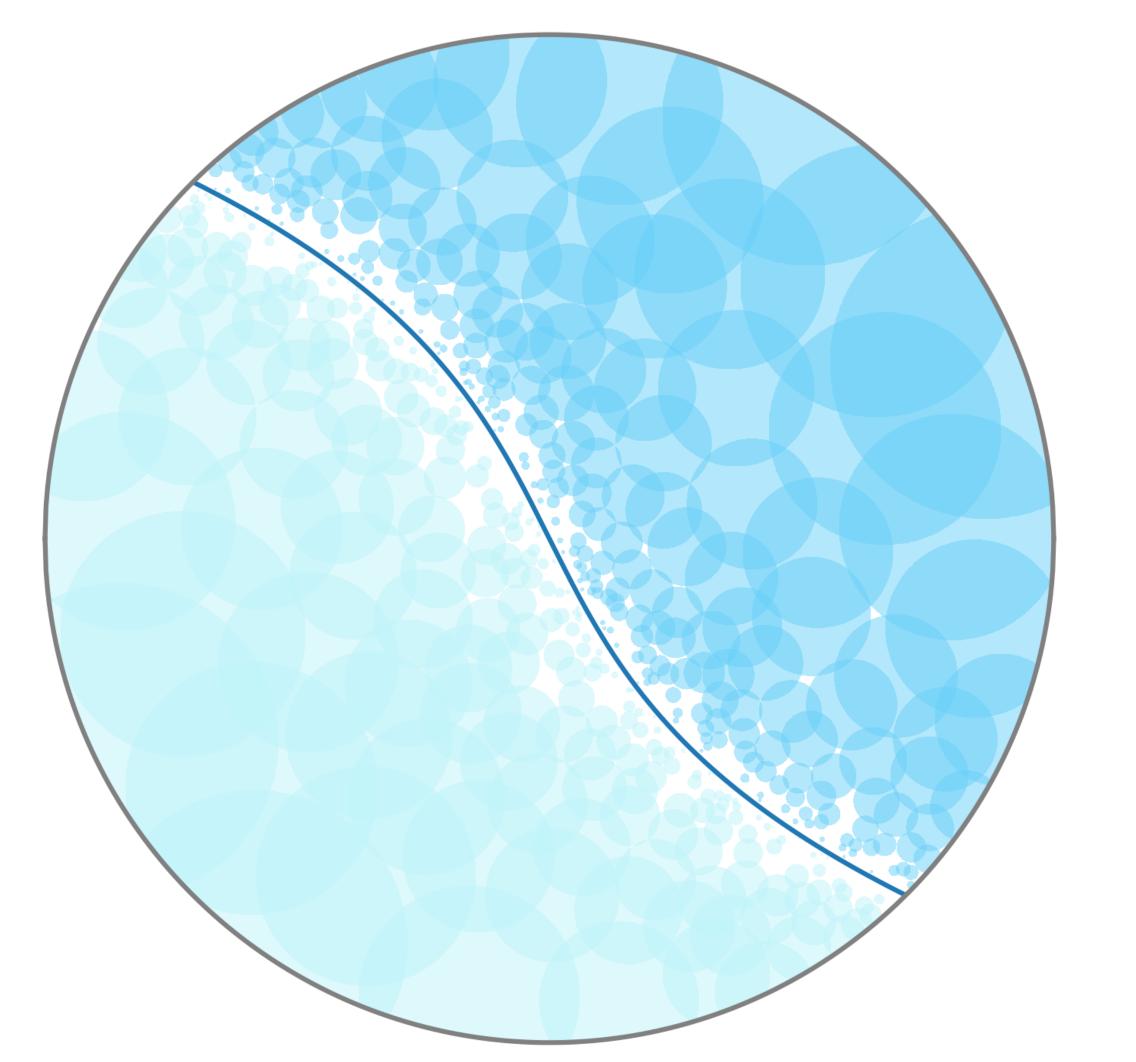


Figure 1. A mutually-labeling ball cover.

The nearest neighbor rule

Let \mathcal{X} have a separable metric ρ and finite Borel measure ν .

- $\mathbb{X} = (X_n)_n$ is an instance sequence generated by a process.
- $\tilde{\mathbb{X}} = (\tilde{X}_n)_n$ is a corresponding nearest neighbor process, where:

$$\tilde{X}_n \in \operatorname*{arg\,min}_{\sigma_{w}} \rho(X_n, x).$$

 $x \in \mathbb{A}_{< n}$ • The nearest neighbor rule predicts using the label:

$$\hat{Y}_n = \eta(\tilde{X}_n).$$

Inductive bias: points are surrounded by other points of the same class, provided we zoom in enough.

A class of budgeted processes

Definition. A stochastic process X is ergodically dominated by ν if for any $\varepsilon > 0$, there exists $\delta > 0$ such that:

$$\nu(A) < \delta \implies \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbf{1} \{ X_n \in A \} < \varepsilon$$

We say X is ergodically continuous with respect to ν at rate $\varepsilon(\delta)$.

A class of bounded-precision processes

Definition. A stochastic process X is uniformly dominated by ν if for any $\varepsilon > 0$, there exists $\delta > 0$ such that: $\nu(A) < \delta \implies \Pr(X_n \in A \mid \mathbb{X}_{< n}) < \varepsilon \quad \text{a.s.}$ We say it is uniformly absolutely continuous w.r.t. ν at rate $\varepsilon(\delta)$.

a.s.

Learning in the worst-case setting

Let (\mathcal{X}, ρ) be a totally bounded metric space. Fix $\eta : \mathcal{X} \to \mathcal{Y}$. **Proposition.** The nearest neighbor rule is consistent on (X, η) for every X if and only if the classes are positively separated:

 $\inf_{\eta(x)\neq\eta(x')}\,\rho(x,x')>c>0.$

• Roughly speaking, if and only if the inductive bias is correct.

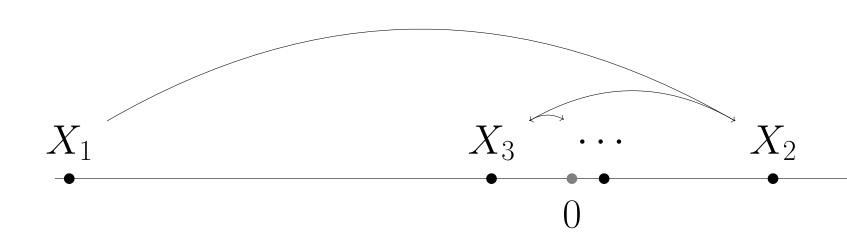


Figure 2. Let $\eta(x) = \mathbf{1}\{x \ge 0\}$. The nearest neighbor rule makes a mistake every single round on the sequence $X_n = (-1/3)^n$.

Learning over nice functions

Theorem. Let (\mathcal{X}, ρ, ν) be equipped with a separable metric ρ and a finite Borel measure ν . Let η have negligible boundary. When X is ergodically dominated by ν , then:

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbf{1} \left\{ \eta(X_n) \neq \eta(\tilde{X}_n) \right\} = 0$$

the nearest neighbor rule is online consistent for (X, η) .

Here, the inductive bias is correct almost everywhere.

Learning over all functions

Theorem. Additionally, let (\mathcal{X}, ρ, ν) be upper doubling but η be any measurable function. When X is uniformly dominated by ν ,

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbf{1} \left\{ \eta(X_n) \neq \eta(\tilde{X}_n) \right\} = 0$$

the nearest neighbor rule is online consistent for (X, η) .

Here, the inductive bias can be correct nowhere.

Geometric notions

• The margin of a point x with respect to η is:

 $\operatorname{margin}_{\eta}(x) = \inf_{\eta(x') \neq \eta(x)} \rho(x, x').$

- We say x is on the boundary $\partial \eta$ if margin_n(x) = 0.
- We say that η has negligible boundary if $\nu(\partial \eta) = 0$.
- A set $U \subset \mathcal{X}$ is mutually-labeling if:

 $\operatorname{diam}(U) < \inf_{x \in U} \operatorname{margin}_{\eta}(x).$

If $x \notin \partial \eta$, then $B(x, \operatorname{margin}_{\eta}(x)/3)$ is mutually-labeling.

- The space (\mathcal{X}, ρ, ν) is upper doubling with dimension d if:
- any ball can be covered by 2^d balls with half its radius,
- *r*-balls have $O(r^d)$ mass.

a.s.

a.s.

