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Motivation

Question: How do we define realistic data generating processes?

We don’t generally have a good answer to this question, which

contributes to the theory-practice gap. We often end up:

requiring unrealistic/excessively restrictive assumptions, or

coming to overly pessimistic conclusions.

It is hard to formalize settings that are general enough to capture

real-world scenarios but sufficiently constrained to be tractable.

Classical frameworks: statistical (i.i.d.) and worst-case settings

hardness of learning setting

complexity of task

these settings are too hard

Classical learning theory says that the i.i.d. setting is ‘easy’ and

worst-case is very hard. Very little is known in between, but the

aim of smoothed or non-worst-case analysis is to fill in the gap.

Problem setting

Let η : X → Y a target function where X is an instance space

and Y is a finite label space.

Online classification loop (realizable) For n = 1, 2, . . .

some process generates an instance Xn

the learner makes a prediction Ŷn

the ground truth is revealed Yn = η(Xn)

Goal of the learner The mistake rate eventually vanishes:

lim sup
N→∞

1
N

N∑
n=1

1
{
Ŷn 6= Yn

}
= 0. (?)

We say that the learner is online consistent on (X, η).

Research goals

Study the nearest neighbor rule under general settings

Understand what makes different sequences of data hard

Summary

We study the nearest neighbor rule (1-NN) and show that it

learns under settings far broader than previously known.

In the language of non-worst-case analysis, sequences on which

the 1-NN rule does not learn are extremely rare—under suitable

classes of measures, they have measure zero.

Figure 1. A mutually-labeling ball cover.

The nearest neighbor rule

Let X have a separable metric ρ and finite Borel measure ν.

X = (Xn)n is an instance sequence generated by a process.

X̃ = (X̃n)n is a corresponding nearest neighbor process, where:

X̃n ∈ arg min
x∈X<n

ρ(Xn, x).

The nearest neighbor rule predicts using the label:

Ŷn = η(X̃n).

Inductive bias: points are surrounded by other points of the same

class, provided we zoom in enough.

A class of budgeted processes

Definition. A stochastic process X is ergodically dominated by

ν if for any ε > 0, there exists δ > 0 such that:

ν(A) < δ =⇒ lim sup
N→∞

1
N

N∑
n=1

1
{
Xn ∈ A

}
< ε a.s.

We sayX is ergodically continuouswith respect to ν at rate ε(δ).

A class of bounded-precision processes

Definition. A stochastic process X is uniformly dominated by

ν if for any ε > 0, there exists δ > 0 such that:

ν(A) < δ =⇒ Pr
(
Xn ∈ A

∣∣∣X<n

)
< ε a.s.

We say it is uniformly absolutely continuous w.r.t. ν at rate ε(δ).

Learning in the worst-case setting

Let (X , ρ) be a totally bounded metric space. Fix η : X → Y .

Proposition. The nearest neighbor rule is consistent on (X, η) for
every X if and only if the classes are positively separated:

inf
η(x) 6=η(x′)

ρ(x, x′) > c > 0.

Roughly speaking, if and only if the inductive bias is correct.
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Figure 2. Let η(x) = 1{x ≥ 0}. The nearest neighbor rule makes a mistake

every single round on the sequence Xn = (−1/3)n.

Learning over nice functions

Theorem. Let (X , ρ, ν) be equippedwith a separable metric ρ and
a finite Borel measure ν. Let η have negligible boundary. When

X is ergodically dominated by ν, then:

lim sup
N→∞

1
N

N∑
n=1

1
{
η(Xn) 6= η(X̃n)

}
= 0︸ ︷︷ ︸

the nearest neighbor rule is online consistent for (X, η).

a.s.

Here, the inductive bias is correct almost everywhere.

Learning over all functions

Theorem. Additionally, let (X , ρ, ν) be upper doubling but η be

any measurable function. When X is uniformly dominated by ν,

lim sup
N→∞

1
N

N∑
n=1

1
{
η(Xn) 6= η(X̃n)

}
= 0︸ ︷︷ ︸

the nearest neighbor rule is online consistent for (X, η).

a.s.

Here, the inductive bias can be correct nowhere.

Geometric notions

The margin of a point x with respect to η is:

marginη(x) = inf
η(x′)6=η(x)

ρ(x, x′).

We say x is on the boundary ∂η if marginη(x) = 0.
We say that η has negligible boundary if ν(∂η) = 0.
A set U ⊂ X is mutually-labeling if:

diam(U) < inf
x∈U

marginη(x).

If x /∈ ∂η, then B(x, marginη(x)/3) is mutually-labeling.

The space (X , ρ, ν) is upper doubling with dimension d if:
any ball can be covered by 2d balls with half its radius,

r-balls have O(rd) mass.
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