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Abstract

This is an expository paper on a general framework for the design and analysis of active learning
algorithms. The usual passive formulation of machine learning assumes that training data is collected
i.i.d. from the world, without influence from the learner. Active learning is a setting where the learner is
able to collect its own training data—the hope is that the active learner can collect highly informative
data to reduce the amount of data required to learn.

The main contribution of this thesis is in how it frames active learning algorithms: use the geometric
structure of the model to deduce which statistics are especially informative with respect to the goal of
learning, then actively collect data to estimate these statistics. In addition to aiding the design of active
learning algorithms, this framework also enables us to conceptually distinguish the parametric nature of
the model from the non-parametric nature of noise in our analysis. Naturally, the amount of data required
to learn will depend on both the complexity of the model and the amount of noise/uncertainty in the
data; we discuss common techniques to lower bound the amount of data required by active learning also.
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1 Introduction
Consider the supervised learning problem of binary classification [BBL05]. In the usual formulation, instances
x from an instance space X are associated with classes y from a label space Y . Their ‘real-world’ relationship
is formally encapsulated by some unknown joint distribution PXY over X ×Y . The learner, on the other hand,
has an a priori model H for how instances may be associated with labels. Namely, a model or hypothesis
class is a collection of functions or hypotheses of the form h : X → Y.

To decide which hypothesis best captures the relationship between X and Y, the learner relies on data
(x1, y1), . . . , (xn, yn) collected from the real world—perhaps they are drawn from PXY . It is likely the
case that drawing a single sample will reveal relatively little about PXY , but as more samples are drawn,
more information about PXY is learned. With enough samples, at some point, it will become possible to
satisfactorily fit the model to the world.

The usual passive formulation of machine learning assumes that the samples are drawn i.i.d. from the
underlying distribution. It is passive because the learner has no influence over what data it sees. But as
not all data are equally useful, a learner that may actively collect data—perform experiments—may be able
to learn the same as its passive counterpart, but using much less data. These notes are concerned with the
amount of data n that enables an active learner to learn well.
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2 Learning as an estimation problem
The framework in which we’ve just described learning comes from classical statistical learning theory [BBL03],
where learning is ultimately an optimization problem: find the hypothesis h ∈ H that is least likely to err.
We might, for instance, optimize over the expected rate of misclassification as a notion of error or risk:

R(PXY , h) := E
(x,y)∼PXY

[
1{h(x) 6= y}

]
.

That is, we wish to obtain the best-in-class classifier h∗,

h∗ := arg min
h∈H

R(h).

Note that for brevity, we omit PXY and let R(h) ≡ R(PXY , h) when it is clear from context.
To solve this optimization problem, though, we can hardly expect to access PXY as a closed analytic

expression; more likely, we access PXY through samples (x, y) drawn from it. One reasonable approach to
learning is to use samples drawn from PXY to estimate the risk—if the estimator is a sufficiently faithful
proxy to the true risk, minimizing the estimated risk will approximately minimize the true risk. Thus, the
problem of learning is transformed into one of estimation.
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2.1 Empirical risk minimization

To see how learning through statistical estimation plays out, let’s consider one very natural approach to
estimating risk: draw n i.i.d. samples (Xi, Yi) ∼ PXY and construct the empirical risk of h on n samples:

R̂(h) := 1
n

n∑
i=1

1{h(Xi) 6= Yi}.

The law of large numbers tells us that R̂(h) is an unbiased and consistent estimator of R(h); that is, not only
is the estimator correct in expectation, E

[
R̂(h)

]
= R(h), but also following intuition, we obtain increasingly

higher quality estimates of the true risk through greater amounts of data.
In fact, large deviation bounds allow us to statistically quantify this trade off between quality of estimation

and sample size. Consider the following upper bound on the probability that an empirical estimator fails to
be close to its expected value:

Theorem 1 (Hoeffding’s inequality). Let Z1, . . . , Zn be n i.i.d. Bernoulli variables. Then:

Pr
[∣∣∣∣∣ 1n

n∑
i=1

Zi − E[Z]

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2nε2) .

It immediately follows that if we wish to estimate the risk of a fixed hypothesis to an accuracy of ±ε with
failure probability δ (i.e. the empirical risk fails to be within ±ε of the true risk with probability at most δ),
we need to set the right-hand side of the inequality to δ and solve for n. This shows us that the empirical
estimator constructed on n i.i.d. samples suffices, where the number of samples n needs be no larger than:

n = O

(
1
ε2 ln 1

δ

)
.

Now, this is the number of samples to estimate the risk of a single fixed hypothesis to within ±ε. But in
order to minimize risk over the whole hypothesis class H, we’d need to estimate the risk for each hypothesis
to within ±ε. For simplicity, assume that H is finite; then we can use those n samples to construct |H|
estimators in parallel. By a union bound, the probability that at least one of the estimators fails to fall within
±ε of its expected value is |H| · δ.

Reparametrizing δ, we can now say that if we wish to simultaneously estimate the risk of all hypotheses
of a finite hypothesis class to an accuracy of ±ε with failure probability δ (i.e. the probability that even
one of the empirical risks fails to be within ±ε of its true risk is at most δ), it suffices to construct our |H|
estimators using n i.i.d. samples. The number of samples we need to learn—the sample complexity—needs
be no larger than:

n = O

(
1
ε2 ln |H|

δ

)
. (1)

Notice that once we can guarantee that the empirical risks of each hypothesis in H is within ±ε of its
true risk, then it must be the case that the empirical risk minimizer herm := arg minh∈H R̂(h) must satisfy:

R(herm) ≤ R(h∗) + 2ε.

In other words, the estimated hypothesis herm is worse than the best-in-class hypothesis h∗ by an error rate
of at most 2ε with probability 1− δ, thus (ε, δ)-learning H (see Appendix A for a formal definition).
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2.2 Hypothesis classes as pseudometric spaces

The core question posed by statistical learning—using data to recover h∗ ∈ H up to some error tolerance—can
in some sense, be formulated geometrically: a learner just has to return any hypothesis ĥ from some “ε-ball
around h∗”. But in what sense—with respect to which notion of distance?1 We can define the distance
between two hypotheses h and h′ by the probability that they disagree on X , where each instance in X is
weighted by some marginal distribution PX (usually, with respect to the true data distribution):

Definition 2 (Induced pseudometric on H). Let PX be a marginal distribution on X . Let H ⊂ {0, 1}X be a
hypothesis class. The pseudometric induced on H by PX is the map d : H×H → R, defined by:

d(h, h′) := Pr
X∼PX

[
h(X) 6= h′(X)

]
.

To convince you that d is a proper pseudometric, we can rewrite it more familiarly as the L1-metric:

d(h, h′) ≡ ‖h− h′‖1 =
∫
X
|h(x)− h′(x)| dPX(x).

When d(h, h′) = 0, then h and h′ are equal almost everywhere. In fact, the L1 interpretation of distance can
be extended to help us describe the error of a hypothesis. Denote by g the conditional expectation:

g(x) := E[Y |X = x].

If we view H ⊂ L1(X ; [0, 1]) as a subset of L1-integrable functions from X to [0, 1], then the error of a
hypothesis h can then be rewritten as R(h) = ‖h− g‖1. And so, we could write R(h) = d(h, g).

With this understanding of distances between hypotheses, we can characterize ε-learning as the geometric
problem of searching for a hypothesis from within a ball around h∗, up to the model error ν := R(h∗). And
in fact, if our model perfectly fit the the underlying distribution (i.e. R(h∗) = 0), then learning is exactly
equivalent to the problem of search. Consider the following two lemmas, following from the triangle inequality.
The first states that if we can search for an ε-close hypothesis to h∗, we can ε-learn H. The second states
that if we can ε-learn, we can search for a (2ν + ε)-close hypothesis to h∗.

Lemma 3 (Search implies learn). Let H and PXY be a hypothesis class and a joint probability distribution
over X × Y, as above. Let d be the pseudometric induced on H by the marginal distribution PX . If h ∈ H
satisfies d(h, h∗) < ε, its excess risk is at most ε.

Lemma 4 (Learn implies search). Let H, PXY , and d as before. Let ν be the optimal risk of any h ∈ H;
that is, ν is the true risk R(h∗) of a best-in-class classifier h∗ ∈ H:

ν := min
h∈H

R(h).

If h ∈ H has excess risk at most ε, then d(h, h∗) < 2ν + ε.

As a prelude to the next section in which we formulate learning as a search problem, let’s reconsider how
it is that empirical risk minimization (ε, δ)-learns H:

1. Observe that the risk functional R : H → R with respect to PXY contains enough information to
identify h∗ from H; indeed h∗ is the minimizer of R.

1We’ll actually use a relaxed notion of distance/metric where we don’t require distinct points to have nonzero distance. In
particular, a pseudometric on a space X is a non-negative function d : X ×X → R such that (i) d(x, x) = 0, (ii) d(x, y) = d(y, x),
and (iii) d(x, y) + d(y, z) ≥ d(x, z). The third condition is the usual triangle-inequality.
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Figure 1: A pictorial proof of Lemmas 3 and 4. View g(x) := E[Y |X = x] and h∗ ∈ H
as elements in a pseudometric space. Here, d(g, h∗) = ν. To ε-learn H means to return
any hypothesis in the dashed circle centered at g. To ε- and (2ν + ε)-search means to
return any hypothesis in the dotted and solid circles centered at h∗, respectively.

2. Given an estimate R̂ : H → R that is within (ε/2)-close of R with respect to the L∞-norm:∥∥R̂−R∥∥∞ ≤ ε

2 ,

it becomes possible to compute a set of hypotheses h ∈ H within ε of h∗, S ⊂ B(h∗, 2ν + ε).

3. The above analysis that combines Hoeffding’s inequality with a union bound shows how such an
estimator can be constructed using finite samples from PXY with high probability.

In short, if we weakened the problem of ε-learning H to searching for a (2ν + ε)-close hypothesis to h∗ within
H, the overall technique to learning is simply to construct a single statistic (here, the estimator R̂) that
carries enough information to reduce the search space H down to a small subset around the target h∗.

But of course, this statistic R̂ contains much more information than needed to convey the contents of some
small non-empty subset of B(h∗, 2ν + ε); it requires so much information from labeled data that it is capable
of estimating the risk for every hypothesis in H to within ±ε. Might it be possible to construct other statistics
or even sequences of statistics that still enable us to recover an appropriate subset ∅ ( S ⊂ B(h∗, 2ν + ε),
but require much less labeled data to estimate? In particular, perhaps it is possible to construct a sequence of
statistics, each with lower information content—thus requiring less data to estimate—but together progressively
reduces the search space. Before we investigate this idea formally, let’s build up our intuition for how we can
attack this problem with a simple thought experiment.

2.3 To the booksellers

Imagine walking into a bookstore. Though you’ve never been before, know that it’s filled with countless
volumes ranging from Greek tragedies to quantum mechanics, architectural coffee-table books to bathroom
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readers. Out of millions of books, you wish to find one: Feller’s An Introduction to Probability Theory.
Let’s assume that the books are organized broadly by category and perhaps more finely in alphabetical

order by author—and let’s say that this model is a reasonable one, though perhaps a book might be misplaced
here and there due to a careless patron.

One way you could attempt to locate this book is to first try to estimate the bookstore’s organizational
system: randomly pull books off the shelves and make a note of its category and author. If you do this for
long enough, you’ll obtain a pretty fine estimation, and this will allow you to jump into the introductory
probability section of the bookstore and pull a book by an author whose last name is close to Feller’s. Maybe
you obtain Billingsley’s Probability and Measure, and maybe that’s ε-close enough for you.

But let’s not use this is a ridiculous algorithm to search for a book in a bookstore. Instead, you might be
more naturally inclined to browse around to build a high-level estimation of how the bookstore is organized.
Once you’ve discovered the math/stats section, you probably want to concentrate your search in that area
and estimate how their subfields are organized. Finally, at some point, you might even perform a binary
search on the author’s last name.

Even if the books aren’t perfectly ordered, this latter algorithm could yield immense savings in how many
books you need to look at. Here, the savings are due to being able to adaptively change where you look for
the book. First, this allows you to decide not to gather information from areas that are likely irrelevant to
your search (despite the off-chance that, say, someone moved Feller’s book into the literary criticism section).
In particular, because you can restrict your search space, you need to look at much fewer books before you
get to the author-level precision. Stated differently, if adaptation weren’t allowed or you hadn’t restricted
your search space over time, then to be able to identify an introductory probability book at the author level,
you would’ve had to gather enough information to identify books from all fields at the author level; in such a
case, perhaps the first algorithm (i.e. empirical risk maximization) is optimal. And second, adaptation allows
you, when provided certain structural assumptions like the alphabetical ordering of books, to significantly
speed up finding the book by seeking out maximally informative data points.

When adaptation is possible, this imaginary bookstore illustrates how we might try to learn using much
less data. In the rest of the paper, we’ll formalize these intuitions into techniques and analyses for learning
with less data. Notice though, that if the bookstore is in disarray with books reshelved willy-nilly (i.e. noise
or model misspecification), then perhaps no amount of adaptation could allow us to locate the book faster
than essentially performing a brute-force search. And so, in addition to techniques and analyses, we will also
study the information-theoretic lower bounds to understand what statistical limits exist for learning.

3 Learning as a search problem
By approaching learning from a search perspective, we implicitly mean that the learner may sequentially
interact with the world: the knowledge it accumulates interacting with the world informs it on how to
gather the next bit of information. We call such a learner an active learner because it actively chooses the
information it uses to learn; or, in other words, the learner performs experimental design, for in choosing the
next piece of information, it is simply choosing the next experiment to run.

Let’s formalize a simple model of active learning: as before, we let X ,Y,H be the instance, label, and
hypothesis space. Let P be the class of possible ‘real-world’ data distributions, and let PXY ∈ P is the
underlying distribution over X × Y. When the learner draws a sample (x, y) ∼ PXY , the label y is initially
hidden. At a cost, the learner may ask a label oracle to reveal the hidden label (e.g. the oracle could be a
human providing feedback, the result of a physical experiment, so on). Thus, we’re interested in minimizing
the amount of calls to the label oracle—the label complexity—required to learn well.
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3.1 A mellow active learner: don’t label uninformative points

Recall back to our booksellers example: as we learn more about the layout of the bookstore, we can concentrate
our data collection efforts to areas we think are relevant. In other words, we might expect the size of the search
space to decrease over time as we learn more about the bookstore. Indeed, we could perform the following
natural algorithm: iterate between (i) exploring the current search space to learn about the bookstore’s
organization based on our prior model of a bookstore, and (ii) reducing the search space through our deepened
understanding of how the bookstore is organized in the real world.

In the context of learning, let’s say that at time t, having performed t experiments, we know that the
best-in-class model h∗ ∈ H is contained within a small subset of hypotheses we call a version space:

h∗ ∈ Vt ⊂ H.

Then, a coarse proxy for how quickly our ‘understanding of the real world deepens’ could be how quickly
these version spaces shrink. In particular, if each of these version spaces are contained within a ball:

Vt ⊂ B(h∗, rt),

we’d hope that the radius rt decreases quickly as a function of t. And if we know that h∗ is contained within
Vt, we shouldn’t bother to label points x ∈ X on which all hypotheses h ∈ Vt agree: they will all be correct
or incorrect together. So, let us define the disagreement region DIS(Vt) ⊂ X to be the points x for which
there is disagreement among h ∈ Vt as to what its label is:

DIS(Vt) := {x ∈ X : ∃h, h′ ∈ H s.t. h(x) 6= h′(x)}.

The size of the disagreement region of V is just its probability mass, PX [DIS(V)]. We could formalize in the
following way the relationship between increasing knowledge of h∗ and reducing the area of data collection
in terms of shrinking the radius of a ball B(h∗, r) containing V and decreasing the probability mass of the
disagreement region PX [DIS(V)]:

Definition 5. The disagreement coefficient θs at resolution s with respect to h∗ is the quantity:

θs(H, PX , h∗) := sup
r>s

PX
[
DIS(B(h∗, r))

]
r

.

Simply by rearranging, we immediately obtain the following lemma from the definition:

Lemma 6. Let Vt ⊂ B(h∗, r) be a version space of hypotheses r-close to h∗, where r > s. Then, the
disagreement region of Vt has probability mass at most θsr.

Notice that Lemma 4 and Lemma 6 together give us precisely the ingredients to recast our natural
bookstore search algorithm: iterate between (i) reducing the size of our version space by estimating risk with
respect to its disagreement region, as described by Lemma 4, and (ii) reducing the size of the disagreement
region by shrinking the version space, as described by Lemma 6.

To see why reducing the size of the disagreement region helps us learn with fewer labels, recall the goal of
learning: to obtain a hypothesis ĥ ∈ H such that the excess risk is bounded by ε:

R(ĥ)−R(h∗) ≤ ε.

Usually, we can achieve this by empirically estimating the risk of each hypothesis up to ±ε/2. But suppose that
we have a version space V ⊂ H that contains h∗ and whose disagreement region has mass µ := PX [DIS(V)].
Then, we claim that we only need to estimate the error of each hypothesis in V up to ±ε/2µ over DIS(V).
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R̂(h2)

R̂(h1)

R̂(h3)

R̂(h4)

minh∈H R̂(h) + 2ε

Figure 2: Let Vt = {h1, h2, h3, h4} be a version space. Drawing data from DIS(Vt) allows
us to generate estimates of risk, up to some ±ε precision, indicated by the colored bands
around the estimated risks. In other words, the true risks for each of the hypotheses
must fall within their respective colored bands. Since R̂(h∗) ≤ minh∈H R̂(h) + 2ε, the
best-in-class hypothesis h∗ must be to the left of the dotted line: either h1 or h2. We
can now restrict our next version space Vt+1 = {h1, h2} to just these two hypotheses.

Indeed, the error rate of ĥ and h∗ are certainly equal on a (1−µ)-fraction of X , so points in the agreement
region of V contribute nothing to the difference R(ĥ)−R(h∗); we just need to estimate the excess risk on
the remaining µ-fraction of X . Let’s denote by R

∣∣
DIS(V)(h) to be the risk of h with respect to the truncated

distribution that results from drawing (x, y) ∼ PXY conditional on x ∈ DIS(V). We have:

R(h)−R(h∗) = µ ·
[
R
∣∣
DIS(V)(h)−R

∣∣
DIS(V)(h

∗)
]
.

It follows that we just need to empirically estimate the risk with respect to the truncated distribution R
∣∣
DIS(V)

up to ±ε/2µ for all h ∈ V. The same sample complexity bounds from before applies, so we need at most n
data points to perform this estimation, where

n = O

(
µ2

ε2 ln |V|
δ

)
. (2)

This statement about probability corresponds directly to our earlier discussion on searching for books:
conceptually, ε parametrizes the precision to which we wish to be able to locate books—say, to the author
level. When we can restrict the size of the search area within the store, we need to look at much fewer books
before we attain that author-level precision. We can further translate our intuitive bookstore search algorithm
to the following active learning algorithm, which is called A2, for agnostic active learning, in the literature.
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We’ll iterate over T rounds between (i) estimating the risk of hypotheses in the current version space
Vt using data Zt drawn from its disagreement region according to its corresponding truncated distribution
PX|X∈DIS(Vt), and (ii) paring down the version space by discarding hypotheses whose empirical risk estimates
R̂Zt using the samples Zt are far away from the minimum empirical risk Rt, thus further reducing the search
space. In the following algorithm, kt denotes the sample size used to estimate risk and εt is the ‘far away’
threshold we use to shrink the version space—we’ll set their values later.

Algorithm A2

(∗ disagreement-based learning ∗)
Input: kt a sequence of positive integers, εt a sequence of positive reals
Initialize: V0 ← H
1. for rounds t = 0 to T
2. do draw and label kt data points, Zt =

{(
x

(t)
i , y

(t)
i

)
: 1 ≤ i ≤ kt

}
3. where x(t)

i ∼ PX|X∈DIS(Vt) and y(t)
i = label

(
x

(t)
i

)
4. compute the empirical risks R̂Zt(h) ← 1

kt

∑kt
i=1 1{h(x) 6= y} for all h ∈ Vt

5. Rt ←minh∈Vt R̂Zt(h)
6. Vt+1 ←{h ∈ Vt : R̂Zt(h) ≤ Rt + 2εt}
7. return arg minh∈VT R̂ZT (h)

Suppose at time t, we’ve estimated the empirical risks of hypotheses in Vt to an εt-precision. As illustrated
in Figure 2, we can safely discard any hypothesis whose empirical risk is more than 2εt the minimum empirical
risk without discarding h∗. Having discarded those hypotheses with empirical risk more than 2εt, we’re left
with a version space Vt+1 whose hypotheses have excess risks of no more than 4εt. According to Lemma 4,
Vt+1 fits into a ball B(h∗, 2ν + 4εt). Not only does the version space shrink, but so does the size µt of the
disagreement region:

µt = PX [DIS(Vt+1)] ≤ θ(2ν + 4εt).

Let’s choose εt so that we iteratively halve our uncertainty: εt+1 = εt/2. Our above discussion shows that we
need to estimate the risk with respect to the disagreement region up to ±εt/2µt, requiring kt labels, where:2

kt = Õ

(
θ2(2ν + 4εt)2

(εt/2)2 log |V|
δ

)
. (3)

If at each step we halve εt, we’ll need at most T = log 1
ε rounds before we reach the desired accuracy, εT ≤ ε.

And so, we deduce the following label complexity bound on A2:

Theorem 7 (A2 label complexity). Let ε, δ > 0 be fixed. Let θ := θν+ε(H, PX , h∗). There exists settings for
kt and εt such that the A2 algorithm (ε, δ)-learns H with label complexity n =

∑T
i=1 kt at most:

n = O

(
θ2
(

1 + ν2

ε2

)
log 1

ε
log
|H| log 1

ε

δ

)
.

2Though setting kt to this value is sufficient to perform the estimation for one round, technically, we would want to set kt in
the algorithm to

kt = O

(
θ2(ν + ε)2

ε2 log
|H| log 1

ε

δ

)
,

since we will end up performing log 1
ε
rounds of estimation. We’ll need to estimate at most |H| log 1

ε
quantities over the T

rounds, so to keep the overall failure probability less than δ, we ensure that the failure probability for any single estimation is
less than δ/|H| log 1

ε
. And as log log 1

ε
is very small, we use the Õ( · ) notation to suppress polylogarithmic terms in log 1

ε
.
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3.1.1 Comparison with ERM

To get a sense for how this label complexity can be much better than the usual label complexity for ERM,
suppose we have a hypothesis class with disagreement coefficient θ = O(1) that is constant with respect to ε.
Further, if there exists a hypothesis in H with very low true risk, ν � ε, then the A2 label complexity is
exponentially better than the label complexity of ERM in the same setting:

nA2 = Õ

(
log 1

ε
log |H|

δ

)
vs. nERM = O

(
1
ε

log |H|
δ

)
.

The bookstore analogy may once again be a useful to build up intuition for the setting with constant
disagreement coefficient and low true risk, and why such an improvement in label complexity is possible. As
before, we have a prior model H for how bookstores can organize books. We can think of the pseudometric
on H as a notion of how similar two organizational systems are. If the disagreement coefficient is small, this
means that a good understanding of how a bookstore is organized, V ⊂ B(h∗, ε), translates into the ability to
locate many individual books quickly, PX [DIS(V)]� 1. If ν is small, then our model fits the real-world well;
in that case, we might also be able to iteratively halve our search space by inspecting a constant kt number
of books each time.

On the other hand, because θr ≤ 1/r for all r > 0, in the worst case scenario, their label complexities are:

nA2 = Õ

(
1
ε2 log 1

ε
log |H|

δ

)
vs. nERM = O

(
1
ε2 log |H|

δ

)
,

where A2 has slightly worse label complexity due to having performed about log 1
ε essentially independent

estimation problems that did not contribute to simplifying the next estimation problem.
So far, both A2 and ERM use data in order to estimate statistics about risk functionals. Recall that we

formulated empirical risk minimization earlier as a one-shot estimation problem: through estimating the risk
functional R to a high enough accuracy, we obtain sufficient information to find a hypothesis h such that
R(h) ≤ R(h∗) + ε. The A2 algorithm simply does this in multiple rounds: over T rounds, construct and
estimate the sequence of risk functionals R

∣∣
DIS(V0), . . . , R

∣∣
DIS(VT ). The analysis we perform just ensures that

together, these statistics carry enough information to recover some h with excess risk bounded above by ε.
One natural question that follows is whether we can learn via other procedures besides directly estimating

the optimization parameter of statistical learning (i.e. the risk functionals)? In particular, can we gather
data to compute other statistics through which we can still recover an ε-good classifier? As a simple example,
performing a binary search on the author’s name makes use of data in a different way: it pares down the
version space by utilizing the model’s structural assumptions (e.g. books are ordered alphabetically by the
author’s last name). In this next section, we’ll investigate how we might leverage the ‘geometry’ or ‘shape’ of
the hypothesis class H ⊂ {0, 1}X to learn using less data.

3.2 An aggressive active learner: label the maximally informative points

In the previous section, we used the disagreement coefficient to link the amount of information known about
the hypothesis to the amount of information known about individual points: a small radius of V ⊂ B(h∗, r)
translates to a large, what we might call, agreement region. Or so we hope. In this section, we aim to study
the other direction: from individual data points, what can we deduce about the overall hypothesis? Are
there points that give more useful information than other points? And so, while in the previous section, we
sped up learning by querying points with nonzero information content, here, we’ll attempt to maximize the
amount of information we learn every time we call the label oracle. This marks the passage from learning
via non-parametric techniques to parametric ones.
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To elaborate, we have so far used data to estimate risk functionals, which is a non-parametric task; while
this task has been specified over a parametric class of hypotheses H, we made use of the parameterization
insofar as to convert the problem of estimating the absolute risks of the hypotheses to the weaker problem
of estimating their relative risks. But we now enter the parametric regime as we aim to infer from the
structure of a hypothesis class itself which data points are most informative. The assumptions that can make
parametric tasks much easier than their non-parametric counterparts also present a new kind of problem:
what happens if the real world does not conform to those assumptions?

As a simple example, let’s consider the hypothesis class H = {0,1}, which has perhaps the most structure
of all: either everything is labeled 0 or everything is labeled 1. This parametric class of hypotheses makes
extremely stringent assumptions about the underlying data distribution. If those assumptions are correct,
then a single labeled example is enough to learn H. But if not, or as we relax the class P of possible data
distributions—as R(h∗) approaches 1

2—this parametric problem re-enters the non-parametric regime: there
really is no way to learn but to estimate EPXY [Y ], potentially up to ±ε.

This tells us that our goal should not be to fully solve the learning problem in a parametric way, for if
we allow for noise and model misspecification, there will come a point when the non-parametric aspect to
our problem takes over; indeed, we will investigate this further when we study the lower bounds of active
learning. But for now, let us recall Lemma 4, which showed that an ε-learner must be able to solve the
weaker (2ν + ε)-search problem. Of course, ERM can achieve this with label complexity:

O

(
1

(2ν + ε)2 log |H|
δ

)
.

We will set for ourselves the modest goal of reducing the label complexity to get to this point: finding a version
space V ⊂ H that fits into the (2ν + ε)-ball around h∗. If we impose no further condition on PXY besides
R(h∗) = ν, to aim to reduce the radius beyond 2ν + ε to less than ε could mean that (i) we attempt to solve
a strictly harder problem than ε-learning, as shown in Lemma 3, and (ii) we enter the non-parametric regime,
for if we have two hypotheses h, h′ that disagree on at most a 2ν-fraction of points in X (i.e. d(h, h′) ≤ 2ν)
with the assumption that the noise rate is ν, the noise rate on their disagreement region could approach
arbitrarily close to 1

2 , returning us to above situation with H = {0,1}. Simply put, binary search would be
useless if books were not actually in alphabetical order, or at least nearly so. We set the goal to reduce the
version space to fit into the (2ν + ε)-ball around h∗ because, here, it is still the case that the data distribution
nearly satisfies the parametric assumptions. So as to not overload ε, let’s introduce a new parameter r, which
you can feel free to read as 2ν + ε (though we’ll keep it free for generality).

To this end, let us view a version space V as a graph—the hypotheses in V are vertices, and the length of
an edge {h, h′} is the distance d(h, h′). Define the diameter of a set to be the maximal distance between any
two points in the set:

diam(V) := max
h,h′∈V

d(h, h′).

If we can construct a version space V that contains h∗ with diameter at most r, then V will certainly fit into
B(h∗, r). We’ll quantify informativeness with respect to reducing the diameter of V.

Consider how one usually goes about conducting an experiment: (i) collect data z from the world, then
(ii) use data to compute some test statistics tz, which is used to test alternative hypotheses3. Should we
return to the bookstore, over to the statistics section, we could hypothesize that Feller’s book is contained in
the first half. As a possible test of this hypothesis, we could ‘collect data’ by taking a look at who wrote the
book in the middle of the shelf: if the author’s name comes after Feller’s, then we know that our hypothesis

3Here, by hypothesis, we don’t mean some h ∈ H, but some postulated truth about the world. As an example, given a subset
S ⊂ H, a hypothesis H could be the statement ‘h∗ is contained in S’.
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was correct. This appears to be a particularly informative experiment to perform, for no matter the outcome,
we’ll have obtained enough information to halve our search space.

Our goal now will be to work up to a functional notion of an ‘informative test’ with respect to our learning
problem. But to do so, we’ll need to formalize what it means to collect data and to compute a test. In the
following, if Z1, . . . , Zm is a sequence of random variables, we’ll refer to that sequence as Zm for brevity.

Definition 8 (Learning strategy). Let X be the instance space and Y the label space. An m-step learning
strategy S is a collection of m conditional probability distribution Π(i) ≡ Π(i)

Xi|Xi−1,Y i−1 :

Π(i)
Xi|Xi−1,Y i−1

(
· |xi−1, yi−1) ,

where 1 ≤ i ≤ m. A learning strategy is passive if for all i, Π(i) ≡ PX is the marginal distribution on X .

We’ll sequentially draw data from these distributions: once we’ve obtained the first (i− 1) data points,
(x1, y1), . . . , (xi−1, yi−1), we obtain the ith instance xi according to the above ith distribution. Then, we label
xi by querying the label oracle, which returns yi ∼ PY |X=xi , a conditional distribution of the underlying joint
data distribution PXY . Let P(Sm,PY |X) denote the distribution on the m-sample data set (x1, y1), . . . , (xm, ym)
obtained in this way. For short, we’ll refer to this as PSm . We can now define a test:

Definition 9 (Version space test). Let V be a version space. A version space test T using m samples is a
random variable on zm ∼ PSm , where the outcome is a functional tzm : V → {0, 1}.

Put simply, the outcome of a test assigns every hypothesis h ∈ V to one of two groups based on a sample
zm drawn from the sampling distribution PSm . In particular, the outcome t of a test splits a version space V
into two subsets: V0

t = {h ∈ V : t(h) = 0}, and V1
t , defined analogously. As a simple example of a test, fix

some x ∈ X . Define the test Tx that obtains a label y ← label(x), and partitions H into those that made
a mistake on x, and those that didn’t. Formally, if δx is the Dirac distribution at x, define the sampling
distribution to be PS1 := δx ⊗ PY |X=x. Data collection just corresponds to getting x labeled. The test we
described is the random variable t(x,y)(h) := 1{h(x) 6= y}.

Now that we’ve formalized the notion of a test, let’s consider what an informative test in the context of
our search problem: intuitively, for a given version space, an informative test should be able to significantly
reduce the diameter of the search space containing h∗. We can do so by comparing the number of edges that
remain in the induced subgraphs on V0

t and V1
t with respect to the original version space V. And as we care

about being able to locate h∗, the test T should map h∗ into V0
t with positive advantage ∆:

Pr
z∼PS

[tz(h∗) = 0] > 1
2 + ∆.

We can think of V1
t as a set of hypotheses that the test t indicates are outside the ball B(h∗, r).

One way an active learner can more aggressively learn is by only performing experiments that are
guaranteed to split off a large fraction of edges. To formalize this, let Q ⊂

(H
2
)
be any collection of edges. If

T is a test, we say that it ρ-splits Q with advantage ∆ if any outcome t removes a ρ-fraction of edges,∣∣∣∣Q ∩ (V0
t

2

)∣∣∣∣ ≤ (1− ρ)|Q|,

and with probability at least 1
2 + ∆, if h∗ ∈ V , then h∗ ∈ V0

t . If we only care about removing edges of length
r = 2ν + ε or more, so denote by Qr ⊂ Q the set of edges in Q with length at least r. We define the testing
index to quantify informativeness of a test:
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Definition 10 (Testing index). Let P be a class of joint probability distributions on X × Y. A hypothesis
class H is (ρ, r,∆)m-testable using m samples with respect to P if for all finite edge sets Q ⊂

(
H
2
)
, there

exists a m-step sampling scheme Sm and a test T such that the test outcome ρ-splits Qr with advantage ∆.
That is, there exists T such that for all PXY ∈ P, the test outcome ρ-splits Qr and

Pr
T∼P(Sm,PXY )

[T (h∗) = 0] > 1
2 + ∆.

Suppose that H is finite and (ρ, r,∆)m-testable. Then, for any version space V , there is a test T that can
reduce the number of edges in V by (1− ρ)-fraction. In particular, suppose we want to compute a sequence
of tests such that each edge of length r or more in H is split at least once. If we only query tests that ρ-splits
the current version space, then at time s, we would have a version space V such that:

# edges in V of length at least r ≤ (1− ρ)s
∣∣∣∣(H2

)∣∣∣∣
≤ e−ρs · |H|2.

It follows that we can generate a sequence of no more than 2
ρ log |H| tests such that every edge is split by at

least one test outcome. And if we wish to generate a sequence of tests such that each edge is split k times,
then, we’d just repeat this procedure k times, using at most 2k

ρ log |H| tests. We claim that if k is sufficiently
large, this sequence of tests is sufficient to reduce the diameter of the search space to at most r.

Before going on to prove this, though, let’s understand the mechanics of these tests in the realizable
setting, using a collection of the previously defined tests Tx, where Tx(h) indicates whether h(x) is wrong or
not. From the realizability assumption, each test outcome is simply the map:

t(x,h∗(x))(h) := 1[h(x) 6= h∗(x)].

Suppose the hypothesis class satisfies the following property: for all finite edge sets Q ⊂
(H

2
)
, there exists

x ∈ X such that Tx ρ-splits Qr—regardless of how h∗ labels x, upon obtaining its label, the resulting version
space will have no more than (1− ρ)-fraction of the original edges. From the realizability assumption, Tx
has advantage 1

2 , in that Tx(h∗) = 0 with probability 1. It then follows that H is (ρ, r, 1
2 )-testable, and after

performing no more than 2
ρ log |H| tests, we can remove all hypotheses connected to h∗ by an edge with

length at least r. We’re thus left with a version space of diameter less than r, i.e., r-learning H. And as each
of the tests costs a single call to the label oracle, the label complexity in this case is also O

(
1
ρ log |H|

)
.

But suppose we’re no longer in the realizable setting, and the test outcomes merely have some positive
advantage 0 < ∆ < 1

2 . We could perform k tests for each edge in order to boost our advantage. Consider
then the following observations:

1. For each edge {h∗, h} of length at least r containing h∗, we perform k tests T1, . . . , Tk such that:

Pr
Ti

[Ti(h∗) = 1] < 1
2 −∆,

which implies the following:

E
T1,...,Tk

[
1
k

k∑
i=1

Ti(h∗)
]
≤ 1

2 −∆.

2. For any edge {h, h′} of length at least r, and their corresponding k tests T1, . . . , Tk, we have that:

1
k

k∑
i=1

Ti(h) + Ti(h′) ≥ 1,

since the tests are guaranteed to split the edge, and an edge {h, h′} is split by T if and only if
T (h) + T (h′) ≥ 1. It follows that one of h or h′ must have empirical average of at least 1

2 .
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These facts suggest that for each edge {h, h′}, we need to estimate 1
k

∑k
i=1 Ti(h) up to within ∆/2 of its

expected value. Then, for every edge {h∗, h} of length at least r, we can confidently throw out the hypothesis
h, whose empirical estimate is at least 1

2 . And for any edge {h, h′} that do not contain h∗, it matters not
which hypothesis we throw out; we’ll apply the same rule from the {h∗, h}, removing any hypotheses that fail
at least half of the tests. With high probability, we won’t throw out h∗, while any edge of length at least r is
deterministically removed; we’re left with a version space V satisfying h∗ ∈ V ⊂ B(h∗, r).

Algorithm Test-based splitting
(∗ diameter-based learning ∗)
Input: H hypothesis class, r > 0 an accuracy parameter, k the number of repetitions
Output: a version space V
Initialize: Sh,h′ ← ∅, for (h, h′) ∈ H ×H
1. for i = 1, . . . , k
2. do set preliminary version space V ←H
3. while diam(V) ≥ r
4. do select and perform T a ρ-splitting test with advantage ∆ on

(V
2
)
ε

5. save the computation Sh,h′ ←Sh,h′ ∪ {T (h)}, for h, h′ ∈ V
6. update the version space V ←V0

T

7. set the final version space V ←∅
8. for Sh,h′ where h ∈ H and d(h, h′) ≥ ε
9. do compute µh,h′ the average of values in Sh,h′
10. if µh,h′ < 1

2 for all h′ ∈ H
11. then V ←V ∪ {h}
12. return V

To determine what to set k, we can apply the same analysis as before. We need to ensure that at most
|H| estimates are accurate up to within ±∆/2 with high probability: namely, the estimators 1

k

∑k
i=1 Ti(h∗)

for each collection of k tests T k associated with an edge {h∗, h}. It follows that we need k = O
(

1
∆2 log |H|δ

)
.

Recalling that each test requires m calls to the label oracle, we deduce the following:

Proposition 11 (Test-based splitting label complexity). Let H be (ρ, r,∆)m-testable with respect to a class
of joint probability distributions P on X × Y. For any PXY ∈ P, the test-based splitting algorithm with input
parameter k = Ω

(
1

∆2 log |H|δ
)
as above returns a subset V ⊂ H such that h∗ ∈ V ⊂ B(h∗, r) with probability

1− δ. Additionally, it has label complexity at most:

n = O

(
m

ρ∆2 log |H| · log |H|
δ

)
.

Let’s now extend our prior analysis of the collection of tests Tx from the realizable setting to an agnostic
setting. Fixing a marginal distribution PX on X (thus a pseudometric on H), we can characterize the
amenability of a hypothesis class to tests of the form Tx through the following splitting index.

Definition 12 (Splitting index). A hypothesis class H is (ρ, r, τ)-splittable if for all finite edge sets Q ⊂
(H

2
)
,

the probability mass of instances x ∈ X that correspond to ρ-splitting tests Tx on Qr is at least τ :

Pr
x∼PX

[
Tx ρ-splits Qr

]
≥ τ.

We call ρ the splitting index of H.
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Having fixed the pseudometric on H, the splitting index becomes a purely combinatorial property of H,
where Tx ρ-splits an edge set Q if:

max
{∣∣∣∣Q ∩ (H+

x

2

)∣∣∣∣ , ∣∣∣∣Q ∩ (H−x2
)∣∣∣∣} ≤ (1− ρ)|Q|,

where H+
x is the collection of hypotheses that label x positively, and H−x is defined similarly. The splitting

index quantifies the availability τ of instances x ∈ X that generate ρ-splitting tests Tx. In the following, as
we’re working in the agnostic setting, the tests Tx no longer have perfect advantage, as the label oracle may
label individual instances x arbitrarily badly, with respect to h∗. But we’ll see that if ν = R(h∗) is not too
large (i.e. the label oracle provides information that is overall highly correlated to h∗) while τ is large (i.e.
what constitutes useful information is not localized to a small number of noisy tests), then we may still see
improvements to the label complexity. We claim the following:

Lemma 13. Let PX be a fixed marginal distribution over X . Let H be a hypothesis class that is (ρ, r, τ)-
splittable. Let 0 < ∆ ≤ 1

2 and 0 ≤ ν <
( 1

2 −∆
)
τ . Then, H is (ρ, r,∆)1-testable over the following class of

distributions:
P =

{
PX ⊗ PY |X : min

h∈H
R(PXY , h) ≤ ν

}
.

This lemma states that if we wish to be able to construct ρ-splitting tests of the form Tx that have positive
advantage ∆ for a hypothesis class with a fixed geometry, we’ll be able to tolerate up to a certain amount of
noise ν. In the worst case scenario, all the noise is localized to precisely the instances x ∈ X that correspond
to ρ-splitting tests; the lemma follows from bounding those values of ν for which the noise is still tolerable.
Applying Proposition 11, we obtain the immediate corollary:

Corollary 14. Let H and P as before, so that H is (ρ, r, τ)-splittable and ν = R(h∗) < τ/2. There exists an
active learning algorithm that (r, δ)-learns H over P with label complexity:

n = O

(
τ2

ρ(τ − 2ν)2 log |H| ·
(

log |H|+ log 1
δ

))
.

For example, this shows that in the setting of low noise ν = o(τ), we can learn, having a constant failure
probability, with label complexities at most:

nactive = O

(
1
ρ

log |H|2
)

vs. nerm = O

(
1
ε

log |H|
)
.

If it is the case that ρ = ω(ε) is not too small, then this improvement in label complexity can be significant
with respect to the corresponding O

( 1
ε log |H|

)
in the passive setting. Indeed, we do have the following lower

bound, ρ = Ω(ε), which we prove in Appendix B:

Lemma 15 (Lower bound on ρ, [Das06]). Let 0 < α, ε < 1. Let V ⊂ H. Then, V is
(
(1−α)ε, ε, αε

)
-splittable.

Notice that the regime of Corollary 14 is essentially limited to r > 2ν. In particular, whenever a hypothesis
class is sufficiently expressive, the following upper bound on τ holds: τ ≤ r. To see this, consider any pair
of hypotheses h, h′ such that d(h, h′) = r. In other words, they disagree on an r-fraction of X . The size of
any ρ-splitters of the singleton consisting of just the edge {h, h′} has mass at most r. And since we require
ν < τ/2, we must also have r > 2ν.

It is for this reason that we divided the problem of (ε, δ)-learning H into two regimes: (i) the parametric
regime where the structure of H overcomes the noisiness of the data and (ii) the non-parametric regime where
the noise dominates any assumed structure. In the first regime, we aim to efficiently search for a version space
V ⊂ B(h∗, r) where r = 2ν + ε. In the second regime, we estimate the risk functional in order to (ε, δ)-learn
V. Returning to the original problem of (ε, δ)-learning H, we obtain the following label complexity:
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Theorem 16 (Splitting index label complexity). Let ε, δ > 0 be fixed. Let P be a class of distributions for
which the model error of H is at most ν:

max
PXY

min
h∈H

R(PXY , h) ≤ ν.

Let H have disagreement coefficient θ := θ2ν+ε(H, PX , h∗) and splitting index (ρ, 2ν + ε, τ). Then, there is an
algorithm that (ε, δ)-learns H with label complexity at most:

n = O

(
1
ρ

τ2

(τ − 2ν)2 log |H|+ θ2
(

1 + ν2

ε2

))
· log |H|

δ
.

3.3 Prelude to lower bounds: examples and counterexamples

3.3.1 Linear threshold classifiers

Perhaps the most cannonical example in active learning is the linear threshold classifier. Let X = [0, 1] ⊂ R
be the unit interval with uniform marginal distribution PX . Define the hypothesis class H made up of step
functions hα(x) := 1{x > α}, for α ∈ [0, 1]. It follows that d(hα, hα′) = |α − α′|, so that ε-learning hα∗
entails estimating α∗ up to within ±ε. For simplicity, let’s assume we’re in the noiseless, realizable setting,
where we obtain data from hα∗ directly.

A passive learner must therefore sample enough data points {(x1, y1), . . . , (xm, ym)} so that the xi’s forms
a 2ε-cover for [0, 1]; otherwise, in the worst-case scenario, the threshold α∗ falls into a range [xi, xj ] that is
more than 2ε in diameter—there is no way to choose α̂ from this range to guarantee that d(α∗, α̂) < ε. We
previously saw that that the passive learner could learn this class of functions using O

( 1
ε

)
queries. And so,

the sample complexity of the passive learner here is:

npassive = Θ
(

1
ε

)
.

An active learner, on the other hand, could perform a binary search for the threshold. The learner could
cover X with an 2ε-net N—every hα ∈ H is within ε of exactly one hn for n ∈ N . It takes at least log 1

2ε bits
to identify any single hn ∈ N , so we need at least that many queries. And in fact, a binary search achieves
this lower bound; the label complexity of active learning H is:

nactive = Θ
(

log 1
ε

)
.

This cannonical example of active learning shows that when data can be collected sequentially, the
amount of data required could decrease exponentially from the passive learning setting. The possibility for
improvement here can be explained both through the disagreement coefficient and the splitting index.

Lemma 17. Let H be the class of linear threshold classifiers on X = [0, 1] with marginal distribution PX .
Then, the disagreement coefficient is constant θs(H, PX , h∗) ≤ 2. Furthermore, it is

( 1
2 , ε, ε

)
-splittable.

However, not all hypothesis classes have geometry as amenable to learning as linear threshold classifiers.
Next, we consider a classes of hypotheses where a brute-force search is required in order to ε-learn.

3.3.2 Interval functions

Consider the collection of interval functions on unit interval,

hα,β(x) := 1{α < x < β},
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for 0 ≤ α < β ≤ 1. For simplicity, assume that PX has the uniform distribution. Learning this class of
functions is at least as hard as learning the subset:

H′ =
{
hkε,(k+1)ε : 0 ≤ k < 1

ε

}
,

the class of hypotheses with pairwise disjoint support, with interval lengths ε. Because this subset is a
2ε-packing of H, to ε-learn this subclass means to exactly recover hk∗ε,(k∗+1)ε. For any querying strategy, in
the worst case scenario, we will need exactly 1

ε − 1 queries before encountering the interval where the true
hypothesis is supported. On the other hand, the VC dimension of H is 2, and so in the noiseless setting,
from Theorem 39, we see that the label complexity for this class is:

npassive = Θ
(

1
ε

)
= nactive.

If we’re not in the worst-case scenario, then perhaps h∗ = hα,β where γ = β − α is much larger than ε.
Then, notice that once we’ve found the first point x ∈ [0, 1] that is labeled 1, we could perform a binary
search for the two ends of the interval. It follows that an active learner could would require at most:

nactive = O

(
1
γ

+ log 1
ε

)
,

which is asymptotically log 1
ε instead of 1

ε . This is not unlike our earlier bookstore example, where initially,
there is nothing better to do but a brute-force search for the right section, but once we found the right section,
we could perform a binary search on the book author.

This is also reflected in the disagreement coefficient and splitting index:

Lemma 18. Let H be the class of interval functions on X = [0, 1], with marginal distribution PX . Let
h∗ = hα,β, where γ = β − α. The disagreement coefficient is:

θs(H, PX , hα,β) =

 1
s s > γ

4 s ≤ γ.

For any 0 < s < 1, H is not (ρ, ε, τ)-splittable for any ρ > 2ε.

While the geometry of a hypothesis class plays a great deal in its learnability, the amount of noise or the
degree to which the model was misspecified is another integral aspect to how difficult it is to learn. Now, we’ll
return to an example we briefly mentioned at the start of this section: the binary hypothesis testing problem.

3.3.3 Binary hypothesis testing

Let’s consider the problem of (ε, δ)-learning the hypothesis class H = {0,1} over some instance space X .
Equivalently, we can think of this as a binary hypothesis testing problem: for example, suppose we want to
determine whether a coin is biased toward heads or tails (let’s say these are 1 and 0, respectively). We let the
outcome of a coin flip be the random variable X ∼ Ber(p), where p is the probability of landing on heads.

In the context of ε-learning, we only care to know if the coin biases one outcome over the other at least
an ε-fraction of the time. That is, when

∣∣p− 1
2
∣∣ > 1

2ε. It follows from our early discussion on estimation that
we need only to estimate p up to within 1

2ε. To do this with constant failure probability, depending on the
margin between p and 1

2 , we potentially need up to n flips, with:

n = O

(
1
ε2

)
.
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Indeed, if the margin is 1
2 (so the coin always returns the same outcome), then a single flip is sufficient

to determine which way the coin is biased (i.e. a single query to label is enough to ε-learn H). But if
the margin approaches ε/2, then in fact, the previous 1

ε2 label complexity is tight. We’ll show this in two
ways. The first is direct, using Slud’s lemma. The second will preview a more general information-theoretic
technique to prove lower bounds for active learning. In contrast to Hoeffding’s inequality, Slud’s lemma lower
bounds the following probability of failure:

Lemma 19 (Slud’s lemma). Let X1, . . . , Xn ∼ Ber
( 1

2 −
1
2ε
)
. Then:

Pr
[

1
n

n∑
i=1

Xi >
1
2

]
≥ 1

2

(
1−

√
1− exp

(
−nε2

1− ε2

))
.

It follows that if ε� 1, then in order to obtain a constant probability of failure when determining which
way the coin is biased, we need at least n samples, with:

n = Ω
(

1
ε2

)
.

This shows that the presence of noise can make learning difficult, even over a hypothesis class as structured
as H = {0,1}. Put another way, we have two distributions—Ber

( 1
2 −

1
2ε
)
and Ber

( 1
2 + 1

2ε
)
—that are hard

to distinguish in an information-theoretic sense, requiring us to estimate the Bernoulli parameter up to ε/2.
Yet, they are still mapped to different hypotheses when they are learned correctly. To elaborate on the
information-theoretic approach, recall the total variation of two probability measures on a common space:

Definition 20 (Total variation distance). Let P0 and P1 be two probability measures on a sample space Ω.
Their total variation distance is:

TV(P0, P1) := sup
A∈F
|P0(A)− P1(A)|,

where the supremum is taken over the set of all events F .

The total variation distance characterizes what it means for two distributions to be ‘hard to distinguish’.
Consider the following Bayesian problem: nature choose one of two distributions P0 and P1 over the same
outcome space Ω uniformly at random, and presents a sample X drawn from that distribution. Can we
perform a test Ψ : Ω→ {0, 1} so that just from looking at the outcome X, we can recover which distribution
it was drawn from reasonably well?

Given any test, we can define its probability of error as the probability that it fails to recover the true
θ ∈ {0, 1} from which the sample X ∼ Pθ was drawn. Then the probability of error is:

1
2P0(Ψ(X) 6= 0) + 1

2P1(Ψ(X) 6= 1).

The total variation distance characterizes the indistinguishability of P0 and P1 in the following way:

Lemma 21 (Variational formulation [Duc14]). Let P0 and P1 be two distributions on Ω. The total variation
distance satisfies:

TV(P0, P1) = 1− inf
Ψ

{
P0(Ψ(X) 6= 0) + P1(Ψ(X) 6= 1)

}
,

where the infimum is taken over all measurable functions Ψ : Ω→ {0, 1}.

In particular, by rearranging, we see that the error rate of any test is lower bounded:

inf
Ψ

Pr
θ,X

[Ψ(X) 6= θ] = 1
2 −

1
2TV(P0, P1).
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Let P0 = Ber
( 1

2 −
1
2ε
)
and P1 = Ber

( 1
2 + 1

2ε
)
. Suppose that we have an ε-learner for H that has label

complexity n. That is, given n i.i.d. samples from the data distribution, this learner is able to recover which
distribution P0 or P1 it came from; it must be able to distinguish between the product distributions, P⊗n0
and P⊗n1 . It follows that the ε-learner can be converted into a hypothesis tester for P⊗n0 and P⊗n1 .

Conversely, we can convert this lower bound on the probability of error to lower bounds on the label
complexity of learning H. The above bound shows that there does not exist any algorithm that can distinguish
P⊗n0 and P⊗n1 with error rate δ less than:

δ <
1
2 −

1
2TV(P⊗n0 , P⊗n1 ).

Thus, any (ε, δ)-learner for H must sample enough points n so that the induced product distributions become
well-separated with respect to the total variation distance, TV(P⊗n0 , P⊗n1 ) > 1− 2δ.

But, instead of computing TV(P⊗n0 , P⊗n1 ) directly, let us recall another notion of ‘distance’ for probability
measures—the KL-divergence:4

Definition 22 (KL-divergence). Let P and Q be two distributions defined on a finite space X . The Kullback-
Leibler (KL) divergence, KL(P‖Q), is defined as:

KL(P‖Q) :=
∑
x∈X

P (x) log P (x)
Q(x) ,

where we interpret log 0
0 as 0.

The total variation distance of two distributions is often difficult to bound directly; but, if we can bound
their KL-divergence, we can upper bound the former via Pinsker’s inequality:

Lemma 23 (Pinsker’s inequality). Let P and Q be two probability distributions on X . Then:

TV(P,Q) ≤
√

1
2KL(P‖Q).

In fact, the KL-divergence of a pair of product distributions has a particularly nice form:

Lemma 24 (KL-divergence of a product). Let P1, . . . , Pn and Q1, . . . , Qn be distributions over X1, . . . ,Xn.
Let P :=

⊗n
i=1 Pi and Q :=

⊗n
i=1Qi be the product distributions over

∏n
i=1 Xi. Their KL-divergence is:

KL(P‖Q) =
n∑
i=1

KL(Pi‖Qi).

It follows that the sample distribution for n independent draws has total variation at most:

TV(P⊗n0 , P⊗n1 ) ≤
√
n

2 KL(P0‖P1).

The KL-divergence for two Bernoulli random variables can be bounded:

Lemma 25 (KL-divergence of Bernoulli variables, [CN08]). Let P = Ber
( 1

2 − p
)
and Q = Ber

( 1
2 − q

)
,

where |p|, |q| < 1
4 . Then:

KL(P‖Q) ≤ 8(p− q)2.

4The KL-divergence is not a proper distance because it is not symmetric; it does satisfy reflexivity, positivity, and triangle
inequality, however.
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Letting p = −ε/2 and q = ε/2, we see that an (ε, δ)-learner must have label complexity at least n, where
n is sufficiently large so that it satisfies:

δ >
1
2 −
√
nε2.

Once again, we see that to ensure a constant probability of failure, any (ε, δ)-learner has label complexity:

n = Ω
(

1
ε2

)
.

3.3.4 Simple lower bound using VC dimension

As a simple extension of the lower bound we derived for the binary hypothesis testing scenario, we can
consider any hypothesis class with VC dimension V . In particular, if H has VC dimension V , there exist a
collection of points x1, . . . , xV ∈ X that is shattered by H. In the noiseless setting, a learner must query the
labels for each of these V points. However, suppose that we’re now in the setting with noise, where R(h∗) = ν.
Then for a learner to determine how h∗ labels any single point xi, it must solve the binary hypothesis testing
problem for xi. The following lower bounds shows that in some cases, any ε-learner must successfully perform
a binary hypothesis testing for a constant fraction of those V points:

Proposition 26 (Theorem 12, [BDL08]). Fix 0 ≤ ν ≤ 1
2 . Let H be a hypothesis class with VC dimension V .

There exists a class of distributions P over X × Y such that R(h∗) = ν and any algorithm that (ε, δ)-learns
H over P must have label complexity at least:

n = Ω
(
V · ν

2

ε2

)
.

4 Lower bounds for active learning
We’ve seen now that we can divide the learning process into two regimes: one where noise dominates the
structural assumptions made by the hypothesis class, and one where the underlying data distribution satisfies
those assumptions relatively well. And so, we’ll also have two types of lower bounds on the label complexity
of learning: (i) an information-theoretic lower bound based on how difficult it is to distinguish between two
similarly noisy distributions that lead to very different risk minimizers, and (ii) a geometric lower bound
based on the number of dimensions/degrees of freedom on which two hypotheses in H can differ.

Back at the bookstore, the first type of bound corresponds to the setting where books are disorderly and
misplaced; perhaps the high-level sections remain relatively consistent, while within each section, books have
little discernible order. The second type of bound corresponds to the setting where each shelf corresponds to
a different section, and one just has to come across the right shelf before beginning learning through a more
intelligent or binary-search-like approach.

4.1 Information-theoretic lower bounds

To prove lower bounds from an information-theoretic framework, we’ll make use of standard non-parametric
techniques, described for example in [Tsy09] and [Duc14]. We already saw a simple example of this when
we lower bounded the label complexity of binary hypothesis testing. Here, we’ll describe a more general
technique, which also reduces a particular hard hypothesis testing problem into a learning problem: given
an (ε, δ)-learning algorithm A(P,H, ε, δ) with label complexity mA, we convert the algorithm into one that
solves the hypothesis testing problem. Because we can then show that there exists a learning problem whose
solution implies the solution to a hard hypothesis testing problem, any lower bound applying to the testing
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problem then applies to the learning problem—we obtain a minimax lower bound for the (ε, δ)-learning
problem:

min
A

max
P,H

mA(P,H,ε,δ).

That is, how many labels does even the best possible learning algorithm need in the worst-case scenario?
Before we make the connection to learning, let’s describe in more detail one can more generally obtain
information-theoretic lower bound.

To describe the hypotheis testing problem, let us construct a universe U where the underlying data is
generated by one out of N + 1 possible distributions:

P = {P0, . . . , PN}.

The hypothesis testing problem entails determining, with high probability, which one of the N+1 distributions
was in fact realized. In other words, let θ ∈ Θ ≡ {0, . . . , N} parametrize our possible world. Our goal is to
recover θ based on access to the samples from the distribution Pθ. To do this, we can define a test Ψ : U → Θ,
whereupon observing the outcome of a random draw U ∼ P , the test predicts which one of the underlying
distribution it came from, θ̂ := Ψ(U). We define the minimax probability of error pe as:

pe := min
Ψ

max
θ∈{0,...,N}

Pθ(Ψ(U) 6= θ).

This value is the error rate of the best test in the worst-case scenario. Intuitively, if the distributions in P are
quite similar, then the minimax probability of error will be high, and it will be impossible to distinguish them
using a single sample with a great amount of certainty. In order to test between these hypotheses θ ∈ Θ with
greater success, we could attempt to transform the distributions from which we obtain data. For example, in
our binary hypothesis testing discussion, we drew multiple i.i.d. samples repeatedly from P , so that instead
of having to distinguish P0, . . . , PN , we could distinguish the product distributions P⊗m0 , . . . , P⊗mN . As the
number of samples m grows, the product distributions also grow apart; at some point, it becomes possible to
recover θ with high confidence.

4.1.1 Reduction from hypothesis testing

Imagine that we had an algorithm A that could (ε, δ)-learn H over a class of distributions P with a fixed
marginal distribution PX using m samples. Let Sm be its m-step learning strategy, so that the learner samples
its training data set from P(Sm,PY |X) over (X × Y)m; that is, the training dataset {(x1, y1), . . . , (xm, ym)} is
sampled with probability:

P(Sm,PY |X)((x1, y1), . . . , (xm, ym)) =
m∏
i=1

ΠXi|Xi−1,Y i−1(xi|xi−1, yi−1)PY |X(yi|xi).

Depending on which sequence of training data in (X × Y)m is sampled, the learner returns a different
hypothesis h ∈ H.

We can convert A into an algorithm for the following hypothesis testing problem: consider N + 1 possible
worlds θ ∈ Θ := {0, . . . , N} corresponding to N + 1 different conditional distributions PY |X,0, . . . , PY |X,N .
Suppose that it is the case that any learner A who ε-learns H correctly with respect to these data distributions
will necessarily learn distinct hypotheses for distinct distributions. In other words, if a hypothesis h is ε-close
to a risk minimizer with respect to one of the distributions PX ⊗ PY |X,θ, then it is not ε-close to a risk
minimizer for any other distributions PX ⊗ PY |X,θ′ .

And so, a learner who can (ε, δ)-learn in this setting must be able to distinguish between the different
induced sampling distributions P(Sm,PY |X,θ), for θ ∈ Θ with probability of error at most δ. Therefore, if we
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can bound how quickly the sampling distributions diverge from each other as the number of samples m
increases, then we can lower bound the number of samples required by any (ε, δ)-learner in this setting.

Our method of attack to obtain label complexity lower bounds for an (ε, δ)-learner over a hypothesis
class H with respect to a class of distribution P will be to find a collection of distributions in P that are
information-theoretically hard to distinguish, yet still map to disjoint sets of hypotheses in H by an ε-learner.
Then, any hypothesis testing lower bound can be translated into an active learning lower bound. As a first
simplification, note that:

pe = min
Ψ

max
θ

Pθ(Ψ 6= θ) ≥ min
Ψ

1
N + 1

N∑
θ=0

Pθ(Ψ 6= θ).

Instead of lower bounding pe directly, we’ll lower bound the latter quantity. One interpretation of this
quantity is the average probability of error in a Bayesian setting: the parameter θ is chosen uniformly at
random from {0, . . . , N}, and our goal is recover θ from the distribution Pθ well on an average case basis.

In fact, our analysis of binary hypothesis testing did just this: there N = 1, and our lower bound for the
average probability of error also translates to the minimax probability of error, which we derived from the
following sequence of inequalities:

pe ≥ inf
Ψ

1
2P0(Ψ 6= 0) + 1

2P1(Ψ 6= 1)

= 1
2 −

1
2TV(P0, P1)

≥ 1
2 −

1
2

√
1
2KL(P1‖P0).

And so, the following holds generally:

Proposition 27 (Le Cam’s method). Let P0 and P1 be probability measures on X such that P1 � P0. If
the following holds:

1
2KL (P1‖P0) < α,

then we have:
pe ≥

1
2 −

1
2
√
α.

This suggest the following approach to lower bounding the label complexity of an active learning algorithm
A that (ε, δ)-learns a hypothesis class H over a class of distributions P:

1. Let P0 ≡ PX ⊗ PY |X,0 and P1 ≡ PX ⊗ PY |X,1 be two data distributions over X × Y from P such
that any hypothesis that no hypothesis h ∈ H can simultaneously be a solution to ε-learning both
distributions. That is, H0 and H1 are disjoint, where Hθ for θ ∈ {0, 1} are defined as:

Hθ :=
{
h ∈ H : R(Pθ, h) < min

h′∈H
R(Pθ, h′) + ε

}
.

2. Upper bound the KL-divergence of the induced sample distributions PSm,PY |X,0 and PSm,PY |X,1 , where
Sm is the m-step learning strategy that A uses (i.e. show that there is a limit to how well-separated
the sample distributions that the m-step learning strategy can induce):

1
2KL

(
PSm,PY |X,1

∥∥PSm,PY |X,0
)
< αm.
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3. The label complexity of (ε, δ)-learning H over P is then at least:

mactive ≥ min
{
m ∈ N : δ < 1

2 −
1
2
√
αm

}
.

Of course, different choices of PX , PY |X,0 and PY |X,1 yields better or worse lower bounds on the label
complexity. In fact, the KL-divergence of the sample distributions are related to their conditional distributions;
we can upper bound the former with respect to the latter. The following lemma shows that if the divergence
between PY |X=x,0 and PY |X=x,1 is large, then a learning strategy that increases the expected number of
queries to the point x will also increase the divergence between PSm,PY |X,0 and PSm,PY |X,1 .

Lemma 28 (KL-divergence of sequentially sampled data, [RR11]). Let Sm be a m-step learning strategy and
let PY |X,θ′ and PY |X,θ be two conditional distributions. Suppose that they induce the sample distributions
PSm,PY |X,θ′ and PSm,PY |X,θ . Then:

KL
(
PSm,PY |X,θ′

∥∥PSm,PY |X,θ
)

=
∑
x∈X

Nθ′(x) ·KL
(
PY |X=x,θ′

∥∥PY |X=x,θ
)
,

where Nθ′(x) = EPSm,PY |X,θ′

[
#{t : xt = x}

]
is the expected number of times x will be queried when given

responses from PY |X,θ′ .

Applying Hölder’s inequality, we immediately obtain the following, which we may apply toward compute
a label complexity lower bound using step 3 from above:

Corollary 29 (Upper bound on KL divergence, [WS16]). Let Sm, PY |X,θ′ and PY |X,θ as before. Then, the
following holds:

KL
(
PSm,PY |X,θ′

∥∥PSm,PY |X,θ
)
≤ m · sup

x∈X
KL
(
PY |X=x,1

∥∥PY |X=x,0
)
.

Given a certain hypothesis class and noise assumptions, there may be a limit to how close two distributions
PY |X=x,0 and PY |X=x,1 can get for all x ∈ X . Instead of reducing a binary hypothesis testing problem to
a learning one, as we have just done here, the following allows us to produce lower bounds by reducing a
multiple hypothesis testing problems. In the application of the technique outlined above, the only difference
is the construction of N + 1 distributions P0, . . . , PN that correspond to N + 1 disjoint hypothesis class
H0, . . . ,HN .

Proposition 30 (Proposition 2.3, [Tsy09]). Let P0, . . . , PN be probability measures on X with N ≥ 2 such
that Pi � P0. If the following holds:

1
N

N∑
i=1

KL(Pi‖P0) ≤ α logN,

with 0 < α <∞, then:

pe ≥

[ √
N

1 +
√
N

(
1− 2α−

√
2α

logN

)]
The information-theoretic lower bound technique we’ve discussed so far is particularly useful to analyze

settings with significant amounts of noise or specific types of noise. In the next section, we’ll define a
combinatorial quantity that provide lower bounds that arise from the geometry of the hypothesis class,
capturing our earlier example of interval functions.
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4.2 Geometric lower bounds

Recall back to the example hypothesis class of interval functions—in particular, we considered a subcollection
of interval functions of interval lengths ε with disjoint support:

H′ =
{
hkε,(k+1)ε : 0 ≤ k ≤ 1

ε

}
.

In order to ε-learn this subclass of hypotheses, a learner must be able to rule out all hypotheses but the
target hypothesis. On the other hand, every point potentially only rules out a single hypothesis. Thus, in the
worst-case, a learner must use Ω

( 1
ε

)
queries to the label oracle to brute-force search for the interval. This

example motivates the following quantity, as defined by [HY15]:

Definition 31 (Star number). The star number s of a hypothesis class H is the largest integer s where there
exists x1, . . . , xs ∈ X and h0, h1, . . . , hs ∈ H such that:

DIS({h0, hi}) ∩ {x1, . . . , xs} = {xi}.

We can generalize difficulty of learning H′ to any hypothesis class with a large star number. In particular,
given a hypothesis class H with a star number s, we can construct a class of distributions where at least
min

{
s, 1
ε

}
≡ s ∧ 1

ε labels are required in the worst case. We’ll give the construction in the realizable setting.
Let k = s ∧ 1

ε . Define the marginal distribution PX to be uniformly distributed on its support, consisting
only of x1, . . . , xk. Thus, every xi has mass at least ε. When we view H as a graph, every edge {h0, hi}
has length at least ε, and the only point that certainly splits that edge is xi. It follows that in the worst
case scenario, we have a label complexity of k. Combining this geometry-based lower bound with the
information-theoretic lower bound of Proposition 26, we obtain:

Proposition 32 (Active learning lower bound, [HY15]). Fix 0 ≤ ν < 1
2 and 0 < ε < 1

24 (1 − 2ν). If H is
a hypothesis class with VC dimension V and star number s, there exists a class of distributions P where
minh∈HR(P, h) ≤ ν for all P ∈ P, and if any active learner A that ε-learns H over P, then it must have
label complexity at least:

nA = Ω
(
V · ν

2

ε2 + s ∧ 1
ε

)
.

5 Epilogue
In this set of notes, we presented two approaches to active learning: through (i) estimating the relative risks
of a hypothesis class and (ii) estimating the labels of highly informative instances. In both of these cases, we
thought of learning as performing experiments—by designing a statistic that furthers the goal of ε-learning
H, before obtaining data to estimate the statistic.

We presented learning in this way in order to suggest the possibility that there are other statistics besides
the ones we studied that may be applied to active learning and its analysis. The presentation went only as
far as needed to frame active learning in a way such to give the reader knowledge in designing and analyzing
new active learning algorithms. We’ll briefly provide remarks on a few results that could have been tightened,
in addition to a few directions for further research.

1. In most of the results, we simplified arguments by allowing H to be a finite hypothesis class. To extend
results to infinite hypothesis classes, we could construct a sufficiently fine covering of H. In particular,
the size of an ε-covering is on the order of

( 1
ε

)V , where V is the VC dimension (see Theorem 44).
Because we’ve approximated H with a cover H′, the true risk of the new best-in-class h∗ ∈ H′ may
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increase by O(ε). Then, our results for finite hypothesis classes may be extended to infinite hypothesis
classes by replacing log |H| with O

(
V log 1

ε

)
and ν with O (ν + ε).

2. We defined the testing index (ρ, ε,∆)m with respect to tests that deterministically split a ρ-fraction of
edges. We can relax this by allowing them to probabilistically split edges, with failure rate at most δρ.
We can modify our testing algorithm to learn using tests that non-deterministically ρ-split edges by
accounting for this additional failure probability.

3. This work does not attempt to achieve tight label complexity bounds. For example, Theorem 16
providing the label complexity upper bound for the splitting index algorithm in the agnostic setting
can likely be tightened—it is loose when compared to the corresponding upper bound for the realizable
setting demonstrated in [Das06].

5.1 Bibliographic remarks

This work was heavily based on a previous survey on active learning, [Das11]. It is also there that certain
techniques of active learning were classified into mellow or aggressive approaches.

The A2 algorithm is originally designed and analyzed in [BBL09], which extends an early active learning
algorithm from [CAL94], operating within the realizable setting, to an agnostic setting. The label complexity
analysis that we provide is given by [Han+14]. Recall that in A2, we performed log 1

ε rounds of independent
estimations. We can, in fact, obtain a more efficient active learning algorithm if all the data we label are
used to compute a running risk estimation. As we draw and label points to estimate the risk functional, at
certain points, it will become clear that the risk of a particular hypothesis h is much larger than the risk of
the best-in-class hypothesis; we can throw h out of our version space to shrink the disagreement region. Now,
whenever a point x is not in the disagreement region, we can forgo querying its label, since all remaining
hypotheses agree on it anyways—instead, we just infer its label and incorporate that into our running risk
estimate. Regardless of the correctness of the inferred label, the relative risks of the hypotheses in the version
space are preserved. The algorithm that sequentially pares down H in this way is designed in [DHM08], and
it obtains an improved label complexity of:

ndhm = Õ

(
dθ

(
log2 1

ε
+ ν2

ε2

))
.

The testing index was inspired both by [Das06] and [RR11]. In particular, our definition of a learning
strategy is borrowed from [RR11], and the testing index generalizes the splitting index in [Das06]. There, the
analysis was performed in the realizable setting, and obtained a label complexity of:

nsplitting = Õ

(
1
ρ

log |H|
δ

)
.

The presentation in the binary hypothesis testing drew from [Duc14], from which we obtained a lower
bound of Ω

(
ν2/ε2). See also [Kää06] and [BDL08] for more discussion on lower bounds with respect to

the noise rate. The more general approach to lower bounding label complexity follows [CN08] and [RR11],
which uses standard techniques as described in [Tsy09] and [Duc14]. For a good survey of the three main
approaches, see also [Yu97].

Throughout this survey, we’ve imposed no conditions on the noise or model misspecification, except that:

min
h∈H

R(h) = ν.
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But in certain situations, we might make some further assumptions about how the noise is distributed—for
example, certain regions of X have noisier labels than others. Common examples of such assumptions include
the Massart/bounded noise condition, Tsybakov noise condition, and Bernstein noise condition. As examples,
[RR11] provides lower bounds on the label complexity under Massart noise condition and [WS16] for Tsybakov
noise condition for a specific hypothesis class.
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A PAC-learning
We saw in Section 2.1 that to learn a hypothesis ĥ that performs nearly as well as h∗, it suffices to obtain a
large number of data points (x1, y1), . . . , (xn, yn) and return the empirical risk minimizer. This number n of
data points required may be very large; using empirical risk minimization, we can obtain a hypothesis that
has excess risk of no more than ε with probability 1− δ using a sample size n where

n = O

(
1
ε2 log |H|

δ

)
,

with respect to the underlying data distribution PXY . At this point, we have placed no assumptions on
our data distribution. But we might more generally assume that the data are drawn from a specific class
of distributions P. Over this class of distribution, we define probabilistically approximately correct (PAC)
learning as being able to recover a hypothesis that is approximately correct with high probability:

Definition 33 (PAC-learning). Let H be a hypothesis class over X . Let P be a collection of probability
distributions over X × {0, 1}. We say that H is PAC-learnable over P if there exists an algorithm A such
that for all ε, δ ∈ (0, 1), for all P ∈ P, by using n samples (xi, yi)ni=1, A returns a hypothesis

ĥn := A
(
(xi, yi)ni=1

)
such that with probability 1− δ,

R(ĥn) ≤ R(h∗) + ε.

We say that A is an algorithm that (ε, δ)-learns H over P.

Definition 34 (Sample complexity). Let X , H, and D as before. The sample complexity of an algorithm A is
the amount of data required to (ε, δ)-learn H over D. We denote the sample complexity of A by m(A,H,D, ε, δ).
We further define m(H,D, ε, δ) to be the sample complexity of (ε, δ)-learning H over D as the minimum
sample complexity of any such algorithm. When the context is clear, we denote the sample complexity by n.

Equation 1 gives us our first sample complexity bound:

Proposition 35. Let H be a hypothesis class of size N over X . Let D be the collection of all probability
distributions P over X × {0, 1}. Its sample complexity is at most:

m(H,D, ε, δ) = O

(
1
ε2 log N

δ

)
. (4)

And so, it is information-theoretically possible to (ε, δ)-learn H over any distribution by just using at
most O

( 1
ε2 log N

δ

)
i.i.d. samples. Of course, whether or not a particular algorithm can actually achieve this

efficiently is a separate, though important, matter.

28



A.1 Infinite hypothesis classes

To extend this result to hypothesis classes of infinite size, we introduce the Vapnik-Chervonenkis (VC)
dimension V (H) of a hypothesis class.

Definition 36 (VC dimension). We say that H shatters the subset {x1, . . . , xn} ⊂ X if, for any realization
y1, . . . , yn ∈ {0, 1}, there is some h ∈ H such that:

h(xi) = yi.

The VC dimension, V , is the largest size of a set that H shatters.

For example, the VC dimension of a finite hypothesis class with N elements must surely be bounded
above by:

V ≤ log2N.

Otherwise, notice that there are 2n possible labeling for any collection of n points x1, . . . , xn ∈ X . If
n > log2N , the number of labeling required to shatter would be more than the number of hypothesis to
begin with.

In the finite case, we may in fact replace the logN term in Equation 4 with V . Additionally, it turns out
that using a covering number argument coupled with a technique called chaining, this results remains true
for infinite hypothesis classes too:

Theorem 37 (Passive sample complexity upper bound, agnostic). Let H be a hypothesis class with finite
VC dimension V <∞. Let D be the collection of all probability distributions P over X × {0, 1}. Its sample
complexity is at most:5

m(H,D, ε, δ) = Õ

(
V

ε2

)
. (5)

This result holds without any assumptions made on the class of distributions D. However, in the realizable
setting, we assume that the the labels come to us deterministically—when we decompose P into PX ⊗ PY |X ,
the conditional probability satisfies:

PY |X(y|x) =

1 y = h∗(x)

0 o.w.

In this setting, we can appeal to a tighter concentration bound:

Theorem 38 (Bernstein’s inequality). Let Z1, . . . , Zn be n i.i.d. Bernoulli variables. Then:

Pr
[∣∣∣∣∣ 1n

n∑
i=1

Zi − E[Z]

∣∣∣∣∣ > t

]
≤ 2 exp

(
− nt2

2Var[Z] + 2t/3

)
.

As before, let Zi = 1[h(Xi) 6= Yi] be the Bernoulli random variable corresponding to the empirical error
on a single sample. But suppose that the error err(h)� 1 is very small. Then, it follows that

Var[Z] = err(h)(1− err(h)) ≤ err(h)� 1

is also very small. In this case, Bernstein’s will give an upper bound on the order of exp(−2nt); the number
of samples to estimate err(h) up to within ε will then be Õ(1/ε). A more careful analysis implies [Han16]:

5The notation Õ( · ) is used to hide any polylogarithmic dependencies on 1
δ
, log 1

ε
, and V (i.e. terms of the form

p
(

log 1
δ
, log log 1

ε
, log V

)
where p is a polynomial); they are not of great interest to us.
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Theorem 39 (Passive sample complexity upper bound, realizable). Let H be a hypothesis class with finite
VC dimension V <∞. Let D be the collection of probability distributions for which H is realizable. Its sample
complexity is at most:

m(H,D, ε, δ) = Õ

(
V

ε

)
. (6)

This shows that in the realizable setting, an improvement in sample complexity by a factor of 1
ε becomes

possible. Still, both sample complexities in Theorem 37 and Theorem 39 can become very large if we want a
good classifier; it can be very costly to obtain so much labeled data.

In the active learning model, we’ll let the learner draw unlabeled instances x and give them the option to
reveal its label y. In that case, we care also about how many labels are required.

Definition 40 (Label complexity). The label complexity of an algorithm A is the amount of labeled data
required to (ε, δ)-learn H over D. We denote the label complexity by mlabel(A,H,D, ε, δ). The label complexity
of (ε, δ)-learning H over D is the minimum label complexity of any such algorithm, mlabel := mlabel(H,D, ε, δ).

A.2 Covering and packing number

We recall the usual definition of an ε-cover and ε-packing of a metric space. A cover will be useful because it
often allows us to closely approximate an infinite metric space with a finite subset—it will be sufficient to
upper bound the difficulty of learning with respect to the cover. Likewise, a packing will help provide lower
bounds on how difficult a learning problem.

Definition 41 (ε-cover, packing, and net). Let (M,d) be a (pseudo)-metric space. A subset S ⊂M is an
ε-cover if for all points x ∈M , there exists some point s ∈ S that is ε-close to x,

d(x, s) ≤ ε.

S is a ε-packing if all points in S are ε-separated from each other. That is, for all s, s′ ∈ S,

d(s, s′) > ε.

If S is both an ε-cover and ε-packing, we say that it is an ε-net.

Definition 42 (Covering and packing number). Let (M,d) be a (pseudo)-metric space. The covering number
N (ε,M, d) is the size of a minimal ε-cover of M . Similarly, the packing numberM(ε,M, d) is the size of a
maximal ε-packing of M .

These two quantities are closely related by the following inequality:

Proposition 43. Suppose that N (ε,M, d) <∞ for all ε > 0. Then:

M(2ε,M, d) ≤ N (ε,M, d) ≤M(ε,M, d).

The following theorem tells us that it is possible to approximate a hypothesis class H with VC dimension
V via a finite subset H0 where log |H0| = O

(
V log 1

ε

)
.

Theorem 44 (Theorem 6, [Hau92]). Let H have VC dimension V and let d be the induced pseudometric on
H induced by the measure PX . Then, for all 0 < ε ≤ 1,

M(ε,H, d) < 2
(

2e
ε

ln 2e
ε

)V
.
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B Technical proofs
Lemma 3 (Search implies learn). Let H and PXY be a hypothesis class and a joint probability distribution
over X × Y, as above. Let d be the pseudometric induced on H by the marginal distribution PX . If h ∈ H
satisfies d(h, h∗) < ε, its excess risk is at most ε.

Proof of Lemma 3. Let g(x) = E[Y |X = x]. Then, R(h) = d(h, g) and R(h∗) = d(h∗, g). By triangle
inequality, d(h, g) ≤ d(h, h∗) + d(h∗, g). Combining this with the assumption, d(h, h∗) < ε, we obtain:

d(h, g)− d(h∗, g) < ε.

Thus, the excess risk, R(h)−R(h∗), is bounded above by ε.

Lemma 4 (Learn implies search). Let H, PXY , and d as before. Let ν be the optimal risk of any h ∈ H;
that is, ν is the true risk R(h∗) of a best-in-class classifier h∗ ∈ H:

ν := min
h∈H

R(h).

If h ∈ H has excess risk at most ε, then d(h, h∗) < 2ν + ε.

Proof. As before, let g(x) = E[Y |X = x]. If h has excess risk at most ε, then d(h, g) < d(h∗, g) + ε. By the
triangle inequality, this implies that:

d(h, h∗) < d(h, g) + d(g, h∗) < 2ν + ε.

Thus, h is contained in the (2ν + ε)-ball centered at h∗.

Theorem 7 (A2 label complexity). Let ε, δ > 0 be fixed. Let θ := θν+ε(H, PX , h∗). There exists settings for
kt and εt such that the A2 algorithm (ε, δ)-learns H with label complexity n =

∑T
i=1 kt at most:

n = O

(
θ2
(

1 + ν2

ε2

)
log 1

ε
log
|H| log 1

ε

δ

)
.

Proof. Set εt = 2−t and kt as before in Equation 3. Then, after T = lg 2
ε rounds in A2, we’ve obtained a

version space that is contained within B(h∗, 2ν + ε). Furthermore, in the last round, not only are the kT
labels enough to reduce the version space to fit in this ball, via Equation 2, they are enough to estimate the
excess risk up to within ε/2. Therefore, the empirical risk minimizer at this point is ε-close to h∗.

Lemma 13. Let PX be a fixed marginal distribution over X . Let H be a hypothesis class that is (ρ, r, τ)-
splittable. Let 0 < ∆ ≤ 1

2 and 0 ≤ ν <
( 1

2 −∆
)
τ . Then, H is (ρ, r,∆)1-testable over the following class of

distributions:
P =

{
PX ⊗ PY |X : min

h∈H
R(PXY , h) ≤ ν

}
.

Proof of Lemma 13. Suppose that H is a hypothesis class that is (ρ, ε, τ)-splittable. Fix some distribution
PXY ∈ P. By the assumption on P, there exists some hypothesis h∗ such that that R(PXY , h∗) ≤ ν. For
every collection of edge sets Q, let S ⊂ X be the collection of all ρ-splitters of Qε, where (ρ, ε, τ)-splittability
implies that the mass of S is at least τ . By the assumption on ν, because R(h∗) ≤

( 1
2 −∆

)
τ , the risk R

∣∣
S

(h∗)
when restricted to drawing from the truncated distribution on S is at most

( 1
2 −∆

)
, since:

ν ≥ R(h∗) = PX [S] ·R
∣∣
S

(h∗) + PX [Sc] ·R
∣∣
Sc

(h∗)

≥ τ ·R
∣∣
S

(h∗)

Define the test T by drawing a random x ∼ PX|X∈S from S and querying the label oracle label(x) to obtain
y to compute the functional t(x,y)(h) := 1{h(x) 6= y}. This test using 1 sample has advantage ∆.
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Lemma 15 (Lower bound on ρ, [Das06]). Let 0 < α, ε < 1. Let V ⊂ H. Then, V is
(
(1−α)ε, ε, αε

)
-splittable.

Proof. Let Q ⊂
(V

2
)
be a finite edge set. Recall that the length of an edge is the probability that a random

instance x will cut the edge. It follows that the expected number of edges in Qε cut by a random x is at least
ε · |Qε|. On the other hand, we have:

ε · |Qε| ≤ E
x∼PX

[
# edges in Qε cut by x

]
≤ Pr
x∼PX

[
x cuts more than (1− α)ε-fraction of Qε

]
· |Qε|+ (1− α)ε · |Qε|.

This shows that at least an αε-fraction of instances will (1− α)ε-split Qε.

Theorem 16 (Splitting index label complexity). Let ε, δ > 0 be fixed. Let P be a class of distributions for
which the model error of H is at most ν:

max
PXY

min
h∈H

R(PXY , h) ≤ ν.

Let H have disagreement coefficient θ := θ2ν+ε(H, PX , h∗) and splitting index (ρ, 2ν + ε, τ). Then, there is an
algorithm that (ε, δ)-learns H with label complexity at most:

n = O

(
1
ρ

τ2

(τ − 2ν)2 log |H|+ θ2
(

1 + ν2

ε2

))
· log |H|

δ
.

Proof. Corollary 14 shows that using at most n1 samples, where:

n1 = O

(
τ2

ρ(τ − 2ν)2 log |H| ·
(

log |H|+ log 1
δ1

))
,

we can obtain a version space V ⊂ B(h∗, 2ν + ε) ⊂ H that contains h∗. Let θ be the disagreement coefficient
θ(H, PX , h∗). Once again, applying Equation 2 implies that to ε-learn, now over V requires at most n2

samples, where:

n2 = O

(
θ2
(

1 + ν2

ε2

)
log |H|

δ2

)
.

It follows that if we set δ1 = δ2 = δ/2, combining these two procedures yields an active learning algorithm
that (ε, δ)-learns with label complexity n1 + n2.

Lemma 17. Let H be the class of linear threshold classifiers on X = [0, 1] with marginal distribution PX .
Then, the disagreement coefficient is constant θs(H, PX , h∗) ≤ 2. Furthermore, it is

( 1
2 , ε, ε

)
-splittable.

Proof. To show that the disagreement coefficient is equal to 2, note that the distance d(hα, hα′) is r (without
loss of generality, assume α ≤ α′) if and only if the mass of the set (α, α′] ⊂ [0, 1] is r. Thus, if hα ∈ B(hα∗ , r),
this implies that α is contained in a subset of [0, 1] with probability mass at most 2r. This shows that the
disagreement coefficient is at most 2.

To show that H is
( 1

2 , ε, ε
)
-splittable, consider any collection of edges n of the form: {hαi , hα′i}. Without

loss of generality, assume that αi + ε < α′i and that the αi’s are monotonically increasing:

α1 ≤ · · · ≤ αdn/2e ≤ · · · ≤ αn.

Querying the label of any x ∈
(
αdn/2e, αdn/2e

]
will deterministically remove at least n/2 of the edges. In

particular, if the label y is 0, this removes α1, . . . , αdn/2e from the version space, reducing the number of
edges by half. On the other hand, if the label is 1, this removes α′dn/2e, . . . , α′n from the version space, since
the edges have length at least ε. This again reduces the number of edges by half.
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Lemma 18. Let H be the class of interval functions on X = [0, 1], with marginal distribution PX . Let
h∗ = hα,β, where γ = β − α. The disagreement coefficient is:

θs(H, PX , hα,β) =

 1
s s > γ

4 s ≤ γ.

For any 0 < s < 1, H is not (ρ, ε, τ)-splittable for any ρ > 2ε.

Proof. Suppose that s > γ. Then, any interval function hα′,β′ with β′ − α′ < s − γ is within the B(h∗, s)
ball. The region of disagreement for all such interval functions is all of X . Thus, the disagreement coefficient
when s > γ is equal to 1

s .
When s ≤ γ, we note that the interval (α, β) must have nonempty intersection with the interval (α′, β′).

For simplicity, assume PX is the uniform distribution (otherwise, apply an order- and measure-preserving
map like the CDF from X to [0, 1] with the uniform distribution). Working through the possible cases of α
and β shows that the only regions of disagreement are the intervals [α− s, α+ s] and [β − s, β + s]. Thus,
the disagreement coefficient is at most 4.

To show that H is not (ρ, ε, τ)-splittable for any ρ > 2ε, we consider again the subset of hypotheses:

H′ =
{
hkε,(k+1)ε : 0 ≤ k < 1

ε

}
.

The complete graph on H′ has at least
⌊ 1
ε

⌋2
/2 edges of length greater than ε. Yet, any label will potentially

remove only a single hypothesis, and with it, at most 1
ε edges. Thus, H is not (ρ, ε, τ)-splittable for ρ > 2ε.

Proposition 26 (Theorem 12, [BDL08]). Fix 0 ≤ ν ≤ 1
2 . Let H be a hypothesis class with VC dimension V .

There exists a class of distributions P over X × Y such that R(h∗) = ν and any algorithm that (ε, δ)-learns
H over P must have label complexity at least:

n = Ω
(
V · ν

2

ε2

)
.

Proof. Let x1, . . . , xV ∈ X be shattered by H. We’ll construct a class of distributions such that the first d− 1
points are noisy and have an α-fraction of the probability mass while the remaining point has a (1−α)-fraction
of the mass and is noiseless. Let the noise rate on the noisy points be 1

2 − β. It follows if we set αβ = ε, then
any ε-good hypothesis must be correct on at least half of the noisy points.

On the other hand, we should set the average noise rate to be ν = α
( 1

2 − β
)
. It follows that we can set

α = 2(ν + ε), where the noise is split evenly across these points; the margin β for each point is:

β = ε

2(ν + ε) .

Let’s set β to a value so that any algorithm that ε-learns H must successfully perform binary hypothesis
tests on a constant fraction of the noisy points. In particular, let’s set αβ = ε, that way the learner must
correctly label half of the noisy points. From the binary hypothesis testing lower bound, to correctly label a
single noisy point requires Ω

(
1
β2

)
samples. It follows that to correctly label

⌊
V
2
⌋
of the points, an ε-learner

must have label complexity:

n = Ω
(
V · ν

2

ε2

)
.
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Lemma 28 (KL-divergence of sequentially sampled data, [RR11]). Let Sm be a m-step learning strategy and
let PY |X,θ′ and PY |X,θ be two conditional distributions. Suppose that they induce the sample distributions
PSm,PY |X,θ′ and PSm,PY |X,θ . Then:

KL
(
PSm,PY |X,θ′

∥∥PSm,PY |X,θ
)

=
∑
x∈X

Nθ′(x) ·KL
(
PY |X=x,θ′

∥∥PY |X=x,θ
)
,

where Nθ′(x) = EPSm,PY |X,θ′

[
#{t : xt = x}

]
is the expected number of times x will be queried when given

responses from PY |X,θ′ .

Proof.

KL
(
PSm,PY |X,θ′

∥∥PSm,PY |X,θ
)

=
∑
xm,ym

PSm,PY |X,θ′ (xm, ym) log PSm,PY |X,θ′

PSm,PY |X,θ

=
∑
xm,ym

PSm,PY |X,θ′ (xm, ym)
m∑
i=1

log
PY |X,θ′(yi|xi)
PY |X,θ(yi|xi)

=
m∑
i=1

∑
x,y

PSm,PY |X,θ′ (Xi = x, Yi = y) log
PY |X,θ′(yi|xi)
PY |X,θ(yi|xi)

=
m∑
i=1

∑
x

PSm,PY |X,θ′ (Xi = x)KL
(
PY |X=x,θ′

∥∥PY |X=x,θ
)

=
∑
x∈X

m∑
i=1

PSm,PY |X,θ′ (Xi = x)KL
(
PY |X=x,θ′

∥∥PY |X=x,θ
)

=
∑
x∈X

Nθ′(x)KL
(
PY |X=x,θ′

∥∥PY |X=x,θ
)

Note that the first step is taken by expanding the second term (blue):

log PSm,PY |X,θ′

PSm,PY |X,θ
= log

∏m
i=1 Π(i)

Xi|Xi−1,Y i−1(xi|xi−1, yi−1)PY |X,θ′(yi|xi)∏m
i=1 Π(i)

Xi|Xi−1,Y i−1(xi|xi−1, yi−1)PY |X,θ(yi|xi)

=
m∑
i=1

log
PY |X,θ′(yi|xi)
PY |X,θ(yi|xi)

.

Also, in the third step, we rely on the property that PSm,PY |X,θ′ (Xi, Yi) is a product distribution:∑
x,y

PSm,PY |X,θ′ (Xi = x, Yi = y) =
∑
x

PSm,PY |X,θ′ (Xi = x)
∑
y

PY |X,θ′(Yi = y)
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