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Abstract

In the realizable online setting, a learner is tasked with making predictions for a
stream of instances, where the correct answer is revealed after each prediction.
A learning rule is online consistent if its mistake rate eventually vanishes. The
nearest neighbor rule (Fix and Hodges, 1951) is a fundamental prediction strat-
egy, but it is only known to be consistent under strong statistical or geometric
assumptions—the instances come i.i.d. or the label classes are well-separated. We
prove online consistency for all measurable functions in doubling metric spaces
under the mild assumption that the instances are generated by a process that is
uniformly absolutely continuous with respect to a finite, upper doubling measure.

1 Introduction

In online classification, a learner faces a never-ending stream of prediction tasks. For all times n:

- the learner is presented with an instance Xn,
- the learner makes a prediction Ŷn,
- the ground-truth label Yn is revealed.

When the instances come from some underlying metric space, one of the simplest prediction rules
the learner can employ is the nearest neighbor rule (Fix and Hodges, 1951). This learner memorizes
everything it sees, and when it comes time to make a prediction for a new instance Xn, it looks for
the most similar data point in memory, predicting with that nearest neighbor’s label. In this work,
we are interested in simple conditions under which the nearest neighbor rule is in fact a reasonable
strategy, where the rate at which the learner makes mistakes eventually vanishes.

Let (X , ρ, ν) be a metric measure space where ρ is a separable metric and ν is a finite Borel measure.
We study the realizable setting, in which the ground-truth labels Yn = η(Xn) are given by some
measurable label function η : X → Y . Let X = (Xn)n≥0 be any stochastic process. It induces a
nearest neighbor process X̃ = (X̃)n>0, which is any process satisfying:

X̃n ∈ argmin
x∈X<n

ρ(Xn, x).

The nearest neighbor rule predicts using the label Ŷn = η(X̃n), and it is online consistent when the
asymptotic mistake rate on the problem instance (X, η) goes to zero:

lim sup
N→∞

1

N

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
= 0 a.s. (1)

There are two representative results for the online consistency of the 1-nearest neighbor rule in
this setting—both impose strong constraints on either X or η. Cover and Hart (1967) assume the
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Algorithm 1 The 1-nearest neighbor rule

1: for n = 1, 2, . . . do
2: Receive the instance Xn

3: Predict with a nearest neighbor label η(X̃n)
4: Observe and memorize the ground-truth label η(Xn)
5: end for

statistical constraint that X is an i.i.d. process. In contrast, Kulkarni and Posner (1995) allow for
arbitrary processes. However, they assume the geometric constraint that points of different classes
η(x) ̸= η(x′) are uniformly separated ρ(x, x′) > c > 0 in a totally bounded space.

The result of Kulkarni and Posner (1995) turns out to be tight in the absence of further assumptions.
As long as there are points belonging to different classes that are arbitrarily close together, then there
are adversarial sequences on which the nearest neighbor rule is not online consistent (Proposition 2).
Still, this negative result does not necessarily spell doom for the nearest neighbor rule in all non-i.i.d.
settings; one of our aims is to understand just how pathological these worst-case sequences are.

The upshot of this work is that worst-case sequences on which the nearest neighbor rule fails to learn
are in fact extremely rare—under quite mild constraints on X and η, they almost never occur. The
nearest neighbor rule is online consistent under much broader conditions than previously known.

1.1 Main results

Consistency for functions with negligible boundary We first consider learning label functions
with negligible boundary, where almost every point has a positive separation from other classes. As
the separation may be instance-dependent, this relaxes the uniform separation condition of Kulkarni
and Posner (1995), and it is equivalent to the assumption used by Cover and Hart (1967).

It turns out that if the label function has negligible boundary, we can cover essentially all of X with
mutually-labeling balls (Definition 8). On such a ball, the nearest neighbor rule makes at most one
mistake (Lemma 9). So, progress is monotonic: eventually, all mistakes must come from a remainder
region with arbitrarily small ν-mass (roughly, points arbitrarily close to the decision boundary).

It follows that if we can limit the rate at which X comes from regions with arbitrarily small mass,
we can also limit the mistake rate of the nearest neighbor rule. To this end, we formalize the notion
of an ergodically dominated process (Definition 3), which is a process where the asymptotic rate
of landing in a region A is bounded as a function of ν(A). In particular, these processes do not
hit regions with arbitrarily small mass at a constant rate. With little ado, we can show that the
nearest neighbor rule is consistent when X is ergodically dominated and η has negligible boundary
(Theorem 7). Stronger, quantitative assumptions also yield rates of convergence (Theorem F.2).

Universal consistency This first consistency result for functions with negligible boundaries is
quite general and captures many settings of interest (e.g. classification on Rd with smooth decision
boundaries). But as not all functions have ν-negligible boundaries, we also study when the nearest
neighbor rule is universally consistent (i.e. consistent for any measurable η). This question is trickier
since boundary points, which are hard for our learner, need not be localized to a set of measure zero.

We proceed by giving more structure to (X , ρ, ν) and X. First, we let ρ be a d-doubling metric
(Definition 11). This is helpful because every measurable function η can then be approximated
arbitrarily well by a function η′ with negligible boundary (Proposition 13). And so, it seems that
we might be able to deduce universal consistency of the nearest neighbor rule almost directly from
the previous result—learning η is perhaps not so different from learning η′ when their disagreement
region is made to be vanishingly small. However, this turns out not to be the case.

For example, Blanchard (2022) constructs a classification problem where the nearest neighbor rule
is not consistent, but X is a 1-doubling space (the unit interval [0, 1] with the usual metric), η is
measurable, and X is ergodically dominated. The problem is that, even if the disagreement region
is made to be extremely small, its influence on nearest neighbor predictions is not limited to the
times when instances land in it. These instances exert influence when they themselves are nearest
neighbors of downstream instances. In other words, ‘bad points’ can accumulate in the memory of
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the nearest neighbor learner, and their influence grow and shrink with their Voronoi cells (regions
where they are nearest neighbors). As the region on which the nearest neighbor learner is prone to
make mistakes waxes and wanes throughout time, we cannot argue that progress is monotonic in the
same way as before. In short, a tail constraint on X is no longer sufficient for consistency.

To show universal consistency, we constrain X at every moment in time. Ergodic domination only
ensured that the time-averaged rate at which X hits small regions is small. We now require the time-
uniform rate to also be small, a strictly stronger condition. Formally, a uniformly dominated process
(Definition 4) is one where the probability that the instance Xn lands in a region A is bounded as
a function of ν(A) at each point in time. Intuitively, ergodic domination is retrospective: looking
back, how often do points land in A? In contrast, uniform domination is a generative constraint: at
any point in time, how easily can the underlying mechanism generating X select a point in A?

The basic argument then is that even though ‘bad points’ can accumulate in space over time, in a
doubling space, their Voronoi cells also tend to shrink quickly when they are hit by further instances.
If the mass of these Voronoi cells were to shrink as well, then it would become increasingly unlikely
that these instances are nearest neighbors of downstream points whenever X is uniformly dominated.
So that having small metric entropy implies having small mass, we let the measure be upper doubling
(Definition 11), by which we mean that the mass of a ball of radius r is bounded by O(rd).

We first prove the following result, which may be of interest in its own right, about the behavior of
nearest neighbor processes: when X is a uniformly dominated process in an upper doubling space,
any nearest neighbor process X̃ is ergodically dominated (Theorem 14). Simply put, this means that
if two functions η and η′ rarely disagree, then the average rate at which nearest neighbor processes
land in their disagreement region is also bounded. Universal consistency now follows fairly easily.

Let η be closely approximated by some η′ with negligible boundary. The asymptotic mistake rate
of the nearest neighbor rule on η′ is zero when X is uniformly dominated. On the other hand, if
the mistake rate on η is large, this discrepancy must be due to the influence of their (very small)
disagreement region. But, a large discrepancy is not possible as the nearest neighbor process is
unable to significantly amplify the influence of very small regions. Thus, the nearest neighbor rule
is universally consistent on upper doubling spaces for uniformly dominated processes (Theorem 12).

Notation Given a sequence X, we let X<n denote the set {X1, . . . , Xn−1}. The symbol 1 denotes
the indicator function, which is equal to 1 when the event that follows it occurs and 0 otherwise. We
let B(x, r) ⊂ X denote the open ball of radius r centered at x. For any x ∈ X and Z ⊂ X , let:

ρ(x, Z) = inf
z∈Z

ρ(x, z) and diam(Z) = sup
z,z′∈Z

ρ(z, z′).

2 Non-convergence for worst-case sequences

To motivate the study of non-worst case sequences, let’s first consider a worst-case example showing
that the nearest neighbor rule can make a mistake in each round learning a threshold function:

Example 1 (Failing to learn a threshold). Let X = [−1, 1] and let η(x) = 1{x ≥ 0} be a threshold
function. Let X be defined by Xn = (−1/3)n. The nearest neighbor rule makes a mistake every
round n+ 1: the nearest neighbor of Xn+1 is Xn, which has the opposite sign (see Figure 1).

More generally, the hardness of a point for the nearest neighbor rule depends on its separation from
points of different classes—hard sequences exist precisely whenever the classes are not separated:

Proposition 2 (Non-convergence in the worst-case). Let (X , ρ) be a totally bounded metric space.
Given η : X → Y , there is a sequence of instances (Xn)n on which the nearest neighbor rule is not
online consistent on η if and only if there is no positive separation between classes:

inf
η(x)̸=η(x′)

ρ(x, x′) = 0.

While the nearest neighbor rule can fail to learn many functions of interest, in both the example and
the proof of the proposition, the mode of failure depended on the ability of a worst-case adversary
to select instances with arbitrary precision. This can be seen in the threshold example, where the
interval on which the learner can make a mistake shrinks exponentially quickly.
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X1 X2X3 · · ·

Figure 1: Learning the threshold 1{x ≥ 0} on R. The nearest neighbor classifier makes a mistake
every single round on the sequence Xn = (−1/3)n, where subsequent test points alternate sign.

However, this mode of failure may not always be present, especially when the ability of the adversary
to select instances from small regions of space diminishes with the sizes of those regions. This may
be the case if the adversary is limited in computation, information, or ill-will toward the learner. The
question remains: what is the behavior of the nearest neighbor rule in such non-worst-case settings?

3 Two general classes of non-worst case sequences

To study this, let’s formalize the generating process. At each time step n, conditioned on the past
outcomes X<n, an adaptive adversary constructs a distribution over X from which Xn is drawn.
In this way, any particular choice of adaptive adversary corresponds to a stochastic process, which
defines a probability measure over the space of all sequences of instances. We are interested in the
almost-sure online consistency of the nearest neighbor rule under these measures.

In the standard i.i.d. setting, each Xn is drawn from the same underlying distribution. In the worst-
case setting, the conditional distribution of Xn|X<n may be point masses and so X may be an
arbitrary sequence. We introduce two mildly-constrained classes of non-worst-case processes. Both
are given with respect to an underlying reference measure ν (which we assumed to be finite).

Ergodically dominated processes The first can be considered a class of budgeted adversaries.
For any region A ⊂ X , the asymptotic rate at which the adversary can select points in A is bounded
by a function ε( · ) of ν(A). In particular, we require ε(δ)−→ 0 as δ goes to zero. Instances from an
ergodically dominated process do not concentrate in regions with small mass in retrospect.
Definition 3 (Ergodic continuity). A stochastic process X is ergodically dominated by ν if for any
ε > 0, there exists δ > 0 such that when a measurable set A ⊂ X satisfies ν(A) < δ, then:

lim sup
N→∞

1

N

N∑
n=1

1
{
Xn ∈ A

}
< ε a.s. (2)

We say that X is ergodically continuous with respect to ν at rate ε(δ).

As pointed out by Hanneke (2021), the set function A 7→ lim supN→∞
1
N

∑N
n=1 1{Xn ∈ A} is

a submeasure. Then, ergodic continuity requires it to be absolutely continuous with respect to ν.
These processes are closely related to the C1-processes introduced by Hanneke (2021). There, the
submeasures must be exhaustive, which Talagrand (2008) shows to be a strictly weaker condition
than absolute continuity. Hanneke (2021) also demonstrates that there are C1-processes on the unit
interval for which the nearest neighbor rule is not universally online consistent.

Uniformly dominated processes The following can be thought of as a class of bounded precision
adversaries. Each time step, the probability that the adversary selects an instance from a region A is
bounded by a function ε( · ) of ν(A). Thus, it provides a time-uniform condition:
Definition 4 (Uniform absolute continuity). A stochastic process X is uniformly dominated by ν if
for any ε > 0, there exists δ > 0 such that when a measurable set A ⊂ X satisfies ν(A) < δ, then:

sup
n∈N

Pr
(
Xn ∈ A |X<n

)
< ε. (3)

We say that X is uniformly absolutely continuous with respect to ν at rate ε(δ).
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This class can be seen as a strict generalization of the σ-smoothed processes introduced by Haghtalab
et al. (2020), which satisfy the Lipschitz rate ε(δ) = δ/σ (Definition F.3). This stronger, quantitative
condition allows us to give rates of convergence for smoothed processes in Appendix F.

Time-averaged behavior of uniformly dominated processes We now show that ergodic continu-
ity is a weaker condition than uniform absolute continuity. And intuitively, the former lets us prove
consistency when the hard or atypical instances come from a small, fixed region of space. The latter
will be needed when the hard regions of space evolve over time.

In the following, we can think of (An)n as a sequence of hard regions (e.g. the region on which the
learner can make mistakes). By the martingale law of large numbers, if the mass of these regions
eventually remain small, then the average rate at which X lands in hard regions also becomes small:

Lemma 5. Let X be uniformly dominated by ν at rate ε(δ), and let (Fn)n be its natural filtration.
Let An be an Fn-predictable sequence where lim supn→∞ ν(An) < δ almost surely. Then:

lim sup
N→∞

1

N

N∑
n=1

1
{
Xn ∈ An

}
≤ ε(δ) a.s.

Setting An to A shows that ergodic continuity is weaker than uniform absolute continuity. In fact, as
it only constrains the tail of X, it is strictly weaker (the ergodically-dominated adversary is stronger).

4 Consistency for functions with negligible boundaries

The inductive bias built into the nearest neighbor rule is that most points are surrounded by other
points of the same class (though one might have to zoom in very close to the point). We first consider
label functions for which this inductive bias is correct ν-almost everywhere. Ergodic continuity with
respect to ν shall be enough for online consistency. To formalize these functions, we define:

Definition 6 (Boundary point). Let η : X → Y be measurable. Let marginη(x) be the distance
from x to points of other classes, and let ∂ηX denote the boundary of η, points with no margin:

marginη(x) = inf
η(x) ̸=η(x′)

ρ(x, x′) and ∂ηX =
{
x ∈ X : marginη(x) = 0

}
.

Let F0 =
{
η measurable : ν(∂ηX ) = 0

}
denote the set of functions with negligible boundaries.

The class F0 captures many label functions of interest. For example, when X is a Euclidean space
equipped with the Lebesgue measure, then label functions with smooth decision boundaries have
negligible boundaries—the boundary forms a lower-dimensional manifold with zero measure.

Theorem 7 (Online consistency for F0). Let (X , ρ, ν) be a metric measure space, where ρ is a
separable metric and ν is a finite Borel measure. Let X be ergodically dominated by ν and let η
have ν-negligible boundary. The nearest neighbor rule is online consistent with respect to (X, η).

To prove this, we introduce the notion of a mutually-labeling set, which are subsets U of X that
share a single label under η, and whose diameter is less than the distance to reach a different class:

Definition 8 (Mutually-labeling set). A set U ⊂ X is mutually-labeling for η if for all x ∈ U ,

diam(U) < marginη(x). (4)

See Figure 2 for a picture. This construct is useful because the nearest neighbor rule makes at most
one mistake per mutually-labeling set—see Lemma 9. Moreover, it is easy to construct such sets;
Lemma 10 shows that sufficiently small balls centered at non-boundary points are mutually-labeling.

Lemma 9. Let U be a mutually-labeling set for η. Let X be an arbitrary process. Then:
∞∑

n=1

1
{
Xn ∈ U and η(Xn) ̸= η(X̃n)

}
≤ 1.

Lemma 10. For any 0 < r < marginη(x)/3, the ball B(x, r) is mutually-labeling for η.
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Proof of Theorem 7. Fix ε > 0. We first prove that the asymptotic mistake rate is bounded by ε.
Choose δ > 0 such that the ergodic domination condition, Equation (2), holds. We claim that we
can cover all of X by a finite number Kδ < ∞ of mutually-labeling sets, except for a region Aδ of
small mass ν(Aδ) < δ. By Lemma 9, at most one mistake can be made on each of the mutually-
labeling set, so that all but finitely many mistakes come from Aδ . Thus, the asymptotic mistake rate
is bounded by the rate at which X can hit Aδ . By definition of ergodic continuity, this is less than ε,

lim sup
N→∞

1

N

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
≤ lim sup

N→∞

1

N

N∑
n=1

1
{
Xn ∈ Aδ} < ε a.s.

Online consistency follows by applying this simultaneously to a countable sequence of εi ↓ 0.

To finish the proof, we construct the above collection of mutually-labeling sets. By Lemma 10, we
can cover almost all of X by the collection of mutually-labeling balls, since we only miss out on the
boundary points, which is ν-negligible. This collection has a countable subcover C = {B1, B2, . . .}
because ρ is separable. By the finiteness of ν and the continuity of measures, when Kδ is sufficiently
large, the first Kδ balls cover everything but a region Aδ of mass ν(Aδ) < δ,

Aδ = X \
⋃

k≤Kδ

Bk.

A picture is also given in Figure 2.

5 Universal consistency on upper doubling spaces

We now show that the nearest neighbor rule is universally online consistent (that is, consistent for
any measurable function) whenever X is uniformly dominated and X is an upper doubling space:
Definition 11 (Upper doubling). A metric space (X , ρ) is doubling with doubling dimension d if
every ball B(x, r) can be covered by 2d balls of radii r/2. A d-doubling space with measure ν is
upper doubling if there exists c > 0 such that for all B(x, r), we have ν

(
B(x, r)

)
≤ crd.

This notion was introduced under a somewhat more general form by Hytönen (2010), and it relaxes
the condition of a doubling measure space. For example, Rd with the ℓ∞-distance and Lebesgue
measure is readily seen to be upper doubling with doubling dimension d.
Theorem 12 (Universal consistency). Let (X , ρ, ν) be an upper doubling metric measure space,
where ρ is a separable metric and ν is a finite Borel measure. Let X be uniformly dominated by ν.
For any measurable η, the nearest neighbor rule is online consistent with respect to (X, η).

The doubling metric condition is helpful because the set F0 of functions with negligible boundaries
is then dense in L1(X ; ν), as shown in Proposition 13. That is, any measurable η can be arbitrarily
well-approximated by F0, for which we know the nearest neighbor rule is consistent.
Proposition 13 (F0 is dense in L1). Let (X , ρ, ν) be a metric measure spaces where ρ is doubling
and ν is a finite Borel measure. Then, the set F0 is dense in L1(X , ν).

To show universal consistency, it is not enough that η can be well-approximated by a function η0 with
negligible boundary. We also need to know that their disagreement region {η ̸= η0} cannot have
excessive influence on the behavior of nearest neighbor predictions. The upper doubling condition
allows us to show that when X is uniformly dominated, then X̃ is ergodically dominated. We will
use this to limit the rate that nearest neighbors come from regions where η is poorly approximated.
Theorem 14 (Ergodic continuity of nearest neighbor processes). Let (X , ρ, ν) be a upper doubling
space with bounded diameter. Suppose that a process X is uniformly dominated by ν at a rate ε(δ).
There exists constants c1, c2 > 0 such that for any measurable set A ⊂ X with ν(A) < δ0,

lim sup
N→∞

1

N

N∑
n=1

1
{
X̃n ∈ A

}
< inf

δ>0

{(
c1 + c2 log

1

δ

)
· ε(δ0) + ε(δ)

}
a.s.

If we do not optimize the bound and just let δ = δ0, this shows that when X is uniformly dominated
at rate ε(δ), then X̃ is ergodically dominated at a slower rate O(ε(δ) log 1

δ ). We can now show:
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Proof of Theorem 12. Fix ε > 0. Let X be uniformly dominated and let η be measurable. We prove
that the asymptotic mistake rate of the nearest neighbor rule for (X, η) is bounded by 3ε almost
surely. The result follows by simultaneously applying this to a sequence εi ↓ 0.

Let η0 ∈ F0 be a δ0-accurate approximation of η so that ν({η ̸= η0}) < δ0. We will set δ0 later. If
at time n, the nearest neighbor rule makes a mistake, then at least one of three events must occur:

(a) The functions η and η0 disagree on Xn,

(b) The functions η and η0 disagree on X̃n,

(c) The nearest neighbor rule errs at time n on (X, η0).

η(Xn) η(X̃n)

η0(Xn) η0(X̃n)

mistake

(a) (b)

(c)

Lemma 5 implies that (a) contributes at most ε(δ0) to the asymptotic mistake rate, while Theorem 7
implies that (c) contributes nothing. We just need to bound the contribution of (b) for when the
nearest neighbor process lands in the disagreement region of η and η0. For this, we can almost
directly apply Theorem 14, except that it assumes that the process takes place in a bounded space.

It turns out that because ρ is doubling and ν is finite, there is a bounded region Xε ⊂ X that captures
the vast majority of X and X̃; Lemma D.4 bounds the rate at which either process escapes Xε,

(d) lim sup
N→∞

1

N

N∑
n=1

1
{
Xn /∈ Xε or X̃n /∈ Xε

}
< ε a.s.

Having accounted for mistakes outside of Xε, we can consider the amended event (b′) that η and η0
disagree on A = Xε ∩ {η ̸= η0}. Since ν(A) < δ0, we now apply Theorem 14; when c1 and c2 are
the corresponding constants given by for the space (Xε, ρ, ν), it suffices to set δ0 > 0 so that:

inf
δ>0

{(
c1 + c2 log

1

δ

)
· ε(δ0) + ε(δ)

}
< ε.

Then, to the asymptotic mistake rate, the events in (a) contribute at most ε(δ0) < ε, (b′) contribute
another ε, (c) contribute nothing, and (d) contribute ε. Together, they yield the target 3ε bound.

6 Ergodic continuity of nearest neighbor processes

The nearest neighbor rule does not forget; and so, a data point Xn can be the nearest neighbor of an
unbounded number of downstream instances X>n. In this section, we ask a trickier question: at what
rate can a set of instances in X contain nearest neighbors of downstream points? More intuitively,
how much influence can a set of instances exert through the nearest neighbor process?

Theorem 14 gives one result of this form: informally, if a process X can generate points from small
regions only very rarely, then these points cannot make up a significantly larger fraction of X̃. More
generally, we consider the long-term influence of any asymptotically rate-limited subsequence of X.
Formally, to indicate the instances whose long-term influence we wish to bound, we define:

Definition 15 (Indicator process). An indicator process I = (In)n is a sequence of {0, 1}-random
variables. It induces a counter k(n) and the sequence of stopping times (τk)k where:

k(n) = I1 + · · ·+ In and τk = min
{
n : k(n) ≥ k

}
.

That is, k(n) is the number of indications given by time n, while τk is the time of the kth indication.
We say that I is asymptotically rate-limited by γ > 0 if almost surely, lim supn→∞ k(n)/n < γ.

Notation 16 (Indicated instances). Let X be a process and I be an indicator process. Let X
[
I<n

]
denote the subset of instances in X indicated by time n (not inclusive), so that:

X
[
I<n

]
:=
{
Xm : m < n and Im = 1

}
. (5)

For uniformly dominated processes in upper doubling spaces, if this set of instances doesn’t grow too
fast, then its time-averaged influence is limited when filtered through the nearest neighbor process.
For simplicity, in this section, we will also assume that the space is bounded.
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Theorem 17 (Long-term influence bound). Let (X , ρ, ν) be a bounded, upper doubling space. There
are constants c1, c2 > 0 so that the following holds. Let X be uniformly dominated at rate ε(δ) and
let I be an indicator process adapted to X asymptotically rate-limited by γ > 0. For any δ > 0, the
rate that the indicated instances X

[
I<n

]
contain a nearest neighbor X̃n is at most:

lim sup
N→∞

1

N

N∑
n=1

1

{
X̃n ∈ X

[
I<n

]}
< γ ·

(
c1 + c2 log

1

δ

)
+ ε(δ) a.s.

The ergodic continuity of X̃ follows when we take In to be 1{Xn ∈ A} and optimize the bound.

6.1 A metric bound for nearest neighbor events

To prove Theorem 17, we need to balance two opposing dynamics. On one hand, more and more
indicated instances fill the space as time goes on. On the other, the Voronoi cells of these instances—
regions in which they are nearest neighbors—tend to shrink as they are hit. Mathematically, this can
be seen by decomposing the event that an indicated instance is a nearest neighbor like so:{

X̃n ∈ X
[
I<n

]}
=

⋃
x∈X[I<n]

{
Xn ∈ Voronoi cell of x w.r.t. X<n

}
. (6)

The natural proof strategy following this would be to bound the probability that the left-hand side
event occurs by arguing that the indicated Voronoi cells have small ν-mass, so that these cells would
be rarely hit if X is uniformly dominated. However, this decomposition does not seem to be very
fruitful as it is difficult to directly control how the mass of Voronoi cells evolve over time.

Instead, our proof strategy makes use of both notions of size available to us in metric measure spaces.
Besides the measure of a set, recall the packing number of a set, a notion of metric entropy:
Definition 18 (Packing and packing number). Let r > 0. A set Z ⊂ X is an r-packing if all of its
points are bounded away from each other by a distance r,

inf
z,z′∈Z

ρ(z, z′) ≥ r.

The r-packing number Pr(U) of U is the maximum possible size of an r-packing Z contained in U .

The packing number bounds the number of times that the nearest neighbor distance ρ(Xn, X̃n) is
large. In particular, for any r > 0, the nearest neighbor distance can exceed r at most Pr(X ) times.
This is because such a set of instances must then form an r-packing. As a slight generalization:
Definition 19 (r-separated event). Let X be a process and r > 0. The r-separated event at time n
is the event Er

n that Xn is r-separated from all past instances X<n,

Er
n :=

{
ρ(Xn, X̃n) ≥ r

}
.

Given a subset U , the (U, r)-separated events are the events EU,r
n := Er

n ∩
{
Xn ∈ U

}
.

Lemma 20 (Packing bound). Let (X , ρ) be a metric space, U ⊂ X be a subset, and r > 0. For any
process X, the number of (U, r)-separated events is bounded by the r-packing number of U ,

∞∑
n=1

1
{
EU,r

n occurs
}
≤ Pr(U).

Thus, we now have two ways of bounding how often an instance can appear in the nearest neighbor
process: the number of times it can be a distant nearest neighbor is bounded by the packing number,
while the rate it can be a close nearest neighbor can be limited by the measure of small balls. The
basic proof idea for Theorem 17 will be to slowly trade off the measure bound for the metric bound
via an alternative decomposition of the event X̃n ∈ X

[
I<n

]
based on the cover tree data structure.

6.2 The cover-tree decomposition

Definitions In this section, let X be a bounded metric space, which we may rescale to have unit
diameter. Let us recall the cover tree data structure, introduced by (Beygelzimer et al., 2006), which
is an efficient multi-scale ball cover for a given dataset: each data point is covered by a ball of every
radius 2−ℓ for all ℓ ∈ N0 ≡ N ∪ {0}. First, we’ll introduce the dyadic cone as a multi-scale cover
of a single data point. Then, we inductively construct the cover tree as a union of dyadic cones.

8



Definition 21 (Dyadic cone). Let (X , ρ) have unit diameter and let x ∈ X . A dyadic cone centered
at x of rank L ∈ N0 is the discrete collection of balls:

cone(x;L) = {B(x, 2−ℓ) : ℓ ≥ L and ℓ ∈ N0}.
When L′ ≥ L, we also refer to cone(x;L′) within cone(x;L) as its rank-L′ tail.

One possible way of constructing a multi-scale covering of a dataset is to take the union of all dyadic
cones of rank zero centered all data points. However, this cover is not particularly efficient, with
many redundant large-scale balls. Instead, the cover tree is defined as a union of dyadic cones with
adaptive ranks. Each rank is chosen to be minimal while still covering each point at all scales:
Definition 22 (Sequentially-constructed cover trees). Let (X , ρ) have unit diameter and A = (ak)k
be a dataset in X without duplicates. The cover trees (Ck)k with insertion ranks (Lk)k are defined:
C1 = cone(a1;L1), L1 = 0,

Ck = Ck−1 ∪ cone(ak;Lk), Lk = min
{
ℓ ∈ N : no ball of radius 2−ℓ in Ck−1 contains x

}
.

We say that ak was inserted into the cover tree at the Lkth rank.

Points in A≤k are covered by the cover tree Ck at all scales. All other points are also covered by balls
in the doubled cover tree, where the radii are comparable to their distances to A≤k. In particular, we
define a cover-tree neighbor map ck : X \ A≤k → Ck as any one satisfying:

ck(x) = B(a, r) =⇒ x ∈ B(a, 2r) and r/2 ≤ ρ(x,A≤k) < r. (7)
The following lemma shows that such a map always exist.
Lemma 23. The cover tree Ck for A≤k has a cover-tree neighbor map ck.

Proof. Let x ∈ X \A≤k and let a ∈ A≤k be a nearest neighbor, so that ρ(x, a) = ρ(x,A≤k). There
exists ℓ ∈ N such that 2−(ℓ+1) ≤ ρ(x, a) < 2−ℓ since x is not in A≤k. As a is covered at all scales,
there is a ball B ∈ Ck of radius 2−ℓ that contains a. By triangle inequality, x is contained in 2B.

Later, we shall also make use of the rooted tree structure on A induced by the cover trees:
Definition 24 (Tree structure). For the above sequence of cover trees and insertion ranks, we let a1
be the root of A. For all k > 1, there is a ball B(aj , 2

−Lk+1) ∈ Ck−1 containing ak. We assign such
an aj to be the parent of ak, and we say that ak is its child. A set of instances inserted at the same
rank to the same parent is called a generation of children. The number of generations of children ak
has at time n defines the upper triangular array (Gk,n)k≤n:

Gk,n =
∣∣{Lk′ : ak is the parent of ak′ where k′ ≤ n

}∣∣.
Application to nearest neighbor analysis Let (Ck)k be a sequence of cover trees for the sequence
of indicated instances A = (Xτk)k. Using cover-tree neighbors, we obtain a decomposition of the
event that an indicated instance is a nearest neighbor (Lemma 25). Whereas the earlier Voronoi
decomposition proposed in Equation (6) corresponds to the partition of X induced by the nearest
neighbor map, this one is induced by the cover-tree neighbor map given by Equation (7).
Lemma 25 (Cover tree decomposition). Let (X , ρ) have unit diameter, let X be a process in X , and
let I be an indicator process. For any n, let C be a cover tree for X

[
I<n

]
with a cover-tree neighbor

map c. Assume that Xn /∈ X[I<n] is not equal to one of the indicated instances. Then:{
X̃n ∈ X

[
I<n

]}
⊂

⋃
B(a,r)∈C

{
Xn is r/2-separated from X<n and c(Xn) = B(a, r)

}
.

In particular, the event within the union indexed by B = B(a, r) ∈ C is contained in E
2B,r/2
n .

Proof sketch of Theorem 17. Fix N . Let C be a cover tree for X[I<N ]. A purely metric bound is:
N∑

n=1

1

{
X̃n ∈ X

[
I<n

]} (i)

≤
N∑

n=1

∑
Br∈C

1
{
E2Br,r/2

n occurs
}

(ii)

≤
∑
Br∈C

∞∑
n=1

1
{
E2Br,r/2

n occurs
} (iii)

≤ 22d · |C|.
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Here, (i) follows from Lemma 25, where Br denotes a ball of radius r in C, (ii) is a larger summation,
and (iii) applies the metric bound Lemma 20 and the fact that X is a d-doubling space.

Of course, this bound is vacuous since the cover tree has infinitely many balls. Instead of paying for
every ball in C via the metric bound, we can decompose C into two pieces: a relatively slow-growing
collection of large balls for which we apply the metric bound, and a collection of dyadic tails with
small combined measure. In particular, we adaptively adjust the tail for each indicated instance
so that the combined tail events always have ν-mass at most δ. As X is uniformly dominated, the
asymptotic rate at which the tail events occur is no more than ε(δ).

The basic idea for choosing the tails is this. First, when an indicated instance is inserted into the
cover tree, we immediately shrink the tail of this new instance by removing O( 1d log

c
δ ) of its largest

balls, where (c, d) are the parameters associated to the upper doubling condition. Secondly, if this
new instance is the first of a new generation of children, we also remove the largest ball from the
tail of its parent’s dyadic cone. We account for the events corresponding to these removed balls via
the packing bound, contributing 22d to the finite bound per removed ball. The indicated instances
appear at a rate asymptotically bounded by γ, so the cumulative packing bound grows at a rate of
O(γ · 22d log c

δ ). Treating c and d as constants, we obtain an overall bound of:

lim sup
N→∞

1

N

N∑
n=1

1

{
X̃n ∈ X

[
I<n

]}
= O

(
γ log

1

δ
+ ε(δ)

)
.

See Figure 3 for a picture. Mathematically, we select the rank Tk,n of the tail of the kth indicated
instance at time n as follows. Let Lk be the insertion rank of the kth indicated instance and let k(n)
be the number of indicated instances that have arrived by time n. Set the rank to:

Tk,n = Lk + 1 +

⌈
1

d
lg

c

δ

⌉
+Gk,k(n). (8)

Lemma E.1 shows that this choice ensures that the combined tail event has ν-mass at most δ.

7 Related work

Nearest neighbor rule The nearest neighbor rule and its generalizations form a fundamental and
well-studied part of non-parametric estimation, where the vast majority of work considers the i.i.d.
setting (Fix and Hodges, 1951; Cover and Hart, 1967; Stone, 1977; Devroye et al., 1994; Cérou
and Guyader, 2006; Chaudhuri and Dasgupta, 2014). Also see the surveys Devroye et al. (2013);
Dasgupta and Kpotufe (2021). Far less is known in the non-i.i.d. setting. For positive results, Holst
and Irle (2001); Ryabko (2006) relax to conditional independence where there may be a distinct
distribution over instances per class; Kulkarni and Posner (1995) study arbitrary processes. Blan-
chard (2022) shows a negative result: in some non-worst-case online settings where other learners
succeed, the nearest neighbor learner may fail. In the batch learning setting, Dasgupta (2012) and
Ben-David and Urner (2014), considered consistency when training and test data distributions differ.

Non-worst-case online learning Our results echo a motif of smoothed analysis (Spielman and
Teng, 2004): worst-case analyses of algorithms yield safeguards by refraining from making difficult-
to-test assumptions, but they can be overly-pessimistic and fail to explain the observed behavior of
algorithms (Roughgarden, 2021). Recently, two independent lines of work have emerged, introduc-
ing new classes of constrained stochastic processes for non-worst-case online learning: smoothed
online learning (Rakhlin et al., 2011; Haghtalab et al., 2020, 2022; Block et al., 2022), and opti-
mistic universal learning (Hanneke et al., 2021; Blanchard and Cosson, 2022; Blanchard, 2022).
We connect the classes in these work through the strictly increasing chain of stochastic processes:

i.i.d. ⊂ smoothed ⊂ uniformly dominated ⊂ ergodically dominated ⊂ C1 ⊂ arbitrary.
To summarize the behavior of the nearest neighbor rule in these settings, (a) we characterize when
the nearest neighbor rule is consistent for arbitrary sequences (Proposition 2); (b) Blanchard and
Cosson (2022) shows that the nearest neighbor process is not universally consistent for the C1-
processes defined by Hanneke (2021); (c) we show, via a new and simple proof, that the original
Cover and Hart (1967) F0-consistency result for i.i.d. processes actually holds for a much larger
class of ergodically dominated processes (Theorem 7); (d) we show universal consistency in up-
per doubling spaces for uniformly dominated processes (Theorem 12); and (e) we prove rates of
convergence for smoothed processes in doubling length spaces (Theorem F.2).
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A Proofs for Section 2

Proposition 2 (Non-convergence in the worst-case). Let (X , ρ) be a totally bounded metric space.
Given η : X → Y , there is a sequence of instances (Xn)n on which the nearest neighbor rule is not
online consistent on η if and only if there is no positive separation between classes:

inf
η(x)̸=η(x′)

ρ(x, x′) = 0.

Proof. Suppose that there is a positive separation between classes, so that marginη(x) > c > 0 for
all x ∈ X . By Lemma 10, the collection of open balls B(x, c/3) for all x ∈ X forms a cover of
X by mutually labeling sets. Because X is totally bounded, there is a finite subcover of X by these
mutually labeling balls. By Lemma 9, each of these sets admits at most one mistake, so the nearest
neighbor rule makes at most finitely many mistakes, achieving online consistency.

On the other hand, suppose the class are not positively separated. We claim that there is a sequence
of pairs (X2n+1, X2n+2) where a nearest neighbor of X2n+2 has a different label:

η(X2n+2) ̸= η(X̃2n+2).

On this sequence X, the nearest neighbor rule makes a mistake at every even time step, so that:

lim inf
N→∞

1

N

N∑
n=1

1{η(Xn) ̸= η(X̃n)} ≥ 1

2
.

It fails to be online consistent on (X, η).
To prove the claim for a fixed n. First, define the minimal non-zero interpoint distance in X≤2n:

r = min
{
ρ(z, z′) : z ̸= z′ and z, z′ ∈ X≤2n

}
.

Let x, x′ ∈ X have different labels and ρ(x, x′) < r/3. There are two cases:

• The points x and x′ have distinct nearest neighbors x̃ and x̃′ in X≤2n. Then, the triangle
inequality shows that:

ρ(x̃, x) + ρ(x, x′) + ρ(x′, x̃′) ≥ ρ(x̃, x̃′) ≥ r.

Since ρ(x, x′) < r/3, we obtain that:

ρ(x, x̃) + ρ(x′, x̃′)

2
> r/3.

This implies one of ρ(x, x̃) or ρ(x′, x̃′) is strictly larger than r/3. Without loss of generality,
let ρ(x′, x̃′) > r/3. Then, set X2n+1 = x and X2n+2 = x′. In this case, X2n+2 has the
unique nearest neighbor X2n+1, which has a different label.

• The points x and x′ have the same nearest neighbor z in Z. Then, by exchanging x and x′

if necessary, we have that η(z) ̸= η(x′). Set X2n+1 = x and X2n+2 = x′. The nearest
neighbor of X2n+2 is either X2n+1 or z. Both have different label than X2n+2.
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B Proofs for Section 3

Lemma 5. Let X be uniformly dominated by ν at rate ε(δ), and let (Fn)n be its natural filtration.
Let An be an Fn-predictable sequence where lim supn→∞ ν(An) < δ almost surely. Then:

lim sup
N→∞

1

N

N∑
n=1

1
{
Xn ∈ An

}
≤ ε(δ) a.s.

Proof. The following sequence (Zn)n is a martingale-difference sequence:

Zn = 1
{
Xn ∈ An} − Pr

(
Xn ∈ An

∣∣Fn−1

)
.

We obtain:

lim sup
N→∞

1

N

N∑
n=1

1
{
Xn ∈ An

}
≤ lim

N→∞

1

N

N∑
n=1

Zn︸ ︷︷ ︸
(a)

+ lim sup
N→∞

1

N

N∑
n=1

Pr
(
Xn ∈ An

∣∣Fn−1

)
︸ ︷︷ ︸

(b)

,

where (a) converges to zero by the martingale law of large numbers, and (b) is bounded by ε(δ)
because the uniform domination implies that:

lim sup
n→∞

Pr
(
Xn ∈ An

∣∣Fn−1

)
< ε(δ) a.s.

For completeness, we include a version of the strong law of large numbers (SLLN).
Theorem B.1 (Strong law of large numbers for martingales, (Durrett, 2019, Exercise 4.4.11)). Let
(Mn)n≥0 be a martingale and let Zn = Mn −Mn−1 for n > 0. If E[Z2

n] < K < ∞, then:

Mn/n → 0 a.s.
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Figure 2: (Left) A visualization of a mutually-labeling set (orange ball). There are two classes (dark
and light gray) separated by a decision boundary (blue line). The length of the dashed line measures
the margin of a point in the set. The length of the dotted line is bounded above by the diameter of the
set. (Right) An example of a collection of mutually-labeling sets (dark and light blue balls) covering
all but a region of small mass. Since the nearest neighbor rule makes at most one mistake per ball,
eventually all mistakes must come from the white, uncovered region.

C Proofs for Section 4

Lemma 9. Let U be a mutually-labeling set for η. Let X be an arbitrary process. Then:
∞∑

n=1

1
{
Xn ∈ U and η(Xn) ̸= η(X̃n)

}
≤ 1.

Proof. For the sake of contradiction, suppose that there are two times n < m for which the indicated
event occurs. In particular, Xn, Xm ∈ U and a mistake was made on the latter point:

η(Xm) ̸= η(X̃m).

As both are contained in U , we have:

ρ(Xm, X̃m) ≤ ρ(Xm, Xn) ≤ diam(U).

On the other hand, the margin of Xm is upper bounded:

marginη(Xm) < ρ(Xm, X̃m).

Together, they contradict the mutually-labeling property of U .

Lemma 10. For any 0 < r < marginη(x)/3, the ball B(x, r) is mutually-labeling for η.

Proof. Let x′ ∈ B(x, r). Since x′ is within the margin of x, they must share the same label. For
any point z from a different class η(z) ̸= η(x), we obtain by the definition of the margin of x:

marginη(x) ≤ ρ(x, z).

Subtract ρ(x, x′) from both sides and apply the triangle inequality ρ(x, z)− ρ(x, x′) ≤ ρ(x′, z):

marginη(x)− r/3 ≤ ρ(x′, z).

Finally, taking infimum over all points z in other classes implies:

2 ·marginη(x)/3 < marginη(x
′).

On the other hand, the diameter of the ball B(x, r) is at most 2r < 2 ·marginη(x)/3. Combining
this with the above proves that B(x, r) is mutually labeling.
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D Proofs for Section 5

Proposition 13 (F0 is dense in L1). Let (X , ρ, ν) be a metric measure spaces where ρ is doubling
and ν is a finite Borel measure. Then, the set F0 is dense in L1(X , ν).

The proof of this follows the standard approach: for any η ∈ L1(X , ν), we can construct a countable
partition of almost all of X such that η overwhelmingly assigns each partition the same label, by
which we mean up to a δ-fraction of that partition. The existence of such a partition requires a
version of the Lebesgue differentiation theorem. The theorem in basic settings applies to doubling
metric measure spaces (e.g. Heinonen (2001)), in which all balls satisfy the doubling property:

ν
(
B(x, 2r)

)
≤ Cν

(
B(x, r)

)
.

As our setting only assumes a doubling metric space with a finite Borel measure (not necessarily a
doubling measure), this property is not guaranteed to hold. However, Hytönen (2010) shows that
there are still a plethora of balls that satisfy such a property, which is defined as:

Definition D.1 (Doubling ball, Hytönen (2010)). Let (X , ρ, ν) be a metric measure space. We say
that a ball B(x, r) in X is (α, β)-doubling for some α, β > 1 whenever:

ν
(
B(x, αr)

)
≤ βν

(
B(x, r)

)
.

To prove that F0 is dense in L1, we apply a version of the Lebesgue differentiation theorem re-
stricted to (5, β)-doubling balls in a space (Theorem D.2). This is followed by a corresponding
Vitali covering theorem for such balls (Theorem D.3). With these ingredients, the proof is routine:

Proof. Let η ∈ L1(X , ν) and fix δ > 0. We show that we can construct a function η′ ∈ F0 with
negligible boundary such that ∥η − η′∥L1(X ,ν) < δ.

To do so, we make use of a version of the Lebesgue differentiation theorem for doubling spaces with
finite Borel measures, Theorem D.2. It states almost every x ∈ X has a positive sequence rn ↓ 0
such that the following Lebesgue differentiation condition is satisfied:

lim
rn↓0

1

ν
(
B(x, rn)

) ∫
B(x,rn)

1
{
η(x) ̸= η(z)

}
ν(dz) = 0,

and where all balls B(x, rn) are (5, β)-doubling. Let’s denote by Leb(η) the set of points satisfying
this Lebesgue condition. In this case, for each x ∈ Leb(η), we can choose a ball B(x, rx) that is
(5, β)-doubling and whose labels overwhelming agree with η(x):

1

ν
(
B(x, rx)

) ∫
B(x,rx)

1
{
η(x) ̸= η(z)

}
ν(dz) < δ.

By Theorem D.3, which is a version of the Vitali covering lemma for collections of (5, β)-doubling
balls, there is a countable disjoint subfamily of balls C ⊂ {B(x, rx) : x ∈ Leb(η)} that covers
almost all of X . Enumerate the balls in C by B(xi, ri), and define the function:

η′ =

∞∑
i=1

η(xi) · 1B(xi,ri).

By the dominated convergence theorem, we have that ∥η − η′∥L1(X ,ν) < δ. Furthermore, points in
the balls B(xi, ri) are not boundary points; η′ has negligible boundary.

Theorem D.2 (Lebesgue differentiation theorem, Corollary 3.6, Hytönen (2010)). Suppose that
(X , ρ, ν) is a metric measure space where ρ is a doubling metric and ν is a finite Borel measure.
There exists β > 1 such that the following holds. Let η ∈ L1(X , ν) be bounded. For ν-almost every
x ∈ X , there exists a positive sequence rn ↓ 0 such that:

η(x) = lim
rn↓0

1

ν
(
B(x, rn)

) ∫
B(x,rn)

ηdν,

and the balls B(x, rn) are (5, β)-doubling.
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Theorem D.3 (Vitali covering theorem, Theorem 1.6, Heinonen (2001)). Let (X , ρ, ν) be a doubling
metric space with a finite measure. Let β > 1. Let A ⊂ X be any set and let F be any family of
balls such that for each x ∈ A, there exists some sequence rn ↓ 0 where:

B(x, rn) ∈ F and B(x, rn) is (5, β)-doubling.

Then, there is a countable disjoint subfamily of F that covers ν-almost all of A.

This is a slightly more general version of the Vitali covering theorem than given by Heinonen (2001),
although it is implied by the proof given there. In that proof, the sequence of (5, β)-doubling balls
was deduced from a stronger condition; here, we directly assume its existence.

Lemma D.4. Let (X , ρ, ν) be a metric measure space where ν is a finite Borel measure. Suppose
that X is a process that is uniformly dominated by ν at rate ε(δ). For any ε > 0, there exists a region
X ′ ⊂ X with bounded diameter such that:

lim sup
N→∞

1

N

N∑
n=1

1
{
Xn /∈ X ′ or X̃n /∈ X ′} < ε a.s.

Proof. Fix 0 < ε < 1. Let δ > 0 be sufficiently small so that ε(δ) < ε. Let x ∈ X . For any positive
sequence rn ↑ ∞, the balls converge B(x, rn) ↑ X . As ν is finite, by the continuity of measure,
there is sufficiently large rn such that ν(B) > 1− δ, where B = B(x, rn). Let X ′ = 3B.

Suppose that τ = min{n : Xn ∈ B} is the first time that Xn hits the ball B. By Lemma 10, the ball
B has the mutually-labeling property for the function 13B . Thus, for n > τ , whenever the nearest
neighbor falls outside of 3B, this implies that Xn falls outside of B. It follows that the chain holds:

∀n > τ,
{
X̃n /∈ 3B

}
⊂
{
Xn /∈ B

}
.

And as we also have {Xn /∈ 3B} ⊂ {Xn /∈ B}, the bound follows:

N∑
n=1

1
{
Xn /∈ X ′ or X̃n /∈ X ′} ≤ (τ ∧N) +

N∑
n=τ+1

1
{
Xn /∈ B

}
.

The stopping time τ is almost surely finite. The Borel-Cantelli lemma shows that τ is almost surely
eventually bounded above by some n ∈ N, since the following sum converges:

∞∑
n=1

Pr
(
τ ≥ n

)
=

∞∑
n=1

Pr
(
X<n ∩B = ∅

)
≤

∞∑
n=1

(1− ε)n−1 =
1

ε
.

Thus, the asymptotic rate of X or X̃ escaping X ′ is bounded by the rate at which X avoids B. By
Lemma 5, this is at most ε.

Theorem 14 (Ergodic continuity of nearest neighbor processes). Let (X , ρ, ν) be a upper doubling
space with bounded diameter. Suppose that a process X is uniformly dominated by ν at a rate ε(δ).
There exists constants c1, c2 > 0 such that for any measurable set A ⊂ X with ν(A) < δ0,

lim sup
N→∞

1

N

N∑
n=1

1
{
X̃n ∈ A

}
< inf

δ>0

{(
c1 + c2 log

1

δ

)
· ε(δ0) + ε(δ)

}
a.s.

Proof of Theorem 14. Fix any measurable set A ⊂ X where ν(A) < δ0. Define the indicator
process I by In = 1{Xn ∈ A}. Lemma 5 implies that I is asymptotically ε(δ0)-rate-limited. Then,
Theorem 17 immediately implies that there are constants c1, c2 > 0 such that:

lim sup
N→∞

1

N

N∑
n=1

1
{
X̃n ∈ A

}
< ε(δ0) ·

(
c1 + c2 log

1

δ

)
+ ε(δ) a.s.

Optimizing the bound implies the result.
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E Proofs for Section 6

Theorem 17 (Long-term influence bound). Let (X , ρ, ν) be a bounded, upper doubling space. There
are constants c1, c2 > 0 so that the following holds. Let X be uniformly dominated at rate ε(δ) and
let I be an indicator process adapted to X asymptotically rate-limited by γ > 0. For any δ > 0, the
rate that the indicated instances X

[
I<n

]
contain a nearest neighbor X̃n is at most:

lim sup
N→∞

1

N

N∑
n=1

1

{
X̃n ∈ X

[
I<n

]}
< γ ·

(
c1 + c2 log

1

δ

)
+ ε(δ) a.s.

Proof of Theorem 17. By rescaling, we assume without loss of generality that X has unit diameter.
Recall from Definition 15 that given an indicator process I, we defined k(n) to be the counter for the
number of indicated instances up through time n, and τk to be the time of the kth indicated instance.
In particular, we have by assumption that lim sup

n→∞
k(n)/n < γ almost surely.

Let (Ck)k be a chain of sequentially-constructed cover trees associated to the sequence of indicated
instances A = (Xτk)k. Let Lk be the insertion rank of the kth indicated instance Xτk . Recall that
this means that Ck is constructed by taking a union of Ck−1 with the dyadic cone centered at Xτk of
rank Lk. For the kth indicated instance and for all time n ≥ τk, define the tail rank Tk,n to:

Tk,n = Lk + 1 +

⌈
1

d
lg

c

δ

⌉
+Gk,k(n), (8)

where (c, d) are parameters associated to the upper doubling condition, and Gk,k(n) is the number
of generations of children it has by time n. Let’s define the δ-tail of the cover tree at time n to be
the union of the rank-(Tk,n + 1) tails of Xτk and let An be the union of the doubled balls:

Tn =

k(n)⋃
k=1

cone
(
Xτk ;Tk,n + 1

)
and An =

⋃
B∈Tn

2B.

By Lemma E.1, the mass of the tail is ν(An) < δ. We now apply Lemma 25 to bound the number
of times an indicated instance is a nearest neighbor. To do so, we need that Xn is almost never
contained in X[I<n]. This follows from the upper doubling condition, which implies that singleton
sets have zero mass. By uniform domination, Xn is almost surely never equal to a previous instance.
And so, Lemma 25 implies that:⋃

Br∈Tn−1

E2Br,r/2
n ⊂

{
Xn ∈ An−1

}
a.s.,

and that almost surely:
N∑

n=1

1

{
X̃n ∈ X

[
I<n

]}
≤

N∑
n=1

∑
Br∈Ck(n−1)\Tn−1

1
{
E2Br,r/2

n occurs
}

︸ ︷︷ ︸
(a)

+

N∑
n=1

1
{
Xn ∈ An−1

}
︸ ︷︷ ︸

(b)

.

We bound (a) and (b) separately:

(a) The first term is bounded by Lemma 20:

(a) ≤
∑

Br∈Ck(N−1)\TN−1

∞∑
n=1

1
{
E2Br,r/2

n occurs
}
≤ 22d ·

∣∣Ck(N) \ TN
∣∣.

The number of balls in Ck(N)\TN can be computed by counting for each indicated instance
the number of balls not in its (Tk,N + 1)-tail:

k(N)∑
k=1

(Tk,N + 1)− Lk = k(N) ·
(
2 +

⌈
1

d
lg

c

δ

⌉)
+

k(N)∑
k=1

Gk,k(N)

≤ k(N) ·
(
2 +

⌈
1

d
lg

c

δ

⌉)
+ k(N),
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Figure 3: The left, middle, and right figures shows the cover trees for the first three indicated in-
stance (Xτ1 , Xτ2 , Xτ3), along with their metric and measure bound trade offs. Each concentric disk
corresponds to a ball in the cover tree, and the orange disk corresponds to a tail for an indicated
instance. The tails are chosen so that the ν-mass of the orange region remains bounded by δ.

where the last inequality holds because the total number of generations of children is no
more than the number of nodes in the tree. As the indicator process is asymptotically
rate-limited by γ, we obtain:

lim sup
N→∞

1

N

N∑
n=1

∑
Br∈Ck(n−1)\Tn−1

1
{
EBr,r/2

n occurs
}
< γ · 22d ·

(
3 +

⌈
1

d
lg

c

δ

⌉)
a.s.

(b) Since the mass of the tail is bounded ν(An) < δ, the second term can be asymptotically
controlled on average by Lemma 5,

lim sup
N→∞

1

N

N∑
n=1

1
{
Xn ∈ An−1

}
≤ ε(δ) a.s.

Summing these bounds and choosing c1 = 22d
(
3 + 1

d lg c
)

and c2 = 22d

d completes the proof.

Lemma E.1 (Cover tree δ-tail). Let (X , ρ, ν) be a upper doubling metric space with unit diameter.
Let (Ck)k be a chain of cover trees for the sequence A = (ak)k and let (Lk)k be its sequence of
insertion ranks. Define the array of tail ranks (Tk,n)k≤n and tail sets (An)n,

Tk,n = Lk + 1 +

⌈
1

d
lg

c

δ

⌉
+Gk,n and An =

n⋃
k=1

B
(
ak, 2

−Tk,n
)
,

where d is the doubling dimension and c is the upper doubling constant in Definition 11. For all n,
the mass of the tail is bounded ν(An) < δ.

Proof. Fix n and let S ⊂ A≤n a generation of children with rank L. This set of instances along with
their parent forms a 2−L packing of a 2−L+1 ball. Therefore, |S| ≤ 2d − 1 since X is doubling.

We extend S to include all its descendants: let S be the subset in A≤n that contains S and has the
property that if x′ is a child of x ∈ S, then x′ ∈ S. Let the tail centered at S be the following union:

AS,n =
⋃

ak∈S
B
(
ak, 2

−Tk,n
)
.

In particular, when S = {a1}, then L = 0 and S = {a1, . . . , an}. It suffices to show:

ν(AS,n) ≤ δ · 2−dL.

We proceed by induction on the rank L in decreasing order.
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• Base case: let L be the maximal rank of any instance in A≤n and let S be any generation
of children with maximal rank. These instances have no further descendants, so S = S.
For each ak ∈ S, we also have Gk,n = 0. By a union bound:

ν(AS,n) ≤
∑
ak∈S

c2−dTk,n ≤ δ · 2−dL,

where the first inequality uses the measure condition of upper doubling spaces, and the
second inequality follows from our choice of Tk,n and that |S| < 2d.

• Inductive step: suppose that the claim holds for all generations with rank ℓ > L. Let S be
any generation with rank L. For each ak ∈ S, let Gk,n be the collection of its generations
of children, which all have rank strictly greater than L. When S′ ∈ Gk,n is a generation, let
S ′ extend S′ with its descendants and L(S′) be the rank of S′. Then:

AS,n =
⋃

ak∈S

B(ak, 2
−Tn,k) ∪

⋃
S′∈Gk,n

AS′,n

 .

By the inductive hypothesis, we have:

ν(AS,n)
(i)

≤
∑
ak∈S

δ · 2−d(1+Lk+Gk,n) +
∑

S′∈Gk,n

δ · 2−dL(S′)


(ii)

≤
∑
ak∈S

∑
ℓ>L

δ · 2−dℓ (iii)
=

∑
ak∈S

δ · 2
−d(L+1)

1− 2−d

(iv)

≤ δ · 2−dL,

where (i) follows by union bound, (ii) by the inductive hypothesis, (iii) by the geometric
series formula, and (iv) by the upper bound that |S| < 2d − 1.

Lemma 20 (Packing bound). Let (X , ρ) be a metric space, U ⊂ X be a subset, and r > 0. For any
process X, the number of (U, r)-separated events is bounded by the r-packing number of U ,

∞∑
n=1

1
{
EU,r

n occurs
}
≤ Pr(U).

Proof. Let Z ⊂ X be the collection of instances Xn ∈ U with nearest neighbor distance at least r:

Z =
{
Xn : ρ(Xn, X̃n) ≥ r}.

Fix n such that n ∈ Z. For all Xm ∈ Z where m < n, we have:

ρ(Xn, Xm) ≥ ρ(Xn, X̃n) ≥ r.

For all Xm ∈ Z where m > n, we also have:

ρ(Xn, Xm) ≥ ρ(Xm, X̃m) ≥ r.

Thus, Z is an r-packing of the set U , and so |Z| ≤ Pr(U).

Lemma 25 (Cover tree decomposition). Let (X , ρ) have unit diameter, let X be a process in X , and
let I be an indicator process. For any n, let C be a cover tree for X

[
I<n

]
with a cover-tree neighbor

map c. Assume that Xn /∈ X[I<n] is not equal to one of the indicated instances. Then:{
X̃n ∈ X

[
I<n

]}
⊂

⋃
B(a,r)∈C

{
Xn is r/2-separated from X<n and c(Xn) = B(a, r)

}
.

In particular, the event within the union indexed by B = B(a, r) ∈ C is contained in E
2B,r/2
n .

Proof. Let ck(Xn) = Br be an r-ball. Then, by Equation (7), the definition of a cover-tree neighbor,
we have that Xn is r/2-separated from X[I<n]. When the indicated instances contain a nearest
neighbor, then Xn is also r/2-separated from X<n. By the other condition of a cover-tree neighbor,
we have that Xn ∈ 2Br. Together, this implies the (2Br, r/2)-separated event.

20



F Rates of convergence for smoothed processes

In this section, we show that our proof techniques can be extended to obtain rates of convergence for
uniformly dominated processes. Recall that our basic strategy in Section 4 was to decompose X into
two pieces: (i) a region that is a finite union of mutually-labeling sets and (ii) a remainder Aδ with
small mass ν(Aδ) < δ. When η ∈ F0 has negligible boundary, then δ can be taken to be arbitrarily
small: this is possible because points that cannot be covered by mutually-labeling sets are boundary
points, which have measure zero. We can adapt this idea to yield rates by quantifying the number of
mutually-labeling sets required to cover all but a region of δ-mass. To this end, we define:
Definition F.1 (Mutually-labeling covering number). Let V ⊂ X . The mutually-labeling covering
number NML,η(V ) for η is the size of a minimal covering of V by mutually-labeling sets of η.

Then, an expected mistake bound on a process X that is uniformly dominated at a rate ε(δ) is
obtained by separately counting mistakes on V and V c, where we bound mistakes (i) on V by its
mutually-labeling covering number and (ii) on V c by its ν-mass:

E

[
N∑

n=1

1
{
η(Xn) ̸= η(X̃n)

}]
≤ min

{
N , inf

V⊂X
NML,η(V ) +N · ε

(
ν(V c)

)}
.

By a standard application of Azuma-Hoeffding’s, we can convert this into a high-probability bound:

Theorem F.2 (Convergence rate). Let (X , ρ, ν) be a metric measure space with separable metric ρ
and finite Borel measure ν. Let η be measurable and let X be uniformly dominated by ν at rate ε(δ).
Fix p > 0. With probability at least 1− p, the following holds simultaneously for all N ∈ N :

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
≤ min

{
N , inf

V⊂X
NML,η(V ) +N · ε

(
ν(V c)

)
+

√
2N log

2N

p

}
.

Of course, this bound could be vacuous, for example if every point of η is a boundary point. In the
following, we restrict ourselves to a setting with stronger stochastic and geometric assumptions. This
allows us to provide quantitative bounds on the two terms NML,η(V ) and ε(ν(V )) in Theorem F.2.
For this stronger setting, we obtain a convergence rate Theorem F.5 by balancing these two terms.

F.1 Convergence rate for smoothed processes in length metric spaces

Here, we consider a class of uniformly dominated processes with a stronger condition that is often
studied in smoothed online learning. They satisfy Lipschitz continuity with a rate ε(δ) = σ−1 · δ:
Definition F.3 (Smoothed process). Let σ > 0. A process X is σ-smoothed with respect to ν if:

Pr
(
Xn ∈ A

∣∣X<n

)
≤ σ−1 · ν(A), ∀A ⊂ X .

We also work in length spaces (Definition G.8 or Gromov et al. (1999)), in which distances be-
tween points are given by the infimum of lengths over continuous paths between those points. The
appealing property of length spaces is that the margins of points are equal to the distance to the
boundary:
Lemma F.4 (Margin in length spaces). Let (X , ρ) be a length space. Let η be a function. Then,

marginη(x) = ρ(x, ∂ηX ).

In this case, it is natural to restrict V ⊂ X in Theorem F.2 to the sets of the form:

Vr :=
{
x ∈ X : marginη(x) ≥ r

}
.

These are the set of points whose margin is at least r. Then, we need to control the mutual-labeling
covering number of Vr and the ν-masses of V c

r . When X is a length space, these can be bounded
in terms of the geometry of the boundary ∂X . The reason is that in length spaces, points with small
margins are also close to boundary points: here, V c

r precisely coincides with the r-expansion ∂X r

of the boundary. And when X is a doubling space, we can quantify the bounds in terms of the
box-counting dimension b(∂ηX ) and the Minkowski content m(∂ηX ) of the boundary.
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In particular, Proposition G.9 shows that for small r,

NML

(
Vr

)
≲ r−b and ν

(
V c
r

)
≲ m · r, (9)

where the hand-waving inequality can be made rigorous by replacing b = b+o(1) and m = m+o(1).
For example, this yields convergence rates on smoothed processes, by plugging Equation (9) into
Theorem F.2. For simplicity, assume that b > 1 so that the O((2N logN)1/2) term is lower-order.
After optimizing r, we obtain the following result:

# mistakes at time N ≲

(
mN

σ

)b/(b+1)

.

Theorem F.5 (Convergence rate for smoothed processes). Let (X , ρ, ν) be a bounded length space
with a doubling metric and finite Borel measure. Let η ∈ F0. Let X be a σ-smoothed process.
Suppose that the boundary ∂ηX has box-counting dimension b > 1 and Minkowski content m. For
any choice of c1, c2, p > 0, there exists constants C0, C1 > 0 such that with probability at least
1− p, the following holds simultaneously for all N ∈ N:

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
≤ C0 + C1

(
(m+ c2)N

σ

)(b+c1)/(b+1)

.

G Proofs for Appendix F

Proof of Lemma F.4 To show that mc(x) = ρ(x, ∂X ), we prove left and right inequalities.

First, the margin is upper bounded by mc(x) ≤ ρ(x, ∂X ). To see this, fix δ > 0. By the definition
of the distance between x and the set ∂X , there is a boundary point z ∈ ∂X such that:

ρ(x, z) < ρ(x, ∂X ) +
δ

2
.

And as boundary points are arbitrarily close to at least two classes, there exists x′ ∈ X close to z:

ρ(z, x′) <
δ

2
,

while also belonging to a different class than x. By the definition of mc(x) and by triangle inequality,
we obtain that for all δ > 0, there exists some x′ satisfying:

mc(x) ≤ ρ(x, x′) < ρ(x, ∂X ) + δ.

Letting δ go to zero yields the first inequality.

For the other, we claim that if γ : [0, 1] → X is a continuous path from x to x′ with c(x) ̸= c(x′),
then there exists a point γ(t) contained in ∂X . If the claim is true, then the other inequality holds:

ρ(x, ∂X )
(i)

≤ inf
c(x)̸=c(x′)

inf
γ

ℓ(γ)
(ii)
= inf

c(x) ̸=c(x′)
ρ(x, x′)

(iii)
= mc(x),

where (i) the infimum above is taken over all continuous paths γ from x to x′, (ii) applies the
definition of a length space, and (iii) applies the definition of the margin.

To prove the claim, let t be the first time a point on the path has a different label than x. Formally,

t := arg inf
s∈[0,1]

{
c
(
γ(s)

)
̸= c(x)

}
.

To show that γ(t) ∈ ∂X , we need to exhibit a point γ(s) that is δ-close to γ(t) with a different label,
given any δ > 0. Indeed, such a s exists by the definition of t and the continuity of γ.

To obtain bounds on the mutually-labeling covering number NML(Vr), we need to introduce the
notion of the box-counting dimension a set A ⊂ X and the doubling dimension of a metric space X .
Let us first recall the following definitions and results from analysis and measure theory.
Definition G.1 (Covering number). Given r > 0 and A ⊂ X , the r-covering number Nr(A) of A
is size of a minimal covering of A by balls with radius r.
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Definition G.2 (Box-counting dimension). The (upper) box-counting dimension of A ⊂ X is:

b(A) := lim sup
r→0

logNr(A)

log 1/r
.

The box-counting dimension implies a bound on the covering number Nr(A) of r−b(A)+o(1). The
following lemma is a straightforward conversion of the asymptotic limit into a quantitative bound.

Lemma G.3 (Box-counting upper bound on Nr). Let X be bounded with diameter R. Let A ⊂ X
have box-counting dimension b(A). Then, for all c > 0, there exists a constant C > 0 such that:

Nr(A) < Cr−(b(A)+c).

Proof. Fix c > 0. By the definition of b(A), there exists r0 > 0 such that whenever 0 < r < r0,

logNr(A)

log 1/r
< b(A) + c.

Because Nr(A) is non-increasing in r, we can extend the bound to all 0 < r < R,

logNr(A)

log 1/(r ∧ r0)
< b(A) + c,

where r ∧ r0 := min{r, r0}. In fact, we have min{r, r0} > r · r0/R, and so:

Nr(A) <
(r0
R

· r
)−(b(A)+c)

.

To finish the proof, it suffices to let C = (r0/R)−(b(A)+c).

Lemma G.4 (Lemma 2.3, Hytönen (2010)). Let (X , ρ) be doubling with doubling dimension d.
There exists a constant C > 0 such that for all balls B(x, r), the covering number is bounded:

Nr/2

(
B(x, r)

)
≤ C · 2d.

To obtain bounds on the mass ν(V c
r ), we need to introduce the Minkowski content of a set A ⊂ X .

First, recall that the r-expansion of a set A fattens the set to all points of distance within r of A:

Definition G.5 (r-expansion). Let A ⊂ X be a set and r > 0. The r-expansion Ar of A is:

Ar :=
⋃
x∈A

B(x, r).

The Minkowski content of A is the rate at which an infinitesimal fattening of A increases its mass:

Definition G.6 (Minkowski content). Let (upper) Minkowski content of A ⊂ X is:

m(A) := lim sup
r→0

ν(Ar)− ν(A)

r
.

The following lemma bounding the covering number of the r-expansion of a set in terms of the
doubling dimension will also be helpful:

Lemma G.7 (Covering the r-expansion of a set). Let (X , ρ) have finite doubling dimension d. There
exists a constant C > 0 such that for all A ⊂ X , we have:

Nr(A
r) ≤ C2dNr(A).

Proof. Let A be covered by the balls B(x1, r), . . . , B(xn, r) where n = Nr(A). Then, by the tri-
angle inequality, the r-expansion Ar is covered by the r-expanded balls, B(x1, 2r), . . . , B(xn, 2r).
Now, by Lemma G.4, each expanded ball B(xi, 2r) can be covered by C2d balls with radius r. It
follows that covering Ar needs at most C2dn balls with radius r.
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G.1 Bounding geometric quantities of ∂ηX

Definition G.8 (Length space). A metric space (X , ρ) is a length space if for all x, x′ ∈ X ,

ρ(x, x′) = inf
γ

ℓ(γ),

where γ : [0, 1] → X include all continuous paths from x to x′ and ℓ(γ) is the length of the path γ.
Proposition G.9 (Geometric quantities of ∂X ). Let (X , ρ, ν) be a bounded length space with finite
doubling dimension and Borel measure. Let η ∈ F0. Then, for any c1, c2 > 0, there is a constant
C > 0 and r0 > 0 so that for all 0 < r < r0,

NML,η

(
Vr

)
≤ Cr−(b(∂ηX )+c1) and ν

(
V c
r

)
≤
(
m(∂ηX ) + c2

)
· r.

Proof of Proposition G.9 Recall that Vr and ∂X are defined in terms of the margin:

Vr := {x ∈ X : marginη(x) ≥ r} and ∂X = {x ∈ X : marginη(x) = 0}.
While the complement V c

r always contains the expansion ∂ηX r, generally V c
r can be much larger.

But when X is a length space, equality holds:
Lemma G.10. Let (X , ρ) be a length space. Then, for all r > 0:

V c
r = ∂ηX r.

Proof. Lemma F.4 shows that when X is a length space, marginη(x) = ρ(x, ∂ηX ). Thus:

x ∈ V c
r ⇐⇒ marginη(x) < r ⇐⇒ ρ(x, ∂X ) < r ⇐⇒ x ∈ ∂X r.

The question of bounding NML,η(Vr) and ν(V c
r ) becomes that of NML,η(X \ ∂ηX r) and ν(∂ηX r).

Proposition G.11 (Upper bound on NML). Let X be a bounded length space with finite doubling
dimension Γ and diameter R. For η ∈ F0, let b be the box-counting dimension of ∂ηX . Then, for
any c > 0, there exists a constant C > 0 such that for all r > 0:

NML,η(X \ ∂ηX r) ≤ CR4dr−(b+c).

Proof. We can write X \ ∂ηX r as a union of layers of the form Lk := ∂X 2k+1r \ ∂X 2kr,

X \ X r =

⌈lgR/r⌉⋃
k=0

Lk.

Then, we can upper bound the mutually-labeling covering number by the sum:

NML,η

(
X \ X r

)
≤

⌈lgR/r⌉∑
k=0

NML,η(Lk). (10)

To upper bound NML(Lk), first note that by Lemma G.10,

Lk ⊂ X \ ∂ηX 2kr = V2kr.

Thus, the margin of any point x ∈ Lk is at least 2kr. By Lemma 10, the ball B(x, 2kr/3) is a
mutually-labeling set, so that NML(Lk) ≤ N2kr/3(Lk). In fact, we obtain the following:

NML(Lk) ≤ N2kr/3(Lk)
(i)

≤ N2k−2r(Lk)

(ii)

≤ N2k−2r(∂X 2k+1r)

(iii)

≤ C12
3dN2k+1r(∂X 2k+1r)

(iv)

≤ C22
4dN2k+1r(∂X )

(v)

≤ C32
4d(2k+1r)−(b+c) (11)
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where (i) holds because the radius 2k−2r is less than 2kr/3, (ii) follows because ∂X 2k+1r contains
Lk and so has larger covering number, (iii) makes use of the definition doubling dimension three
times to convert the 2k−2-covering number to a 2k+1-covering number, (iv) applies Lemma G.7 to
convert the covering number of the expansion to that of the boundary set, and (v) upper bounds the
covering number in terms of the box-dimension of ∂X by Lemma G.3.

By combining Equations (10) and (11), we obtain:

NML

(
X \ X r

)
≤ C32

4dr−(b+c)
∞∑
k=0

2−(b+c)(k+1),

where the geometric series converges to 2−(b+c). We finish by relabeling the constants.

This shows that N (Vr) = r−(d(∂X )+o(1)). Next we show that ν(V c
r ) =

(
m(∂X ) + o(1)

)
· r. This

is immediate from the definition of the Minkowski content m(∂X ).
Proposition G.12 (Upper bound on ν). Let (X , ρ, ν) be a metric Borel space. Let η ∈ F0 whose
boundary ∂ηX has Minkowski content m. Then, for any c > 0, there exists some r0 such that for all
0 < r < r0:

ν(∂X r) < (m+ c) · r.

Proof. Since the boundary has measure zero, the definition of Minkowski content states that there
exists r0 > 0 so that for all 0 < r < r0,

ν(∂X r)

r
< m(∂X ) + c.

The result follows by multiplying through by r.

Together, Propositions G.11 and G.12 prove Proposition G.9. ■

G.2 Proofs of convergence rates

Proof of Theorem F.2 Fix V ⊂ X . Let X be uniformly dominated. Denote by An ⊂ X region
on which the nearest neighbor rule makes a mistake at time n. We can count the total number of
mistakes separately on V and V c:

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
:=

N∑
n=1

1{Xn ∈ An}

=

N∑
n=1

1{Xn ∈ An ∩ V }︸ ︷︷ ︸
mistakes made in V

+

N∑
n=1

1{Xn ∈ An ∩ V c}︸ ︷︷ ︸
mistakes made in V c

.

At most one mistake can be made per mutually-labeling set on V , so the first summation can be
bounded by NML(V ). The second term can be bounded by the number of times Xn hits V c:

1{Xn ∈ An ∩ V c} ≤ 1{Xn ∈ V c}
= 1{Xn ∈ V c} − E[1{Xn ∈ V c}|Fn−1]︸ ︷︷ ︸

martingale difference

+E[1{Xn ∈ V c}|Fn−1]

By Azuma-Hoeffding’s, we have that with probability at least 1− p/2N2:
N∑

n=1

1{Xn ∈ V c} − E[1{Xn ∈ V c}|Fn−1]︸ ︷︷ ︸
martingale difference

≤

√
N log

2N2

p
≤

√
2N log

2N

p
.

Because the process is uniformly dominated, we also have E[1{Xn ∈ V c}|Fn−1] < ε
(
ν(V c)

)
. By

taking a union bound over all N ∈ N, we obtain that with probability at least 1− p,
N∑

n=1

1
{
η(Xn) ̸= η(X̃n)

}
≤ NML(V ) +Nε

(
ν(V c)

)
+

√
2N log

2N

p
.

The result follows from optimizing V , and by noting at most N mistakes can be made in N time. ■
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Proof of Theorem F.5 Given c1, c2 > 0, Proposition G.9 yields C, r0 > 0 so that when 0 < r <
r0,

NML

(
Vr

)
≤ Cr−(b+c1) and ν

(
V c
r

)
≤
(
m+ c2

)
· r.

From Theorem F.2, it follows that with probability at least 1− p, we have for all T :

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
≤ inf

0<r<r0
NML(Vr) +Nε

(
ν(V c

r )
)
+

√
2N log

2N

p

≤ inf
0<r<r0

Cr−(b+c1) +Nσ−1 ·
(
m+ c2

)
· r +

√
2N log

2N

p
,

where r is optimized at:

r∗N =

(
C(b+ c1)σ

T (m+ c2)

)1/(b+c1+1)

,

provided that r∗N < r0. This will eventually hold for sufficiently large N > N0. For N ≤ N0, we
can use the coarser mistake bound N0. Thus, for all N ∈ N:

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
≤ N0 + C1

(
N
(
m+ c2

)
σ

)(b+c1)/(b+c1+1)

+

√
2N log

2N

p
,

where C1 is a constant, defined below.

Because we assumed b > 1, the
√
N logN term is eventually dominated by the N (b+o(1))/(b+1)

term when N > N ′
0 is sufficiently large. We obtain the result by setting C0 as below, and noting

that we can simplify the exponent because (b+ c1)/(b+ c1 + 1) < (b+ c1)/(b+ 1).

• C0 = N0 + 2
√
2N ′

0 log
2N ′

0

p .

• C1 = 2C(b+ c1).

■
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