Active learning for maximum likelihood estimation
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Active learning framework

In active learning, the learner:
» has access to a large pool of unlabelled samples

» can interactively ask for labels
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Maximum likelihood estimation (MLE)

Consider a model class © where each 6 € © corresponds to the model:

p(ylx; 0),

where x is a sample and y is a labelling.
» Given data (X1, Y1), ..., (Xy, Y,), identify the model 6 that most likely generated it.
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Question

Is there an active learning strategy to do MLE?
» If an assumption™ is made, then yes (Chaudhuri et al., 2015).

» l|dealized selection strategy is intractable.
» There is a SDP relaxation that is almost statistically optimal.
SDP infeasible in high dimensions—algorithm in the neural regime? (Ash et al., 2021).

*Assumption: the Fisher information matrix for 6 at any (x, y) depends only on x and 6.
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Formal setting

Notation
» instance space X’
label space Y
family of models p(y|x; ) parametrized over 6 € ©

>

>

» unlabelled pool U = {x1,...,x,}

» label oracle LABEL(x) ~ p(y|x;0*) where 8* € © is unknown
>

loss function ¢(x, y;0) = —log p(y|x; 0)

Problem X

Minimize: 1 ) = E E l ;0
inimize oss(0) XA (D) Yrop(s (X:6°) (x,y;0)

> 0 is the parameter estimated from data obtained through active sampling strategy

» the fixed design or transductive setting: we treat U as the entire distribution
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Fisher information matrix

Definition (Fisher information)
letxe X,ye YV, and € © C R4, The Fisher information matrix is:

I(x,y:0) = Vil(x, y;0).

Assumption

For any x, y, 0, the Fisher information matrix is a function of only x and 0,

I(x,y;0) = L.

» Notation: let IM;Q = XE Lo and Iy = IUnif(U);g.
~p
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Intuition for the Fisher information matrix

Claim (Duchi (2019))

The Taylor expansion is on the order:

1
E [f(x, Y:0" + d6)] ~ constant + tr (L(;QdadeT) .

Yoopy|x0%

» The claim makes use of the identity: E  [Vgl(x, Y;6)] = 0.

Ypr\x;G

» This means that in expectation w.r.t. 6%, the signal for {(x, y; 0) is greatest along the
largest eigendirections of L.p.

Learning p(y|x; 0*) for x will yields information about 8* along certain directions of 6.
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Fisher information bounds error

Lemma (Informal, (Chaudhuri et al., 2015))
Let i be a distribution of U. Let é,([n) be the MLE estimator for 6,

. 1 &
60" = argmin — > (X, Yi; 6),
. 6o m; ( )

1

where X1, ..., X K wand Y; ~ p(y|X;; 0*).Then:

- 1
E loss(HIgm)) - loss(@*)] ~ —tr (I/;é*IU.Q*) .
m k) )

» Read: the error of the estimator learned from samples drawn from p versus the

true distribution Unif(U) is controlled by tr (I;;é*IU;G*).
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Active learning strategy

Iteratively do the following:
» Use an estimate 6; of 6* to construct sampling distribution zi;1,

: —1
P41 <= argmin tr (IM§9tIU;9t> .
1 distribution over U

» Sample batch of unlabelled data points Xi, ..., X5 ~ fi;4+1.

» Query labels Y; ~ p(y|X;; 0%).
» Update estimator 0,1, < MLE ({Xi, Yi}?zl).
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Theoretical guarantee

Theorem (Near-optimal strategy, Chaudhuri et al. (2015))

Under regularity assumptions, there is a polynomial active learning strategy with excess loss:

i(m)y _ oL (1
loss(60'™) — loss(0*) = O <mtr (IM*;Q*IU;9*>> .

where i* is the optimal sampling distribution on U.
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Remaining questions about computation

Though the algorithm in Chaudhuri et al. (2015) is polynomial, it involves solving SDPs
where the dimensionality d corresponds to § € R% Ideally, finding ;1 means solving:

-1
arg min tr ZIX;(;[ Iy, | -
SCU,|S|<B oS

» Since this is infeasible if d is large, this motivates Ash et al. (2021).
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[I. Neural implementation
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Neural networks as the model class

Let @ € R? correspond to the parameters of a neural network.
» Each neural net § computes the conditional distribution p(y|x; ).

» Since d is typically very large, when computing the Fisher information, just
consider the last layer:

Lgo= E V2/x,Y;0).
"= yeplny 0010
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Greedy sample selection

Recall the goal is to find a set S C U minimizing:

-1
(Z IX;H[L> IU;H?] :
xE€S

» In a greedy sample selection process, at iteration n, add the point S, < S,—1 U {x,}

that minimizes: o
i [(Z IM%) IU;G%] :
XTESn

» This function is not submodular, so it is not amenable to a greedy method.

tr

Selection procedure improves empirically if first you greedily oversample 2B points,
then greedily reject the worst B points.
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Batch active learning via information matrices (BAIT)

Algorithm BaiT
(* Batch active learning with neural networks, Ash et al. (2021) %)
Initialize: S a random labeled dataset of size B, 0; < arg miny Eg[¢(x, y; 0)].
1. fort=1,2,...,
do compute Iyp1
initialize My < Is;etL + AId
initialize S «+ @
greedily select points xi, . .., xg by sequentially optimizing:

RN

—1
Xp = arg min tr |:<Ix,9L + Mb,1> IU.GL:| ,
xeU o ot

setting My <— I .ot + Mp—1 and S SU{xy}
query labels for S and save data S < SU S
7. train model on data 6,1 + argmin, Es[{(x, y; 0)]
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Existing state-of-the-art algorithm

Batch active learning by diverse gradient embeddings (BADGE):
» Represent each candidate x € U by g, € R%:

ge = VU(x, yi; 0",

the last-layer gradient obtained if the most likely label y} is observed.
» Select a batch S of samples that has large Gram determinant.

Requires ||g«|| to be large (learning about x is informative).
Requires S to be spread out (the batch is diverse; the x’s give different information).
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Experiments

MNIST, Batch Size 100, MLP SVHN, Batch Size 10, ResNet OML155, Batch Size 100, MLP
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Figure 1: Experiments with MLPs had single hidden ReLu layer of 128
dimensions. Otherwise, a 18-layer ResNet.
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Experiments
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Figure 2: Comparison of BAIT and BADGE for Bayesian linear regression.
Gaussian data is generated on R with spectral decay X;; o< 1/
Orthonormal data is supported only on standard basis, P(x = ¢;) o< 1/

» “BADGE does not exploit the occurrence probabilities, and in fact simply selects the
coordinates in a cyclic fashion. On the other hand, the optimal strategy focuses
effort on the high-probability coordinates, which is captured in the Fisher matrix”
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[1l. Discussion
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Assumption on Fisher information

Assumption

For any x, y, 0, the Fisher information matrix is a function of only x and 0,

I(x7 s 9) - Ix;@-

» What does this assumption mean?
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Generalize linear models

Generalized linear models (GLM) are examples that satisfy the assumption.

» In a GLM, the response variable has exponential family distribution:
p(yln) = exp (0" t(y) — A(m) ),

where ) = 0T x, t is a sufficient statistic, and A is the log-partition function, and:

Vo log p(ylx, 0) = xt(y) — xA'(0" x)
Vi log p(y|x;0) = —xx" A”(6 x)
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