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I. Theory
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Active learning framework

In active learning, the learner:

I has access to a large pool of unlabelled samples

I can interactively ask for labels
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Maximum likelihood estimation (MLE)

Consider a model class Θ where each θ ∈ Θ corresponds to the model:

p(y|x; θ),

where x is a sample and y is a labelling.

I Given data (X1, Y1), . . . , (Xn, Yn), identify the model θ that most likely generated it.
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�estion

Is there an active learning strategy to do MLE?

I If an assumption* is made, then yes (Chaudhuri et al., 2015).

I Idealized selection strategy is intractable.

I There is a SDP relaxation that is almost statistically optimal.

I SDP infeasible in high dimensions—algorithm in the neural regime? (Ash et al., 2021).

*Assumption: the Fisher information matrix for θ at any (x, y) depends only on x and θ.
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Formal se�ing

Notation
I instance space X
I label space Y
I family of models p(y|x; θ) parametrized over θ ∈ Θ

I unlabelled pool U = {x1, . . . , xn}
I label oracle label(x) ∼ p(y|x; θ∗) where θ∗ ∈ Θ is unknown

I loss function `(x, y; θ) = − log p(y|x; θ)

Problem
Minimize: loss(θ̂) = E

X∼Unif(U )
E

Y∼p(y|X ;θ∗)
`(x, y; θ̂)

I θ̂ is the parameter estimated from data obtained through active sampling strategy

I the fixed design or transductive se�ing: we treat U as the entire distribution
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Fisher information matrix

Definition (Fisher information)

Let x ∈ X , y ∈ Y , and θ ∈ Θ ⊂ Rd
. The Fisher information matrix is:

I(x, y; θ) = ∇2
θ`(x, y; θ).

Assumption

For any x, y, θ, the Fisher information matrix is a function of only x and θ,

I(x, y; θ) = Ix;θ.

I Notation: let Iµ;θ = E
X∼µ

Ix;θ and IU ;θ = IUnif(U );θ .
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Intuition for the Fisher information matrix

Claim (Duchi (2019))

The Taylor expansion is on the order:

E
Y∼py|x;θ∗

[`(x, Y ; θ∗ + dθ)] ≈ constant +
1
2
tr
(
Ix;θdθdθ>

)
.

I The claim makes use of the identity: E
Y∼py|x;θ

[∇θ`(x, Y ; θ)] = 0.

I This means that in expectation w.r.t. θ∗, the signal for `(x, y; θ) is greatest along the

largest eigendirections of Ix;θ .

I Learning p(y|x; θ∗) for x will yields information about θ∗ along certain directions of θ.
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Fisher information bounds error

Lemma (Informal, (Chaudhuri et al., 2015))

Let µ be a distribution of U . Let θ̂
(m)
µ be the MLE estimator for θ∗,

θ̂(m)
µ = arg min

θ∈Θ

1
m

m∑
i=1

`(Xi, Yi; θ),

where X1, . . . ,Xm
i.i.d.∼ µ and Yi ∼ p(y|Xi; θ

∗).Then:

E
[
loss(θ̂(m)

µ )− loss(θ∗)
]
∼ 1

m
tr
(
I−1µ;θ∗ IU ;θ∗

)
.

I Read: the error of the estimator learned from samples drawn from µ versus the

true distribution Unif(U ) is controlled by tr
(
I−1µ;θ∗ IU ;θ∗

)
.
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Active learning strategy

Iteratively do the following:

I Use an estimate θt of θ∗ to construct sampling distribution µt+1,

µt+1 ← arg min
µ distribution over U

tr
(
I−1µ;θt

IU ;θt

)
.

I Sample batch of unlabelled data points X1, . . . ,XB ∼ µt+1.

I �ery labels Yi ∼ p(y|Xi; θ
∗).

I Update estimator θt+1 ← MLE
(
{Xi, Yi}Bi=1

)
.

10 / 23



Theoretical guarantee

Theorem (Near-optimal strategy, Chaudhuri et al. (2015))

Under regularity assumptions, there is a polynomial active learning strategy with excess loss:

loss(θ̂(m))− loss(θ∗) = Õ
(

1
m
tr
(
I−1µ∗;θ∗ IU ;θ∗

))
,

where µ∗ is the optimal sampling distribution on U .
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Remaining questions about computation

Though the algorithm in Chaudhuri et al. (2015) is polynomial, it involves solving SDPs

where the dimensionality d corresponds to θ ∈ Rd
. Ideally, finding µt+1 means solving:

arg min
S⊂U ,|S|≤B

tr

[(∑
x∈S

Ix;θt

)−1
IU ;θt

]
.

I Since this is infeasible if d is large, this motivates Ash et al. (2021).
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II. Neural implementation
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Neural networks as the model class

Let θ ∈ Rd
correspond to the parameters of a neural network.

I Each neural net θ computes the conditional distribution p(y|x; θ).

I Since d is typically very large, when computing the Fisher information, just

consider the last layer:

Ix;θL = E
Y∼p(y|x;θ)

∇2
θL`(x, Y ; θ).
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Greedy sample selection

Recall the goal is to find a set S ⊂ U minimizing:

tr

[(∑
x∈S

Ix;θLt

)−1
IU ;θLt

]
.

I In a greedy sample selection process, at iteration n, add the point Sn ← Sn−1 ∪ {xn}
that minimizes:

tr

[(∑
x∈Sn

Ix;θLt

)−1
IU ;θLt

]
.

I This function is not submodular, so it is not amenable to a greedy method.

I Selection procedure improves empirically if first you greedily oversample 2B points,

then greedily reject the worst B points.
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Batch active learning via information matrices (bait)

Algorithm bait

(∗ Batch active learning with neural networks, Ash et al. (2021) ∗)
Initialize: S a random labeled dataset of size B, θ1 ← arg minθ ES[`(x, y; θ)].
1. for t = 1, 2, . . . ,
2. do compute IU ;θLt
3. initialize M0 ← IS;θLt + λId
4. initialize S̃ ← ∅
5. greedily select points x1, . . . , xB by sequentially optimizing:

xb = arg min
x∈U

tr
[(

Ix;θLt
+ Mb−1

)−1
IU ;θLt

]
,

se�ing Mt ← Ixb;θLt + Mb−1 and S̃ ← S̃ ∪ {xb}
6. query labels for S̃ and save data S ← S ∪ S̃
7. train model on data θt+1 ← arg minθ ES[`(x, y; θ)]
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Existing state-of-the-art algorithm

Batch active learning by diverse gradient embeddings (badge):

I Represent each candidate x ∈ U by gx ∈ Rd
:

gx = ∇`(x, y∗x ; θL),

the last-layer gradient obtained if the most likely label y∗x is observed.

I Select a batch S of samples that has large Gram determinant.

I Requires ‖gx‖ to be large (learning about x is informative).

I Requires S to be spread out (the batch is diverse; the x’s give di�erent information).
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Experiments

Figure 1: Experiments with MLPs had single hidden ReLu layer of 128

dimensions. Otherwise, a 18-layer ResNet.
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Experiments

Figure 2: Comparison of bait and badge for Bayesian linear regression.

Gaussian data is generated on R100
with spectral decay Σii ∝ 1/i2.

Orthonormal data is supported only on standard basis, P(x = ei) ∝ 1/i2.

I “badge does not exploit the occurrence probabilities, and in fact simply selects the

coordinates in a cyclic fashion. On the other hand, the optimal strategy focuses

e�ort on the high-probability coordinates, which is captured in the Fisher matrix.”
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III. Discussion
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Assumption on Fisher information

Assumption

For any x, y, θ, the Fisher information matrix is a function of only x and θ,

I(x, y; θ) = Ix;θ.

I What does this assumption mean?
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Generalize linear models

Generalized linear models (GLM) are examples that satisfy the assumption.

I In a GLM, the response variable has exponential family distribution:

p(y|η) = exp
(
η>t(y)− A(η)

)
,

where η = θ>x, t is a su�icient statistic, and A is the log-partition function, and:

∇θ log p(y|x, θ) = xt(y)− xA′(θ>x)

∇2
θ log p(y|x; θ) = −xx>A′′(θ>x)
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