Active learning for maximum likelihood estimation

Theory and neural implementation

Geelon So, agso@eng.ucsd.edu Time series reading group — September 9, 2021

I. Theory

Active learning framework

In active learning, the learner:

- ▶ has access to a large pool of *unlabelled samples*
- ► can interactively ask for labels

Maximum likelihood estimation (MLE)

Consider a model class Θ where each $\theta\in\Theta$ corresponds to the model:

 $p(y|x;\theta),$

where x is a sample and y is a labelling.

• Given data $(X_1, Y_1), \ldots, (X_n, Y_n)$, identify the model θ that most likely generated it.

Question

Is there an active learning strategy to do MLE?

- ▶ If an assumption^{*} is made, then yes (Chaudhuri et al., 2015).
- ► Idealized selection strategy is intractable.
- ▶ There is a SDP relaxation that is almost statistically optimal.
 - > SDP infeasible in high dimensions—algorithm in the neural regime? (Ash et al., 2021).

*Assumption: the Fisher information matrix for θ at any (x, y) depends only on x and θ .

Formal setting

Notation

- ▶ instance space X
- \blacktriangleright label space $\mathcal Y$
- ▶ family of models $p(y|x; \theta)$ parametrized over $\theta \in \Theta$
- unlabelled pool $U = \{x_1, \ldots, x_n\}$
- ▶ label oracle LABEL $(x) \sim p(y|x; \theta^*)$ where $\theta^* \in \Theta$ is unknown
- ► loss function $\ell(x, y; \theta) = -\log p(y|x; \theta)$

Problem

Minimize:

$$loss(\hat{\theta}) = \mathop{\mathbb{E}}_{X \sim \text{Unif}(U)} \mathop{\mathbb{E}}_{Y \sim p(y|X;\theta^*)} \ell(x, y; \hat{\theta})$$

θ̂ is the parameter estimated from data obtained through active sampling strategy
 the *fixed design* or *transductive* setting: we treat U as the entire distribution

Fisher information matrix

Definition (Fisher information)

Let $x \in \mathcal{X}$, $y \in \mathcal{Y}$, and $\theta \in \Theta \subset \mathbb{R}^d$. The **Fisher information matrix** is:

$$I(x, y; \theta) = \nabla^2_{\theta} \ell(x, y; \theta).$$

Assumption

For any x, y, θ , the Fisher information matrix is a function of only x and θ ,

$$I(x, y; \theta) = I_{x;\theta}$$

► Notation: let
$$I_{\mu;\theta} = \underset{X \sim \mu}{\mathbb{E}} I_{X;\theta}$$
 and $I_{U;\theta} = I_{\text{Unif}(U);\theta}$.

Intuition for the Fisher information matrix

Claim (Duchi (2019))

The Taylor expansion is on the order:

$$\mathbb{E}_{Y \sim p_{y|x;\theta^*}} \left[\ell(x, Y; \theta^* + d\theta) \right] \approx \text{constant} + \frac{1}{2} \text{tr} \left(I_{x;\theta} d\theta d\theta^\top \right).$$

- ► The claim makes use of the identity: $\underset{Y \sim p_{y|x;\theta}}{\mathbb{E}} [\nabla_{\theta} \ell(x, Y; \theta)] = 0.$
- ► This means that in expectation w.r.t. θ^* , the signal for $\ell(x, y; \theta)$ is greatest along the largest eigendirections of $I_{x;\theta}$.
 - ► Learning $p(y|x; \theta^*)$ for x will yields information about θ^* along certain directions of θ .

Fisher information bounds error

Lemma (Informal, (Chaudhuri et al., 2015)) Let μ be a distribution of U. Let $\hat{\theta}_{\mu}^{(m)}$ be the MLE estimator for θ^* ,

$$\hat{ heta}_{\mu}^{(m)} = \operatorname*{arg\,min}_{ heta \in \Theta} \; rac{1}{m} \sum_{i=1}^m \ell(X_i, Y_i; heta),$$

where $X_1, \ldots, X_m \stackrel{\text{i.i.d.}}{\sim} \mu$ and $Y_i \sim p(y|X_i; \theta^*)$. Then: $\mathbb{E}\left[\log(\hat{\theta}^{(m)}_{\mu}) - \log(\theta^*)\right] \sim \frac{1}{m} \operatorname{tr}\left(I_{\mu;\theta^*}^{-1} I_{U;\theta^*}\right).$

▶ **Read**: the error of the estimator learned from samples drawn from μ versus the true distribution Unif(U) is controlled by tr $\left(I_{\mu;\theta^*}^{-1}I_{U;\theta^*}\right)$.

Active learning strategy

Iteratively do the following:

• Use an estimate θ_t of θ^* to construct sampling distribution μ_{t+1} ,

$$\mu_{t+1} \leftarrow \operatorname*{arg\,min}_{\mu \text{ distribution over } U} \operatorname{tr} \left(I_{\mu;\theta_t}^{-1} I_{U;\theta_t} \right).$$

Sample batch of unlabelled data points $X_1, \ldots, X_B \sim \mu_{t+1}$.

• Query labels
$$Y_i \sim p(y|X_i; \theta^*)$$
.

▶ Update estimator $\theta_{t+1} \leftarrow \text{MLE}\left(\{X_i, Y_i\}_{i=1}^B\right)$.

Theorem (Near-optimal strategy, Chaudhuri et al. (2015))

Under regularity assumptions, there is a polynomial active learning strategy with excess loss:

$$\operatorname{loss}(\hat{\theta}^{(m)}) - \operatorname{loss}(\theta^*) = \widetilde{O}\left(\frac{1}{m}\operatorname{tr}\left(I_{\mu^*;\theta^*}^{-1}I_{U;\theta^*}\right)\right),$$

where μ^* is the optimal sampling distribution on U.

Remaining questions about computation

Though the algorithm in Chaudhuri et al. (2015) is polynomial, it involves solving SDPs where the dimensionality d corresponds to $\theta \in \mathbb{R}^d$. Ideally, finding μ_{t+1} means solving:

$$\operatorname*{arg\,min}_{S \subset U, |S| \le B} \operatorname{tr} \left[\left(\sum_{x \in S} I_{x;\theta_t} \right)^{-1} I_{U;\theta_t} \right].$$

Since this is infeasible if d is large, this motivates Ash et al. (2021).

II. Neural implementation

Neural networks as the model class

Let $\theta \in \mathbb{R}^d$ correspond to the parameters of a neural network.

- Each neural net θ computes the conditional distribution $p(y|x; \theta)$.
- Since *d* is typically very large, when computing the Fisher information, just consider the last layer:

$$I_{x; heta^L} = \mathop{\mathbb{E}}_{Y \sim p(y|x; heta)}
abla^2_{ heta^L} \ell(x,Y; heta).$$

Greedy sample selection

Recall the goal is to find a set $S \subset U$ minimizing:

$$\operatorname{tr}\left[\left(\sum_{x\in S}I_{x;\theta_t^L}\right)^{-1}I_{U;\theta_t^L}\right].$$

▶ In a greedy sample selection process, at iteration *n*, add the point $S_n \leftarrow S_{n-1} \cup \{x_n\}$ that minimizes:

$$\operatorname{tr}\left[\left(\sum_{x\in S_n}I_{x;\theta_t^L}\right)^{-1}I_{U;\theta_t^L}\right].$$

- > This function is not submodular, so it is not amenable to a greedy method.
 - Selection procedure improves empirically if first you greedily oversample 2B points, then greedily reject the worst B points.

Batch active learning via information matrices (BAIT)

Algorithm BAIT

(* Batch active learning with neural networks, Ash et al. (2021) *) Initialize: *S* a random labeled dataset of size $B, \theta_1 \leftarrow \arg \min_{\theta} \mathbb{E}_S[\ell(x, y; \theta)]$.

- 1. **for** $t = 1, 2, \ldots,$
- 2. **do** compute $I_{U;\theta_t^L}$

3. initialize
$$M_0 \leftarrow I_{S;\theta_t^L} + \lambda \mathrm{Id}$$

- 4. initialize $\tilde{S} \leftarrow \varnothing$
- 5. greedily select points x_1, \ldots, x_B by sequentially optimizing:

$$x_b = \operatorname*{arg\,min}_{x \in U} \operatorname{tr} \left[\left(I_{x; \theta^L_t} + M_{b-1} \right)^{-1} I_{U; \theta^L_t} \right],$$

setting $M_t \leftarrow I_{x_b;\theta_t^L} + M_{b-1}$ and $\tilde{S} \leftarrow \tilde{S} \cup \{x_b\}$ 6. query labels for \tilde{S} and save data $S \leftarrow S \cup \tilde{S}$ 7. train model on data $\theta_{t+1} \leftarrow \arg \min_{\theta} \mathbb{E}_S[\ell(x, y; \theta)]$

Existing state-of-the-art algorithm

Batch active learning by diverse gradient embeddings (BADGE):

▶ Represent each candidate $x \in U$ by $g_x \in \mathbb{R}^d$:

$$g_x = \nabla \ell(x, y_x^*; \theta^L),$$

the last-layer gradient obtained if the most likely label y_x^* is observed.

- Select a batch *S* of samples that has large Gram determinant.
 - ▶ Requires $||g_x||$ to be large (learning about *x* is informative).
 - ▶ Requires *S* to be spread out (the batch is diverse; the *x*'s give different information).

Experiments

Figure 1: Experiments with MLPs had single hidden ReLu layer of 128 dimensions. Otherwise, a 18-layer ResNet.

Experiments

Figure 2: Comparison of BAIT and BADGE for Bayesian linear regression. Gaussian data is generated on \mathbb{R}^{100} with spectral decay $\Sigma_{ii} \propto 1/i^2$. Orthonormal data is supported only on standard basis, $P(x = e_i) \propto 1/i^2$.

► "BADGE does not exploit the occurrence probabilities, and in fact simply selects the coordinates in a cyclic fashion. On the other hand, the optimal strategy focuses effort on the high-probability coordinates, which is captured in the Fisher matrix."

III. Discussion

Assumption on Fisher information

Assumption

For any x, y, θ , the Fisher information matrix is a function of only x and θ ,

$$I(x, y; \theta) = I_{x;\theta}$$

▶ What does this assumption mean?

Generalize linear models

Generalized linear models (GLM) are examples that satisfy the assumption.

▶ In a GLM, the response variable has exponential family distribution:

$$p(y|\eta) = \exp\left(\eta^{\top} t(y) - A(\eta)\right),$$

where $\eta = \theta^{\top} x$, *t* is a sufficient statistic, and *A* is the log-partition function, and:

$$\nabla_{\theta} \log p(y|x,\theta) = xt(y) - xA'(\theta^{\top}x)$$
$$\nabla_{\theta}^{2} \log p(y|x;\theta) = -xx^{\top}A''(\theta^{\top}x)$$

References

- Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Gone fishing: Neural active learning with fisher embeddings. *arXiv preprint arXiv:2106.09675*, 2021.
- Kamalika Chaudhuri, Sham Kakade, Praneeth Netrapalli, and Sujay Sanghavi. Convergence rates of active learning for maximum likelihood estimation. *arXiv preprint arXiv:1506.02348*, 2015.
- John Duchi. Fisher information. *https://web.stanford.edu/class/stats311/Lectures/lec-09.pdf*, 2019. Lecture notes for Information Theory and Statistics.