Calibrated learning and games

Geelon So, agso@ucsd.edu Forecasting/calibration reading group - December 5, 2023

Online decision making

Setting. For t = 1, 2, ...

- ► (receive context/side-information)
- ▶ play action $a_t \in A$
- ▶ incur loss $\ell_t(a_t)$ and receive feedback

Types of feedback.

- **Full-information feedback**: observe loss function $\ell_t : \mathcal{A} \to \mathbb{R}$
- ▶ Partial-information/bandit feedback: observe loss $\ell_t(a_t)$

Examples of online decision making problems

- predicting an infinite bitstream
- ▶ online learning
- multi-armed bandit problem
- playing an infinitely repeated game

Goals in online decision making

The cumulative loss at time *T*:

$$L_T = \sum_{t=1}^T \ell_t(a_t).$$

Goal: we would like to minimize the cumulative loss, but this is an extremely tall order

▶ regret analysis: compare against some restricted class of decision sequences

Goals of online decision making

external regret: I should've just invested all my money in an index fund

▶ given a set of expert advice $(a'_t) \in \mathcal{E}$, perform just about as well as the best expert

$$R_t = \sup_{(a_t')\in\mathcal{E}}\sum_{t=1}^T \ell_t(a_t) - \ell_t(a_t')$$

internal/swap regret: every time I bought stock A, I should have bought stock B
 a modification rule m : A → A replaces an action a by another m(a); internal regret:

$$R_t = \sup_{m: \mathcal{A} \to \mathcal{A}} \sum_{t=1}^T \ell_t(a_t) - \ell_t(m(a_t))$$

Decision making from predictions

A **forecasting approach** to online decision making:

- ▶ at each time step, predict the loss function $\hat{\ell}_t$
- make a decision by minimizing the predicted loss

$$a_t \leftarrow \operatorname*{arg\,min}_{a \in \mathcal{A}} \hat{\ell}_t(a).$$

Example. Each day, decide whether to bring an umbrella.

- ▶ forecast the chance of rain (equivalent to making prediction of $\hat{\ell}_t$)
- decide to carry an umbrella based on prediction

Example of online decision making

Decision problem. Each day, decide whether to carry an umbrella where the cost is:

umbrella?	sun	rain
yes	1	0
no	0	3

Example of online decision making

Suppose that rain is the outcome of a biased coin flip. The expected cost of either action:

Figure 1: When 3p = 1 - p, the agent minimizing expected cost is indifferent.

Example of online decision making

▶ If the agent knew *p*, then the **best-response** action to *p* is:

$$a_{
m BR}(p) = egin{cases} {
m bring\ umbrella} & p > 1/4 \ {
m leave\ umbrella} & p < 1/4. \end{cases}$$

▶ In general, we make no probabilistic assumptions

- ▶ i.e. *p* might not even exist
- \triangleright still, we can give a prediction for p_t using history
- ▶ this is equivalent to giving estimate $\hat{\ell}_t$

$$\hat{\ell}_t(a) = \mathop{\mathbb{E}}_{p_t} \left[\operatorname{cost}(\operatorname{rain}) \big| a \right]$$

Calibration: motivation

Question: how do we make predictions that lead to decisions with low regret?

Example. Suppose we make discrete predictions for the chance of rain:

▶ the best-response play is to bring umbrella when prediction >25%

▶ the predictions are **classically calibrated** if for each prediction *p* of rain:

 $\frac{\# \text{ times it rained when } p \text{ predicted}}{\# \text{ times } p \text{ was predicted}} \rightarrow p$

best-response play to calibrated predictions incur no internal regret (why?)

Calibration

Setting.

- the domain $\mathcal{X} \subset \mathbb{R}^n$ is a compact and convex
- ▶ the **prediction** at time *t* is denoted $p_t \in X$
- the outcome at time *t* is denoted $x_t \in \mathcal{X}$
- ► a (deterministic) forecasting procedure maps sequences of outcomes to predictions:

$$p_{t+1}\equiv p_{t+1}(h_t),$$

where $h_t = (x_1, \ldots, x_t)$ is the history up to time *t*.

Calibration

Definition (Continuously calibrated forecast)

A forecasting procedure is continuously calibrated if for any continuous $\phi : \mathcal{X} \to [0, 1]$,

$$\lim_{T \to \infty} \left(\sup_{x_1, \dots, x_T} \left\| \frac{1}{t} \sum_{t=1}^T \phi(p_t) (x_t - p_t) \right\| \right) = 0.$$
(1)

• Here, $(p_t)_t$ is generated by the forecasting procedure given the outcomes $(x_t)_t$.

- Let $\phi(p)$ be a continuous approximation to $\mathbf{1}\{p = p^*\}$. Intuitively, (1) holds when:
 - \triangleright either p^* is predicted very infrequently, or
 - $\blacktriangleright\,$ the average of the outcomes whenever p^* was predicted converges to p^*

Existence of calibrated forecasting

Theorem (Existence, Foster and Hart (2021))

Deterministic continuously-calibrated forecasting procedures exist.

Calibrated learning

Game setting

Setting. Consider the following 2-player game with binary action.

Table 1: Payoff matrix at a traffic intersection (go/stop).

- ▶ A (pure) Nash equilibrium is a joint action $a \in \{g, s\} \times \{G, S\}$ such that any player can only worsen their utility by unilaterally deviating.
- This game has two Nash equilibria: (s, G) and (g, S).

Game setting

General setting. A finite game with N players consists of:

- \blacktriangleright a finite set of actions/pure strategies A_i for each player
 - ▶ denote the set of joint pure strategies by $A := \prod A_i$
 - ▶ denote the set of joint, (product) mixed strategies by $\Delta(\mathcal{A}) := \prod \Delta(\mathcal{A}_i)$

$$p \equiv (p_1, \dots, p_N) \in \Delta(\mathcal{A}) \qquad \Longleftrightarrow \qquad p(a_1, \dots, a_n) = \prod p_i(a_i).$$

▶ a family of utilities $u_i : A \to \mathbb{R}$

Mixed Nash equilibria

Definition

A mixed strategy $p \in \Delta(A)$ is a mixed Nash equilibrium if for each player *i* and alternative strategy $p' = (p_1, \ldots, p_{i-1}, p'_i, p_{i+1}, \ldots, p_N)$, the following holds:

 $\mathop{\mathbb{E}}_{a \sim p}[u_i(a)] \ge \mathop{\mathbb{E}}_{a' \sim p'}[u_i(a')].$

We say that p is an ε -mixed Nash equilibrium if:

$$\mathbb{E}_{a \sim p}[u_i(a)] + \varepsilon \geq \mathbb{E}_{a' \sim p'}[u_i(a')].$$

Continuously calibrated learning dynamics

Definition (ε -calibrated learning)

Let $\varepsilon > 0$. An ε -continuously calibrated learning dynamic is a pair:

(i) a deterministically calibrated procedure on $\Delta(\mathcal{A})$

(ii) a continuous ε -best reply function $x_{\varepsilon\text{-BR}} : \Delta(\mathcal{A}) \to \Delta(\mathcal{A})$

Continuously calibrated learning dynamics

For t = 1, 2, ...

- Construct forecast $p_t \equiv p_t(h_{t-1})$ using history h_{t-1}
- Each player plays an ε -best response to p_t , jointly playing $x_t \equiv x_{\varepsilon\text{-BR}}(p_t)$

• A realization a_t is drawn from p_t and revealed; history is extended:

$$h_t = (a_1,\ldots,a_t).$$

Continuously calibrated learning dynamics

Setting. The triangle is the set of all independent mixed strategies.

Dynamics. In round *t*,

- the forecast p_t is made,
- an ε -best response x_t is played,
- ▶ a realization a_t is drawn.

Continuous calibrated learning finds Nash equilibria

Theorem

Suppose players in an infinitely-repeated finite game follow an ε -continuously calibrated learning dynamic, where $(x_t)_t$ is the sequence of their mixed strategies. Then for all $\varepsilon' > \varepsilon$:

$$\lim_{T \to \infty} \frac{\#\{t \in [T] : x_t \in \mathsf{NE}(\varepsilon')\}}{T} = 1 \qquad \text{a.s.}$$

Proof sketch

- Consider the times $(t_k)_k$ when p_{t_k} was close to some p.
- ► To be calibrated means that:

$$\lim_{K\to\infty}\left\|\frac{1}{t_K}\sum_{k=1}^K\left(a_{t_k}-p\right)\right\|=\lim_{K\to\infty}\frac{K}{t_K}\left\|\frac{1}{K}\sum_{k=1}^K\left(a_{t_k}-p\right)\right\|=0.$$

- 1. Either *p* is eventually predicted very infrequently $t_K = \omega(K)$, or
- **2.** The average $\frac{1}{K} \sum a_{t_k}$ converges to *p*.
- ▶ The sequence $(a_t x_t)_t$ is a martingale difference sequence.
 - ▶ The average $\frac{1}{K} \sum a_{t_k}$ also converges to $\frac{1}{K} \sum x_{t_k}$
 - ▶ Notice that $x_{t_k} \approx x_{BR}(p)$, so (2) implies an approximate Nash equilibrium condition:

$$x_{\rm BR}(p) \approx p.$$

▶ Thus, if (t_k) fairly dense, then x_{t_k} 's must be approximate Nash equilibria.

Proof sketch

Almost done; but we need to rule out the following:

Bad case: each *p* is predicted very infrequently; i.e. we are trivially calibrated because the orange term goes to zero:

$$\lim_{K\to\infty} \frac{K}{t_K} \left\| \frac{1}{K} \sum_{k=1}^K \left(a_{t_k} - p \right) \right\| = 0.$$

- > This would require the set of possible predictions to be very large.
- Ruled out by compactness of the space of mixed strategies for finite games and the uniform continuity of the approximate best response map.

References

Dean P Foster and Sergiu Hart. Forecast hedging and calibration. *Journal of Political Economy*, 129(12): 3447–3490, 2021.