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Online decision making

Setting. Fort =1,2,...
> (receive context/side-information)
» play action g, € A

» incur loss /;(a;) and receive feedback

Types of feedback.
» Full-information feedback: observe loss function ¢; : A — R

» Partial-information/bandit feedback: observe loss ¢;(a;)
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Examples of online decision making problems

» predicting an infinite bitstream
» online learning
» multi-armed bandit problem

» playing an infinitely repeated game
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Goals in online decision making

The cumulative loss at time T: .
LT = Z ft(at).
=1

Goal: we would like to minimize the cumulative loss, but this is an extremely tall order

» regret analysis: compare against some restricted class of decision sequences
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Goals of online decision making

» external regret: | should’ve just invested all my money in an index fund

given a set of expert advice (a;) € &, perform just about as well as the best expert
T

R, = sup th(at) —l(ay)
(a)e€ T4

» internal/swap regret: every time | bought stock A, | should have bought stock B
a modification rule m : A — A replaces an action a by another m(a); internal regret:

R, = sup Z&(at) —Li(m(ay))

mA—=A T
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Decision making from predictions

A forecasting approach to online decision making:
» at each time step, predict the loss function ‘,
» make a decision by minimizing the predicted loss

a; < argmin /,(a).
ac A

Example. Each day, decide whether to bring an umbrella.

» forecast the chance of rain (equivalent to making prediction of 0y

» decide to carry an umbrella based on prediction
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Example of online decision making

Decision problem. Each day, decide whether to carry an umbrella where the cost is:

umbrella? ‘ sun ‘ rain
yes 1 0

no 0 3
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Example of online decision making

Suppose that rain is the outcome of a biased coin flip. The expected cost of either action:

3 no umbrella
2
E[cost|d]
1
0 1 1 1 1 umbrella
0 0.2 04 06 0.8 1
Pr(rain)

Figure 1: When 3p = 1 — p, the agent minimizing expected cost is indifferent.
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Example of online decision making

» [f the agent knew p, then the best-response action to p is:

apr(p) =

bring umbrella p > 1/4
leave umbrella p < 1/4.

» In general, we make no probabilistic assumptions
i.e. p might not even exist
still, we can give a prediction for p; using history
this is equivalent to giving estimate é[

l(a) =E [cost(rain) |a]

bt
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Calibration: motivation
Question: how do we make predictions that lead to decisions with low regret?

Example. Suppose we make discrete predictions for the chance of rain:

v ) (o) e

» the best-response play is to bring umbrella when prediction >25%

‘ 10%

‘ 20%

» the predictions are classically calibrated if for each prediction p of rain:

# times it rained when p predicted

# times p was predicted

» best-response play to calibrated predictions incur no internal regret (why?)
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Calibration

Setting.
» the domain X C R" is a compact and convex
» the prediction at time t is denoted p, € X
» the outcome at time t is denoted x; € X
>

a (deterministic) forecasting procedure maps sequences of outcomes to predictions:

P41 = Pt+1(ht)a

where hy = (x1, ..., x;) is the history up to time t.
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Calibration

Definition (Continuously calibrated forecast)

A forecasting procedure is continuously calibrated if for any continuous ¢ : X — [0, 1],

) —0. )

» Here, (p;); is generated by the forecasting procedure given the outcomes (x;);.
» Let ¢(p) be a continuous approximation to 1{p = p*}. Intuitively, (1) holds when:

either p* is predicted very infrequently, or
the average of the outcomes whenever p* was predicted converges to p*

T

=3 0p (o — o)

=1

lim sup
T—=00 \ xq,...,xr
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Existence of calibrated forecasting

Theorem (Existence, Foster and Hart (2021))

Deterministic continuously-calibrated forecasting procedures exist.
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Calibrated learning
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Game setting

Setting. Consider the following 2-player game with binary action.

G | s
g | (10,-10) | (1,0)
s 0, 1) (-1,-1)

Table 1: Payoff matrix at a traffic intersection (go/stop).

» A (pure) Nash equilibrium is a joint action a € {g, s} x {G, S} such that any player
can only worsen their utility by unilaterally deviating.

» This game has two Nash equilibria: (s, G) and (g, S).
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Game setting

General setting. A finite game with N players consists of:
» a finite set of actions/pure strategies .A; for each player
denote the set of joint pure strategies by A := [[ A;
denote the set of joint, (product) mixed strategies by A(A) := [[ A(A;)

p=(p1,...,pn) € A(A) = pla,...,a) =[] pila).

» a family of utilities u; : A - R
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Mixed Nash equilibria

Definition
A mixed strategy p € A(A) is a mixed Nash equilibrium if for each player i and alternative

strategy p' = (p1, - .., Pi—1, Pi, Pit1s - - - , PN). the following holds:

E [u(a) > E [u(d)].

ar~~p a/hvp/
We say that p is an e-mixed Nash equilibrium if:

E [u(a)] +2> E [u(d)].

an~p a Np/
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Continuously calibrated learning dynamics

Definition (s-calibrated learning)

Let e > 0. An e-continuously calibrated learning dynamic is a pair:

(i) a deterministically calibrated procedure on A(A)
(i) a continuous e-best reply function x-pr : A(A) — A(A)
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Continuously calibrated learning dynamics

Fort=1,2,...
» Construct forecast p; = p;(h;—1) using history h;_;
» Each player plays an e-best response to py, jointly playing x; = x..gr(p:)

» A realization a; is drawn from p; and revealed; history is extended:

ht: (al,...,at).
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Continuously calibrated learning dynamics

Setting. The triangle is the set of all inde-
pendent mixed strategies.

Dynamics. In round t,
» the forecast p; is made,
Xt » an c-best response x; is played,

Dr » a realization a; is drawn.
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Continuous calibrated learning finds Nash equilibria

Theorem
Suppose players in an infinitely-repeated finite game follow an c-continuously calibrated

learning dynamic, where (x;); is the sequence of their mixed strategies. Then for all e’ > e:
t € [T] : x, € NE(¢'

L #te 1) % e NEE)

T—o0 T

=1 a.s.
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Proof sketch

» Consider the times (#) when p;, was close to some p.

» To be calibrated means that:

K

1. Either p is eventually predicted very infrequently tx = w(K), or
2. The average % > a4, converges to p.

» The sequence (a; — x;); is a martingale difference sequence.
The average + > a, also converges to + > x;,

Notice that x,, ~ xgr(p), so (2) implies an approximate Nash equilibrium condition:

xgr(p) = p-

» Thus, if (#) fairly dense, then x;,’s must be approximate Nash equilibria.
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Proof sketch

Almost done; but we need to rule out the following;:

» Bad case: each p is predicted very infrequently; i.e. we are trivially calibrated
because the orange term goes to zero:

This would require the set of possible predictions to be very large.
Ruled out by compactness of the space of mixed strategies for finite games and the
uniform continuity of the approximate best response map.
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