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Online decision making

Setting. For t = 1, 2, . . .
▶ (receive context/side-information)

▶ play action at ∈ A
▶ incur loss ℓt(at) and receive feedback

Types of feedback.
▶ Full-information feedback: observe loss function ℓt : A → R
▶ Partial-information/bandit feedback: observe loss ℓt(at)
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Examples of online decision making problems

▶ predicting an infinite bitstream

▶ online learning

▶ multi-armed bandit problem

▶ playing an infinitely repeated game
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Goals in online decision making

The cumulative loss at time T :

LT =

T∑
t=1

ℓt(at).

Goal: we would like to minimize the cumulative loss, but this is an extremely tall order

▶ regret analysis: compare against some restricted class of decision sequences
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Goals of online decision making

▶ external regret: I should’ve just invested all my money in an index fund
▶ given a set of expert advice (a′t) ∈ E , perform just about as well as the best expert

Rt = sup
(a′t )∈E

T∑
t=1

ℓt(at)− ℓt(a′t)

▶ internal/swap regret: every time I bought stock A, I should have bought stock B
▶ a modification rule m : A → A replaces an action a by another m(a); internal regret:

Rt = sup
m:A→A

T∑
t=1

ℓt(at)− ℓt(m(at))
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Decision making from predictions

A forecasting approach to online decision making:

▶ at each time step, predict the loss function ℓ̂t

▶ make a decision by minimizing the predicted loss

at ← argmin
a∈A

ℓ̂t(a).

Example. Each day, decide whether to bring an umbrella.

▶ forecast the chance of rain (equivalent to making prediction of ℓ̂t)

▶ decide to carry an umbrella based on prediction
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Example of online decision making

Decision problem. Each day, decide whether to carry an umbrella where the cost is:

umbrella? sun rain
yes 1 0
no 0 3
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Example of online decision making

Suppose that rain is the outcome of a biased coin flip. The expected cost of either action:

Pr(rain)

E[cost|a]
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0
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2

3

umbrella

no umbrella

Figure 1: When 3p = 1− p, the agent minimizing expected cost is indifferent.
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Example of online decision making

▶ If the agent knew p, then the best-response action to p is:

aBR(p) =

{
bring umbrella p > 1/4
leave umbrella p < 1/4.

▶ In general, we make no probabilistic assumptions
▶ i.e. p might not even exist
▶ still, we can give a prediction for pt using history
▶ this is equivalent to giving estimate ℓ̂t

ℓ̂t(a) = E
pt

[
cost(rain)

∣∣a]
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Calibration: motivation

Question: how do we make predictions that lead to decisions with low regret?

Example. Suppose we make discrete predictions for the chance of rain:

10% 20% 30% . . . 70% 80% 90%

▶ the best-response play is to bring umbrella when prediction >25%

▶ the predictions are classically calibrated if for each prediction p of rain:

# times it rained when p predicted
# times p was predicted

→ p

▶ best-response play to calibrated predictions incur no internal regret (why?)
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Calibration

Setting.
▶ the domain X ⊂ Rn is a compact and convex

▶ the prediction at time t is denoted pt ∈ X
▶ the outcome at time t is denoted xt ∈ X
▶ a (deterministic) forecasting procedure maps sequences of outcomes to predictions:

pt+1 ≡ pt+1
(
ht
)
,

where ht = (x1, . . . , xt) is the history up to time t.
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Calibration

Definition (Continuously calibrated forecast)
A forecasting procedure is continuously calibrated if for any continuous ϕ : X → [0, 1],

lim
T→∞

(
sup

x1,...,xT

∥∥∥∥∥1t
T∑
t=1

ϕ(pt)(xt − pt)

∥∥∥∥∥
)

= 0. (1)

▶ Here, (pt)t is generated by the forecasting procedure given the outcomes (xt)t .
▶ Let ϕ(p) be a continuous approximation to 1{p = p∗}. Intuitively, (1) holds when:

▶ either p∗ is predicted very infrequently, or
▶ the average of the outcomes whenever p∗ was predicted converges to p∗
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Existence of calibrated forecasting

Theorem (Existence, Foster and Hart (2021))
Deterministic continuously-calibrated forecasting procedures exist.
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Calibrated learning
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Game setting

Setting. Consider the following 2-player game with binary action.

G S
g (-10, -10) (1, 0)
s (0, 1) (-1, -1)

Table 1: Payoff matrix at a traffic intersection (go/stop).

▶ A (pure) Nash equilibrium is a joint action a ∈ {g, s} × {G, S} such that any player
can only worsen their utility by unilaterally deviating.

▶ This game has two Nash equilibria: (s,G) and (g, S).
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Game setting

General setting. A finite game with N players consists of:
▶ a finite set of actions/pure strategies Ai for each player

▶ denote the set of joint pure strategies by A :=
∏
Ai

▶ denote the set of joint, (product) mixed strategies by ∆(A) :=
∏

∆(Ai)

p ≡ (p1, . . . , pN ) ∈ ∆(A) ⇐⇒ p(a1, . . . , an) =
∏

pi(ai).

▶ a family of utilities ui : A → R
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Mixed Nash equilibria

Definition
A mixed strategy p ∈ ∆(A) is a mixed Nash equilibrium if for each player i and alternative
strategy p′ = (p1, . . . , pi−1, p′i, pi+1, . . . , pN ), the following holds:

E
a∼p

[ui(a)] ≥ E
a′∼p′

[ui(a′)].

We say that p is an ε-mixed Nash equilibrium if:

E
a∼p

[ui(a)] + ε ≥ E
a′∼p′

[ui(a′)].
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Continuously calibrated learning dynamics

Definition (ε-calibrated learning)
Let ε > 0. An ε-continuously calibrated learning dynamic is a pair:

(i) a deterministically calibrated procedure on∆(A)
(ii) a continuous ε-best reply function xε-BR : ∆(A)→ ∆(A)
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Continuously calibrated learning dynamics

For t = 1, 2, . . .
▶ Construct forecast pt ≡ pt(ht−1) using history ht−1

▶ Each player plays an ε-best response to pt , jointly playing xt ≡ xε-BR(pt)

▶ A realization at is drawn from pt and revealed; history is extended:

ht = (a1, . . . , at).
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Continuously calibrated learning dynamics

pt
xt

at

Setting. The triangle is the set of all inde-
pendent mixed strategies.

Dynamics. In round t,

▶ the forecast pt is made,

▶ an ε-best response xt is played,

▶ a realization at is drawn.
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Continuous calibrated learning finds Nash equilibria

Theorem
Suppose players in an infinitely-repeated finite game follow an ε-continuously calibrated
learning dynamic, where (xt)t is the sequence of their mixed strategies. Then for all ε′ > ε:

lim
T→∞

#{t ∈ [T ] : xt ∈ NE(ε′)}
T

= 1 a.s.
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Proof sketch
▶ Consider the times (tk)k when ptk was close to some p.
▶ To be calibrated means that:

lim
K→∞

∥∥∥∥∥ 1
tK

K∑
k=1

(
atk − p

)∥∥∥∥∥ = lim
K→∞

K
tK

∥∥∥∥∥ 1K
K∑

k=1

(
atk − p

)∥∥∥∥∥ = 0.

1. Either p is eventually predicted very infrequently tK = ω(K), or
2. The average 1

K

∑
atk converges to p.

▶ The sequence (at − xt)t is a martingale difference sequence.
▶ The average 1

K

∑
atk also converges to

1
K

∑
xtk

▶ Notice that xtk ≈ xBR(p), so (2) implies an approximate Nash equilibrium condition:

xBR(p) ≈ p.

▶ Thus, if (tk) fairly dense, then xtk ’s must be approximate Nash equilibria.
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Proof sketch

Almost done; but we need to rule out the following:

▶ Bad case: each p is predicted very infrequently; i.e. we are trivially calibrated
because the orange term goes to zero:

lim
K→∞

K
tK

∥∥∥∥∥ 1K
K∑

k=1

(
atk − p

)∥∥∥∥∥ = 0.

▶ This would require the set of possible predictions to be very large.
▶ Ruled out by compactness of the space of mixed strategies for finite games and the

uniform continuity of the approximate best response map.
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