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Conditional mutual information and generalization

Last time, we saw (JLNRSS 2019), which showed one technique of proving generalization in the adaptive

data analysis setting. There, given a dataset z ∈ Zn, one interacts by providing a sequence of statistical

queries, q : Z → [0, 1]. There, we were concerned with upper bounding with high probability:

sup
t∈[T ]

|qt(P)− at|,

where qt(P) is the true answer to the statistical query (i.e. qt(P) = E[q(x)] is the expected value) and at
is the answer that our analysis obtained. The main technique used was to define QA(z) to be the posterior

distribution on Zn when given the outcomes of the analysis. Then:

sup
t∈[T ]

|qt(Pn)− at| ≤ sup
t∈[T ]

∣∣qt(Pn)− qt(QA(z))
∣∣︸ ︷︷ ︸

posterior insensitivity

+ sup
t∈[T ]

∣∣qt(QA(z))− at
∣∣︸ ︷︷ ︸

in-sample accuracy

.

Recall that in-sample accuracy could be proved using the Bayesian resampling lemma. One way we can

obtain bounds on the posterior insensitivity is through total variation; in particular:

sup
t∈[T ]

∣∣qt(Pn)− qt(QA(z))
∣∣ ≤ dTV

(
Pn,QA(z)

)
.

Note that if A is a differentially private mechanism, then we can obtain bounds on the total variation.

Intuitively, if Pn and QA(z) are hard to distinguish, then we learned very little about the particular dataset

z ∼ Pn we performed our analysis on from the answers A(z).

Motivated by this, we’ll take a look at Steinke and Zakynthionou’s Reasoning about generalization via

conditional mutual information (SZ 2020). One quantity we may wish to look at in relationship to general-

ization is then the mutual information between z and A(z). Recall the definition of mutual information:

Definition 1 (Mutual information). Let X and Y be two random variables jointly distributed according to

P over X × Y. The mutual information of X and Y is:

I(X;Y ) = KL(P(x, y) ‖P(x)× P(y)).

Then, we have the following bound on generalization:

Proposition 2 (Bounded mutual information implies generalization (RZ 2016)). Let ` : W × Z → [0, 1],

A : Zn →W and Z ← Pn. Then:

∣∣E [`(A(Z), Z)− `(A(Z),P)]
∣∣ ≤√ 2

n
· I(A(Z);Z)

However, mutual information is often unbounded if the domain Z is infinite, even if generalization is easy

to show—as (SZ 2020) write, “the fundamental issue with the mutual information approach is that even a

single data point has infinite information content if the distribution is continuous”. And so, in their paper,

they “normalize” the information content by fixing a sample of size 2n beforehand, a procedure not unlike

double/ghost sampling or symmetrization. But then, because we will need to take an expectation over this

sample, we define the conditional mutual information:
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Definition 3 (Conditional mutual information). For random variables X,Y, Z, the mutual information of

X and Y conditioned on Z is:

I(X;Y |Z) = E
z←PZ

[I (X|Z = z;Y |Z = z)] .

Definition 4 (Conditional mutual information of an algorithm). Let A : Zn → W be a randomized or

deterministic algorithm. Let P be a distribution on Z and let Z̃ ∈ Zn×2 be 2n samples drawn independently

from P. Let Si ∈ {0, 1} for i ∈ [n] be i.i.d. uniform at random. Let Z̃S be the subset of Z̃ indexed by S.

Then, the conditional mutual information of A with respect to P is:

CMIP(A) := I
(
A(Z̃S);S | Z̃

)
.

In short, sample n pairs (zi0, z
i
1) ∈ Z2 of data and randomly select one sample from each pair to make up

ZS the sample upon which the algorithm learns.

Theorem 5. Let A : Zn → W and ` : W ×Z → [0, 1]. Let P be a distribution on Z and define `(w,P) =

EZ←P [`(w,Z)] and `(w, z) = 1
n

∑n
i=1 `(w, zi). Then:∣∣∣ E

Z←Pn
[`(A(Z), Z)− `(A(Z)− P)]

∣∣∣ ≤√ 2

n
· CMIP(A).

In particular, because the remaining samples ZS were independent from ZS :

E[`(A(ZS), ZS)− `(A(ZS),P)] = E
Z,S

[
n∑
i=1

`(AS , zSi
)− `(AS , zSi

)

]
.

Suggestively, for a sample S′ ∈ Zn, let us write fS(S′) for:

fS(S′) =

n∑
i=1

`(AS , zS′
i
)− `(AS , zS′

i
).

Then notice that if S′ is independent of S, then E[fS(S′)] = 0. In particular, we’d really like to bound:

E[`(A(ZS), ZS)− `(A(ZS),P)] = E
Z,S

[
E
S

[fS(S)]− E
S′

[fS(S′)]
]
.

Consider more closely the expression inside the expectation. Last time, we made use of the following

characterization of total variation:

dTV(Q,P ) = sup
f :X→[0,1]

E
Q

[f(x)]− E
P

[f(x)].

This time, Donsker-Varadhan dual characterization of KL divergence or the Gibbs variational principle:

Theorem 6 (Characterization of KL divergence). Let P and Q be distributions on Ω with P � Q and let

f : Ω→ R be measurable. Then:

KL(Q ‖P ) = sup
f

E
Q

[f(x)]− logE
P

[exp(f(x))].

As a corollary, for any measurable f , we have:

E
Q

[f(x)] ≤ inf
t>0

KL(Q ‖P ) + logEP [t exp(f(x))]

t
,

which just follows from applying the inequality with tf and optimizing over t. Naturally, we will want to

convert the EQ[t exp(fx)] term into something easier to work with, so we’ll use:
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Lemma 7 (Hoeffding). Let X ∈ [a, b] be a random variable with mean µ. Then, for all t ∈ R,

E[etX ] ≤ etµ+t
2(b−a)2/8.

Letting Z be fixed, it follows from the definition of mutual information that if Q is a distribution over

(A(ZS), S) and P is a distribution over (A(ZS), S′), then:

KL(Q ‖P ) = I
(
(A(ZS), S) ; (A(ZS), S′)

)
.
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