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Conditional mutual information and generalization

Last time, we saw (JLNRSS 2019), which showed one technique of proving generalization in the adaptive
data analysis setting. There, given a dataset z € Z™, one interacts by providing a sequence of statistical
queries, g : Z — [0,1]. There, we were concerned with upper bounding with high probability:

sup |q(P) — aul,

te[T]
where ¢¢(P) is the true answer to the statistical query (i.e. q(P) = E[q(z)] is the expected value) and a;
is the answer that our analysis obtained. The main technique used was to define Q 4(.) to be the posterior
distribution on Z™ when given the outcomes of the analysis. Then:

sup |Qt(73n) - at\ < sup |Qt(73n) - qt(QA(z))| =+ sup ’%(QA(Z)) - Clt| .
te([T] te[T) te[T)

posterior insensitivity in-sample accuracy

Recall that in-sample accuracy could be proved using the Bayesian resampling lemma. One way we can
obtain bounds on the posterior insensitivity is through total variation; in particular:

sup [q¢e(P™) — t(Qa(»)| < drv (P, Q) -
te[T)
Note that if A is a differentially private mechanism, then we can obtain bounds on the total variation.
Intuitively, if P™ and Q 4.y are hard to distinguish, then we learned very little about the particular dataset
z ~ P™ we performed our analysis on from the answers A(z).

Motivated by this, we’ll take a look at Steinke and Zakynthionou’s Reasoning about generalization via
conditional mutual information (SZ 2020). One quantity we may wish to look at in relationship to general-
ization is then the mutual information between z and A(z). Recall the definition of mutual information:

Definition 1 (Mutual information). Let X and Y be two random variables jointly distributed according to
P over X x V. The mutual information of X and Y is:

I(X3Y) = KL(P(z,y) [| P(z) x P(y)).
Then, we have the following bound on generalization:

Proposition 2 (Bounded mutual information implies generalization (RZ 2016)). Let £ : W x Z — [0, 1],
A:Z" W and Z + P"™. Then:

|E[(A(2),2) = LAZ), P)]| </~ T(A(Z); Z)
However, mutual information is often unbounded if the domain Z is infinite, even if generalization is easy
to show—as (SZ 2020) write, “the fundamental issue with the mutual information approach is that even a
single data point has infinite information content if the distribution is continuous”. And so, in their paper,
they “normalize” the information content by fixing a sample of size 2n beforehand, a procedure not unlike
double/ghost sampling or symmetrization. But then, because we will need to take an expectation over this
sample, we define the conditional mutual information:



Definition 3 (Conditional mutual information). For random variables X,Y, Z, the mutual information of
X andY conditioned on Z is:

1(X:Y|12) = E [[(X|Z==Y|Z=2).

Definition 4 (Conditional mutual information of an algorithm). Let A : Z" — W be a randomized or
deterministic algorithm. Let P be a distribution on Z and let Z € Z"*2 be 2n samples drawn independently
from P. Let S; € {0,1} for i € [n] be i.i.d. uniform at random. Let Zg be the subset of Z indexed by S.
Then, the conditional mutual information of A with respect to P is:

CMIp(A) == I(A(Zs); S| Z).
In short, sample n pairs (2§, 21) € Z2 of data and randomly select one sample from each pair to make up
Zg the sample upon which the algorithm learns.

Theorem 5. Let A: Z" - W and £ : W x Z — [0,1]. Let P be a distribution on Z and define {(w,P) =
Ezpll(w,Z)] and b(w,z) = L 31" l(w, z). Then:

(AZ), 2) ~ HAZ) - P)]| <1/ 2 - CMip (A).

Z<+Pm

In particular, because the remaining samples Zg were independent from Zs:

El(A(Zs), Zs) — U(A(Zs),P)] = Z]ITIS Zn:E(AS,zSi) - Z(.As,zsi)l .

Suggestively, for a sample S’ € Z™ let us write fs(S’) for:

n

fs(8') =) UAs,zs) — U(As, 7).

i=1

Then notice that if S’ is independent of S, then E[fs(S’)] = 0. In particular, we’d really like to bound:
E[(A(Zs), Zs) — ((A(Zs), P)] = E_[Elf5(5)] - Elfs(S")]]

Consider more closely the expression inside the expectation. Last time, we made use of the following

characterization of total variation:

drv(Q, P) = i E[f ()] - Ef ()]

This time, Donsker-Varadhan dual characterization of KL divergence or the Gibbs variational principle:

Theorem 6 (Characterization of KL divergence). Let P and Q be distributions on Q with P < Q and let
f:Q — R be measurable. Then:

KL(Q| P) = sup E[f ()] — log Elexp(f(2))].

As a corollary, for any measurable f, we have:

Bl ()] < juf K@D L8 B [opl/ ()

)

which just follows from applying the inequality with ¢f and optimizing over ¢t. Naturally, we will want to
convert the Eg[t exp(fx)] term into something easier to work with, so we’ll use:



Lemma 7 (Hoeflding). Let X € [a,b] be a random variable with mean p. Then, for allt € R,

E[etx} < etu+t2(b—a)2/8_

Letting Z be fixed, it follows from the definition of mutual information that if @) is a distribution over
(A(Zs),S) and P is a distribution over (A(Zg), S’), then:

KL(Q || P) = I((A(Zs), 8); (A(Zs), 5")).



