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Background
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What we know

I all 302 neurons in C. elegans and their connections are known

I certain neurons can be individually identified across animals

I we can simultaneously record activity of a large fraction of neurons in vivo
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Neuronal activity to locomotor behavior

Figure 1: Neuronal activity form loops corresponding to a di�erent
behavior. However, microscopic dynamics di�er across individuals.
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Conservation of activities across individuals?

The microscopic activity of an individual can be reliably mapped to certain locomotion
behaviors, allowing us to predict the behavior of the animal.

I These microscopic activities are not conserved across individuals, so microscopic
activity cannot be directly used to predict behavior across animals.

I �estion: the loops formed appear qualitatively similar across animals. Can we
study the macroscopic dynamics?
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Biological scales

I Neuronal activity (microscopic): activity of individual neurons, synapses, etc.

I Neuronal dynamics (macroscopic): laws of motion that govern neuronal activity

I Locomotion behavior (organism): behavior observed at the organism level
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Microscopic v. macroscopic dynamics

“ Many disparate microscopic configurations lead to almost indistinguishable
macroscopic behavior.

Brennan and Proekt (2019)
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Problem statement

Hypothesis: evolutionary pressure selects at the macroscopic (and not at the
microscopic) level because any microscopic dynamics that generates the right
macroscopic dynamics yields the same behavior.

I �estion: can we use the observed neuronal activity to deduce neuronal
dynamics? What are the relevant variables to describe neuronal dynamics?
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Key results of paper

1. Neuronal activity across genetically-identical organisms are consistently di�erent.

2. A new method is developed (asymmetric di�usion map modelling) to construct
neuronal dynamics from neuronal activity.

3. The constructed neuronal dynamics is conserved across individuals.

4. Prediction of behavior is possible using neuronal dynamics across individuals.
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Roadmap

1. Variable activation of identified neurons in C. elegans

2. Underlying neuronal dynamics give rise to neuronal activity

3. Simulations of neuronal dynamics predict behavioral switches

4. Macroscopic dynamics are conserved among animals

5. Theoretical explanations from stochastic di�erential equations

6. Asymmetric di�usion map modeling
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Variable activation of identified neurons in C. elegans
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Is neuronal activity di�erent across individuals?

Experiment: 100 neurons simultaneously recorded in 5 animals (immobilized)1

I certain neurons closely associated to locomotion used to infer motor commands
I fictive locomotor behavior inferred for each animal

I 15 neurons could be consistently and unequivocally identified in each individual
I e.g. AIB, ALA, AVA, AVB, RIM, RME, etc.

Goal: quantify and predict motor commands across individuals

1Data collected by (Kato et al., 2015).
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Neuronal activity

Figure 2: (A) Calcium signals for one animal for ∼15 min. (B) Activity for AVA
neuron colored by behavioral state.
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Variability of neuronal activity

Figure 3: (C) Average neuron activity (ALA and RIML) during specific
locomotion behavior (reverse, dorsal turn, backward locomotion). Each color
corresponds to one of five animals, showing 95% confidence interval.
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Neuronal activity and behavior across animals

Figure 4: (D) Probabilities that neuronal activity from di�erent individuals
drawn from the same distribution (darker⇒ distributions likely di�erent).
(E) Decoding rate for backward locomotion from neuronal activity.
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Summary

The same behavior across individuals arise from di�erent firing pa�erns.

I Perhaps the brains of di�erent individuals are essentially incommensurable, in
which case we really just need to study each brain in isolation.

I Or, there is some sort of equivalence between individuals, in which case we would
like to recover the equivalence from the neuronal activity.
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Underlying neuronal dynamics give rise to neuronal activity
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Configurations of neural networks

A spiking neural network with 100 neurons has 2100 configurations. However, even in a
much more complex biological system, we might expect that:

I most configurations never actually occur

I the transition from one configuration to another is not arbitrary
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Neuronal dynamics

The laws of motions of a neural network can be mathematically specified by:

I a phase space: the set of all biologically possible configurations

I a time evolution function: a description of how the configuration of the neural
network changes over time
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Asymmetric di�usion map modeling

This paper introduces asymmetric di�usion map modeling, which is a method to
construct a neuronal dynamics from observed neuronal activity data.

I Are the dynamics recovered by this method a salient representation?

I Do the dynamics generalize across individuals?
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Reconstructed neuronal dynamics

Figure 5: Visualization of a phase space constructed by asymmetric
di�usion map modeling, colored by locomotion behavior.
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Simulated neuronal activity

Figure 6: (A) Experimentally observed (top) and simulated (bo�om) activity of
15 shared neurons. (B) Simulated trace of AVA neuron colored by behavior
(blue/green are forward/backward locomotion).
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Neuronal activity trace spectral residues

Figure 7: Di�erence in the fractional power of the spectrum of the observed
neuron and its simulation. The spectra over .05 Hz of simulated neurons are
statistically indistinguishable from experimentally observed activity.
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Dwell time distributions

Figure 8: Amount of time spent in di�erent behavioral states.
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Summary

The neuronal dynamics constructed by asymmetric di�usion map modeling can yield
simulations of neuronal activity.

I Simulated and observed neuronal activity have various matching statistics.
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Simulations of neuronal dynamics predict behavioral switches
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Behavioral switches

Switching between di�erent modes of locomotion is stochastic, likely depending entirely
on the dwell time within the current behavior.

I �estion: can the neuronal dynamics model predict future changes in behavior?
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Prediction setup

Experiment: constructed model used to predict time to behavior switch from forward
to backward locomotion.

I Prediction task data for 11 new animals under similar conditions to model animals.2

I Compare prediction with dwell time statistics model:

prediction = E[time in forward motion]− E[time to reach current state].

2Prediction task data collected by (Nichols et al., 2017). Model data collected by (Kato et al., 2015).
29 / 52



Prediction on new animals

Figure 9: Comparing predictions based on simulated dynamics and
behavioral dwell time statistics in the region where most backward
locomotion terminates and forward locomotion begins.
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Prediction using single neuron

Figure 10: Dwell time prediction using single neuron. The quality of
prediction varies depending on how coupled the neuron is to behavior.
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Summary

Asymmetric di�usion map modeling constructs a neuronal dynamics that is able to
predict behavior switches on new animals (data collected years apart).

I Prediction was based only on activity from 8–13 neurons.

I Prediction is possible based even only on one neuron.
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Macroscopic dynamics are conserved among animals
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Dynamics across animals

Figure 11: Visualization of phase space of neuronal dynamics. Fa�er width⇒ lower
phase velocity (greater stochasticity); smaller width to greater determinism.
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Summary

The neuronal dynamics are highly correlated to locomotion behaviors across animals.

I Where the loops overlap, dynamics tend to be dominated by stochasticity.

I Within the individual loops, the dynamics are more deterministic.
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Theoretical explanations from stochastic di�erential equations
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Topology of phase space

�estion: why does the phase space to look like a superposition of closed loops?
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Oscillatory behavior in neural networks

“ A feature that has o�en been observed in neural networks is oscillation. The
corresponding potential landscape shows a closed-ring shape topology.

Yan et al. (2013)
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Closed-ring topology

Figure 12: Potential landscape (white arrows show negative
gradient) with a divergence-free flux (blue arrows), Wang et al.
(2008).
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Stochastic di�erential equation model

Let X(t) ∈ Rd describe the neuronal activity at time t. Suppose there is some driving
force F(X) corresponding to the deterministic aspect of the neuronal dynamics.

I The time-evolution of the system is described by:

dX
dt

= F(X) + ε,

where ε is independent noise introducing stochasticity into the system.

40 / 52



Evolution of probability mass

Define P(X, t) the probability that the system is in state X at time t. By the law of
conservation of probability mass,

dP(X, t)
dt

= −∇ · J(X, t),

I J(X, t) = F(X)P − D∇P is the probability flux, describing how much probability
mass is passing through X at time t

I D is the di�usion coe�icient describing how noisy the neural network is
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Steady-state solution

If the neural network is at a steady-state solution (i.e. it is not learning), then dP
dt = 0,

which implies that J is divergence-free:

∇ · J(X, t) = 0.

I Equilibrium systems have J = 0.

I But generally, J = ∇× A can be a curl flux field.3

3Generalized to higher dimensions by the Hodge decomposition.
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Dynamics of nonequilibrium systems

“ The dynamics of a nonequilibrium network spirals (from flux) down the gradient
(from potential) instead of only following the gradient as in the equilibrium case.

Wang et al. (2008)
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Summary

We might expect the configuration of a neural network at a steady state (i.e. not
learning) to evolve along loops in some phase space.

I Loops are 1-dimensional objects, with a single phase parameter θ.
I A reasonable representation of neuronal dynamics is the pair (α, θ)

I α is the identity of the loop and θ its phase
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Asymmetric di�usion map modeling
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Constructing the phase space

Figure 13: Takens’ theorem states that the delay embedding can recover the
intrinsic phase space of a dynamical system.
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Manifold reconstruction

The delay embedding allows us to recover a point cloud that approximates the
underlying phase space:

neuronal activity 7→ delay embedding.

I �estion: can we apply a manifold learning technique to recover the manifold?
What about the dynamics on the phase space?
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Di�usion map

Figure 14: Di�usion map is a manifold learning technique to recover a low-dimensional
representation from a high-dimensional point cloud (Nadler et al., 2005).
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Di�usion map: main idea

Let X ∈ RN×D be a point cloud of size N in D dimensions.

I Simulate a random walk on point cloud (think of as a di�usion process).

I Goal is to construct a low-dimensional representation X̃ ∈ RN×d of point cloud

I Di�usion map is a technique that constructs X̃ so that the distance between X̃i and
X̃j are related to how long it would take a di�usion process starting at i to reach j.
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Asymmetric di�usion map

We don’t merely have a point cloud—we have time series data. We can reconstruct the
manifold while learning the underlying dynamics.
I Simulate a random walk with dri� on the point cloud

I Use dynamics data to obtain dri�, use local distances to obtain di�usion

I Obtain both a low-dimensional phase space and a time-evolution law.
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Overall pipeline
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