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Introduction
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Dictionary learning (DL) recap

Recall the dictionary learning problem: given X ∈ Rd×n, find
dictionary A ∈ Rd×m and sparse encoding Z ∈ Rm×n such that:

d


 | |
x1 · · · xn
| |

 ≈
 | |
A1 · · · Am
| |


︸ ︷︷ ︸

m


∣∣∣∣ ∣∣∣∣
z1 · · · zn∣∣∣∣ ∣∣∣∣


︸ ︷︷ ︸

n

where ‖Aj‖2 = 1 and ‖zi‖0 ≤ k.
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Dictionary learning objective

Subject to the sparsity constraint ‖zi‖0 ≤ k, the objective is to
minimize the total reconstruction error:

‖X −AZ‖2F =

n∑
i=1

‖xi −Azi‖22.
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Building intuition
Let k = 1. Assume x1, . . . , xn ∈ Sd−1.

I Sparse coding: project each data point to maximally
correlated dictionary atom.

I Dictionary learning: how to select dictionary atoms?
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Building intuition: assumption

Assume that there exists A∗1, . . . , A
∗
m ∈ Sd−1 such that for all xi:

max
j∈[m]

〈A∗j , xi〉2 ≥ τ,

there always exists a highly-correlated dictionary atom.
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Building intuition: search for highly-correlated atom

We could then iteratively search for directions At that maximizes
total correlation over only highly-correlated data points:

max
At∈Sd−1

∑
x∈X

〈At, x〉2 · 1〈At,x〉2≥τ ,

where 〈At, x〉2 is a correlation contribution that only counts when
At and x have high correlation, 1〈At,x〉2≥τ .
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τ -threshold correlation

Definition (τ -threshold correlation)

Let v1, . . . , vn ∈ Rd and w1, . . . , wn ∈ R be nonnegative weights.
Let u ∈ Sd−1 is a direction. The τ -threshold correlation between
u and {v1, . . . , vn} is:

TCτ (u; v1, . . . , vn;w1, . . . , wn) =

n∑
i=1

w2
i 〈u, vi〉2 · 1〈u,vi〉2≥τ .

We’ll drop the weights w1, . . . , wn when all the wi = 1.
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Building intuition: greedy algorithm

Initialize X0 = {x1, . . . , xn}. While Xt 6= ∅,

I Find new dictionary atom:

At ← max
u∈Sd−1

TCτ (u;Xt)

I Update points without representation:

Xt+1 ← Xt \ {xi : 〈At, xi〉2 ≥ τ}
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τ -threshold correlation and reconstruction error

Notice that the reconstruction error depends on correlation:

min
zi
‖xi −Atzi‖2 = ‖xi‖2 − 〈At, xi〉2.

At will decrease reconstruction error by at least TCτ (At;X ).
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τ -threshold correlation for dictionary learning

12 / 30



τ -threshold correlation problem

Problem (τ -threshold correlation)

Let v1, . . . , vn ∈ Sd−1 and w1, . . . , wn ∈ R≥0. The τ -threshold
correlation problem is the optimization problem:

max
u∈Sd−1

TCτ (u; v1, . . . , vn;w1, . . . , wn).
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(τ, α, β)-threshold correlation problem

Let v1, . . . , vn and w1, . . . , wn as before. Let OPT be the optimal
value of the τ -threshold problem.

Problem ((τ, α, β)-threshold correlation)

If α, β ∈ [0, 1], then an algorithm solving the (τ, α, β)-threshold
correlation problem returns a vector u ∈ Sd−1 such that:

TCα·τ (u; v1, . . . , vn;w1, . . . , wn) ≥ β ·OPT.

That is, the threshold is reduced by a factor 1− α and the
objective by a factor 1− β.
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Claim: (τ, α, β)-TC implies approximate DL

In the following, let X and A∗, Z∗ satisfy:

‖X −A∗Z∗‖2F ≤ γ∗‖X‖2F .

Further, let A∗ be incoherent.

Theorem (Informal)

If there is an efficient algorithm solving (τ, α, β)-TC, then there is
an efficient algorithm that obtains X ≈ AZ:

I with reconstruction error ‖X −AZ‖2F ≤ (γ∗ + ε)‖X‖2F
I with dictionary size M = O(m/βε)

I with sparsity K = O(k/αε2).

15 / 30



Expected reconstruction error

Notice that the condition ‖X −A∗Z∗‖2F ≤ γ∗‖X‖2F is:

γ∗ ≥ 1

‖X‖2F

n∑
i=1

‖xi −A∗z∗i ‖22

=
1∑n

i=1w
2
i

n∑
i=1

w2
i ‖vi −A∗z′i‖22,

where wi = ‖xi‖2 and vi = xi/wi and z′i = z∗i /wi.
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Greedy algorithm for dictionary learning: idea

Initialize X = {x1, . . . , xn}. While reconstruction error large:

I Find new dictionary atom: if u satisfies

TCα·τ (u;X ) ≥ β ·OPT,

then At ← u

I Replace highly-correlated points with residual:

I if 〈At, xi〉2 ≥ α · τ ,

xi ← xi −ΠAtxi,

where ΠS is the projection onto the subspace S.1

1Let Πu be the projection onto the subspace span(u).
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Greedy algorithm

Algorithm GreedyPursuit
Input: X ∈ Rd×n, sparsity k, dictionary size m, norm bound Λ,

approximation quality ε
Initialize: wi ← ‖xi‖, vi ← xi/‖xi‖ for i ∈ [n], τ ← ε2

kΛ , M = mk
1. for rounds t = 1 to M
2. do obtain solution u to (τ, α, β)-threshold correlation

problem:

TCα·τ (u; v1, . . . , vn, w1, . . . , wn) ≥ β ·OPT

and set At ← u
3. for i = 1 to n
4. if 〈At, vi〉2 ≥ ατ
5. then Zti ← wi · 〈At, vi〉 and update

vi ← vi −ΠAtvi with residual
6. else Zti ← 0
7. return A = [A1, . . . , AM ] ∈ Rd×M and Z ∈ RM×n
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Potential issue with algorithm: high correlation?

I In the k = 1 case, we assumed for all xi, there exists:

〈Aj , xi〉2 ≥ τ.

I The analogous assumption for k = 2 would be for all xi, there
exists u ∈ span(Aj , Aj′) where:

〈u, xi〉2 ≥ τ.

I But this does not imply that either:

〈Aj , xi〉2 ≥ τ or 〈Aj′ , xi〉2 ≥ τ.

I So, it is not obvious that maximizing τ -TC will be useful for
choosing dictionary atoms.

I Fix: incoherence assumption (actually, something weaker).
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Potential issue with algorithm: residuals?

I Suppose that initially, there are directions that are
highly-correlated with many of the xi’s.

I After some of the xi’s have been replaced by their residuals,

xi ← xi −ΠSxi,

where S = span(Ai1 , . . . , Ait), are there still directions
highly-correlated with many of the xi’s?

I Yes, as long as the residuals are not too small.
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(τ, α, β)-TC implies approximate DL

In the following, let X ∈ Rd×n such that there exists A∗ ∈ Rd×m
and Z∗ ∈ Rm×n satisfying:

(a) the columns of A∗ are unit vectors

(b) the columns of Z∗ are k-sparse and satisfy ‖z∗i ‖2 ≤ Λ‖xi‖2

(c) we have ‖X −A∗Z∗‖2F ≤ γ∗‖X‖2F .

Theorem
Let ε > 0 be an accuracy parameter. If there is an efficient
algorithm solving the (τ, α, β)-TC problem, then there is an
efficient algorithm that outputs A ∈ Rd×M and Z ∈ RM×n with:

I ‖X −AZ‖2F ≤ (γ∗ + ε)‖X‖2F ,

I the size of the dictionary is M = O (mΛ/βε),

I the zi’s are K-sparse with K = O(kΛ/αε2).
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Norm bound to fix first potential issue

Condition (b) states ‖z∗i ‖2 ≤ Λ‖xi‖2. In the exact case,
X = A∗Z∗, this means:

‖z∗i ‖2 ≤ Λ‖A∗z∗i ‖2.

That is, A∗ doesn’t shrink z∗i much: if two columns contribute to
the sparse representation, then their contributions can’t
significantly cancel each other out.

I Incoherence assumption on A∗ implies norm bound.

22 / 30



Lemma to fix second potential issue

Lemma (Residuals preserve correlations)

Let v,A∗1, . . . , A
∗
k ∈ Sd−1 and v =

∑
i αiA

∗
i + y. For any subspace

S ⊂ Rd, let v′ = v −ΠSv be the residual. Then:

k∑
i=1

〈A∗i , v′〉2 ≥
(‖v′‖2 − ‖y‖2)2

+

4
(∑

i α
2
i

) ,

where (r)+ = max{0, r} for r ∈ R.

I Read: v has optimal representation
∑

i αiA
∗
i and error y.

I As long as residual still large: ‖v′‖2 − ‖y‖2 ≥ ε2,

I then the residual will be highly-correlated with at least one A∗i ,

〈A∗i , v′〉2 ≥
ε2

4kΛ
.
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Individual correlation to collective correlation

I The previous lemma shows that if the reconstruction error of
xi is large, then it is highly-correlated with some A∗j .

I But is there an A∗j highly correlated to many xi’s that still
have large reconstruction error?

I Suppose at time t of Algorithm GreedyPursuit, we have
matrices A(t) and Z(t) satisfying:

‖X −A(t)Z(t)‖2F = γ(t)‖X‖2F ≥ (γ∗ + ε)‖X‖2F ,

then a significant number of residuals still have large
reconstruction error.

I Each residual is highly correlated to some A∗j ; a large fraction
of reconstruction error is shared across these m directions.

I At least one of the A∗j account for at least 1
m -fraction.
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Collective correlation

Lemma (Existence of highly-correlated dictionary atom)

Let A(t), Z(t) and γ(t) as above. Let x
(t)
i = xi −A(t)z

(t)
i be the

residual of xi at time t. There is a j ∈ [m] and R ⊂ [n] so that:

〈A∗j , x
(t)
i 〉

2 ≥ ε2

16kΛ
‖xi‖2

for all i ∈ R and∑
i∈R
〈A∗j , x

(t)
i 〉

2 ≥ (γ(t) − γ∗)2

16mΛ
‖X‖2F .

I Read: there is an A∗j highly correlated to xi for i ∈ R ⊂ [n],

I and adding A∗j can significantly decrease reconstruction error.
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Apply (τ, α, β)-TC

Corollary

If we have an algorithm to solve (τ, α, β)-threshold correlation,
where τ = ε2/16kΛ, then at time t of Algorithm GreedyPursuit,
then we can construct a vector At so for some subset R′ ⊂ [m],

〈At, x(t)
i 〉

2 ≥ α · ε2

16kΛ
‖xi‖2

for all i ∈ R′ and∑
i∈R′
〈At, x(t)

i 〉
2 ≥ β · (γ(t) − γ∗)2

16mΛ
‖X‖2F .
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Corollary implies Theorem

Proof sketch of Theorem.

I The first result of the corollary: every time we update zi with
a nonzero entry, we decrease the approximation error for xi by

(αε2/16kΛ) · ‖xi‖2.

The final sparsity of zi is at most K = O(kΛ/αε2).

I As for the reconstruction error, algebra applied to the second
result of the corollary shows that

γ(t) − γ∗ ≤ 16mΛ/βt.

To obtain approximation error (γ∗ + ε)‖X‖2F , need at most
M = O(mΛ/βε) steps.
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Efficient algorithm for (τ, α, β)-TC
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Existence of efficient algorithm

Theorem (Efficient solution to (τ, α, β)-TC)

Let τ ∈ (0, 1). There is a polynomial time algorithm that solves
(τ, τ/4, τ2/32)-threshold correlation.
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Algorithm

Suppose v1, . . . , vn ∈ Sd−1 and w1, . . . , wn ∈ R≥0 and u
maximizes τ -TC. WLOG, let first q vectors be highly-correlated:

〈u, v1〉2, . . . , 〈u, vq〉2 ≥ τ.

I These vi’s are contained in spherical cap around ±u.

I In fact, one of the v`’s for ` ∈ [q] correlated with many others:

TCτ ·τ/4(v`; v1, . . . , vq;w1, . . . wq) ≥
τ2

32

q∑
i=1

w2
i 〈u, vi〉2.

I Algorithm: iterate through v1, . . . , vn and compute the
τ2/4-TC with the whole set. Return v` satisfying above.
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