Approximate guarantees for dictionary learning Bhaskara, Tai '19

Geelon So (agso@eng.ucsd.edu)

June 17, 2020

Proceedings of Machine Learning Research vol 99:1-18, 2019

32nd Annual Conference on Learning Theory **Approximate Guarantees for Dictionary Learning**

Aditya Bhaskara Wai Ming Tai* University of Utah, Salt Lake City, Utah, USA BHASKARA@CS.UTAH.EDU WMTAI@CS.UTAH.EDU

Introduction

Dictionary learning (DL) recap

Recall the dictionary learning problem: given $X \in \mathbb{R}^{d \times n}$, find dictionary $A \in \mathbb{R}^{d \times m}$ and sparse encoding $Z \in \mathbb{R}^{m \times n}$ such that:

where $||A_j||_2 = 1$ and $||z_i||_0 \le k$.

Dictionary learning objective

Subject to the sparsity constraint $||z_i||_0 \le k$, the objective is to minimize the **total reconstruction error**:

$$||X - AZ||_F^2 = \sum_{i=1}^n ||x_i - Az_i||_2^2.$$

Building intuition

Let k = 1. Assume $x_1, \ldots, x_n \in S^{d-1}$.

- Sparse coding: project each data point to maximally correlated dictionary atom.
- **Dictionary learning:** how to select dictionary atoms?

Building intuition: assumption

Assume that there exists $A_1^*, \ldots, A_m^* \in S^{d-1}$ such that for all x_i :

$$\max_{j \in [m]} \langle A_j^*, x_i \rangle^2 \ge \tau,$$

there always exists a highly-correlated dictionary atom.

Building intuition: search for highly-correlated atom

We could then iteratively **search** for directions A_t that maximizes total correlation over only highly-correlated data points:

$$\max_{A_t \in S^{d-1}} \sum_{x \in \mathcal{X}} \langle A_t, x \rangle^2 + \mathbf{1}_{\langle A_t, x \rangle^2 \geq \tau},$$

where $\langle A_t, x \rangle^2$ is a correlation contribution that only counts when A_t and x have high correlation, $\mathbf{1}_{\langle A_t, x \rangle^2 \geq \tau}$.

$\tau\text{-threshold}$ correlation

Definition (τ -threshold correlation)

Let $v_1, \ldots, v_n \in \mathbb{R}^d$ and $w_1, \ldots, w_n \in \mathbb{R}$ be nonnegative weights. Let $u \in S^{d-1}$ is a direction. The τ -threshold correlation between u and $\{v_1, \ldots, v_n\}$ is:

$$\mathrm{TC}_{\tau}(u;v_1,\ldots,v_n;w_1,\ldots,w_n) = \sum_{i=1}^n w_i^2 \langle u,v_i \rangle^2 \cdot \mathbf{1}_{\langle u,v_i \rangle^2 \geq \tau}.$$

We'll drop the weights w_1, \ldots, w_n when all the $w_i = 1$.

Building intuition: greedy algorithm

Initialize
$$\mathcal{X}_0 = \{x_1, \dots, x_n\}$$
. While $\mathcal{X}_t \neq \emptyset$,

► Find new dictionary atom:

$$A_t \leftarrow \max_{u \in S^{d-1}} \operatorname{TC}_{\tau}(u; \mathcal{X}_t)$$

▶ Update points without representation:

$$\mathcal{X}_{t+1} \leftarrow \mathcal{X}_t \setminus \{x_i : \langle A_t, x_i \rangle^2 \ge \tau\}$$

$\tau\text{-threshold}$ correlation and reconstruction error

Notice that the reconstruction error depends on correlation:

$$\min_{z_i} \|x_i - A_t z_i\|^2 = \|x_i\|^2 - \langle A_t, x_i \rangle^2.$$

 A_t will decrease reconstruction error by at least $TC_{\tau}(A_t; \mathcal{X})$.

 $\tau\text{-threshold}$ correlation for dictionary learning

$\tau\text{-threshold}$ correlation problem

Problem (τ -threshold correlation)

Let $v_1, \ldots, v_n \in S^{d-1}$ and $w_1, \ldots, w_n \in \mathbb{R}_{\geq 0}$. The τ -threshold correlation problem is the optimization problem:

$$\max_{u\in S^{d-1}} \operatorname{TC}_{\tau}(u; v_1, \dots, v_n; w_1, \dots, w_n).$$

$(\tau, \alpha, \beta)\text{-threshold correlation problem}$

Let v_1, \ldots, v_n and w_1, \ldots, w_n as before. Let OPT be the optimal value of the τ -threshold problem.

Problem ((τ, α, β) -threshold correlation) If $\alpha, \beta \in [0, 1]$, then an algorithm solving the (τ, α, β) -threshold correlation problem returns a vector $u \in S^{d-1}$ such that:

$$\operatorname{TC}_{\boldsymbol{\alpha}\cdot\boldsymbol{\tau}}(u;v_1,\ldots,v_n;w_1,\ldots,w_n) \geq \boldsymbol{\beta}\cdot\operatorname{OPT}.$$

That is, the threshold is reduced by a factor $1-\alpha$ and the objective by a factor $1-\beta.$

Claim: (τ, α, β) -TC implies approximate DL

In the following, let X and A^{\ast}, Z^{\ast} satisfy:

$$||X - A^* Z^*||_F^2 \le \gamma^* ||X||_F^2.$$

Further, let A^* be incoherent.

Theorem (Informal)

If there is an efficient algorithm solving (τ, α, β) -TC, then there is an efficient algorithm that obtains $X \approx AZ$:

- with reconstruction error $||X AZ||_F^2 \le (\gamma^* + \varepsilon)||X||_F^2$
- with dictionary size $M = O(m/\beta\varepsilon)$
- with sparsity $K = O(k/\alpha \varepsilon^2)$.

Expected reconstruction error

Notice that the condition $||X - A^*Z^*||_F^2 \leq \gamma^* ||X||_F^2$ is:

$$\gamma^* \ge \frac{1}{\|X\|_F^2} \sum_{i=1}^n \|x_i - A^* z_i^*\|_2^2$$
$$= \frac{1}{\sum_{i=1}^n w_i^2} \sum_{i=1}^n w_i^2 \|v_i - A^* z_i'\|_2^2,$$

where $w_i = ||x_i||_2$ and $v_i = x_i/w_i$ and $z'_i = z^*_i/w_i$.

Greedy algorithm for dictionary learning: idea

Initialize $\mathcal{X} = \{x_1, \dots, x_n\}$. While reconstruction error large: Find new dictionary atom: if u satisfies

$$\mathrm{TC}_{\alpha \cdot \tau}(u; \mathcal{X}) \geq \beta \cdot \mathrm{OPT},$$

then $A_t \leftarrow u$

▶ Replace highly-correlated points with residual:
 ▶ if ⟨A_t, x_i⟩² > α · τ.

$$x_i \leftarrow x_i - \prod_{A_t} x_i,$$

where Π_S is the projection onto the subspace S^{1} .

¹Let Π_u be the projection onto the subspace span(u).

Greedy algorithm

Algorithm GreedyPursuit Input: $X \in \mathbb{R}^{d \times n}$, sparsity k, dictionary size m, norm bound Λ , approximation quality ε

Initialize: $w_i \leftarrow ||x_i||, v_i \leftarrow x_i/||x_i||$ for $i \in [n], \tau \leftarrow \frac{\varepsilon^2}{k\Lambda}, M = mk$ 1. **for** rounds t = 1 **to** M

- 1. **for** rounds t = 1 **to** M
- 2. **do** obtain solution u to (τ, α, β) -threshold correlation problem:

$$\operatorname{TC}_{\alpha \cdot \tau}(u; v_1, \dots, v_n, w_1, \dots, w_n) \ge \beta \cdot \operatorname{OPT}$$

and set
$$A_t \leftarrow u$$

3. for $i = 1$ to n
4. if $\langle A_t, v_i \rangle^2 \ge \alpha \tau$
5. then $Z_{ti} \leftarrow w_i \cdot \langle A_t, v_i \rangle$ and update
 $v_i \leftarrow v_i - \prod_{A_t} v_i$ with residual
6. else $Z_{ti} \leftarrow 0$
7. return $A = [A_1, \dots, A_M] \in \mathbb{R}^{d \times M}$ and $Z \in \mathbb{R}^{M \times n}$

Potential issue with algorithm: high correlation?

▶ In the k = 1 case, we assumed for all x_i , there exists:

 $\langle A_j, x_i \rangle^2 \ge \tau.$

► The analogous assumption for k = 2 would be for all x_i , there exists $u \in \text{span}(A_j, A_{j'})$ where:

$$\langle u, x_i \rangle^2 \ge \tau.$$

But this does not imply that either:

$$\langle A_j, x_i \rangle^2 \ge \tau$$
 or $\langle A_{j'}, x_i \rangle^2 \ge \tau$.

- So, it is not obvious that maximizing *τ*-TC will be useful for choosing dictionary atoms.
- ▶ Fix: incoherence assumption (actually, something weaker).

Potential issue with algorithm: residuals?

- ► Suppose that initially, there are directions that are highly-correlated with many of the *x_i*'s.
- After some of the x_i 's have been replaced by their residuals,

$$x_i \leftarrow x_i - \Pi_S x_i,$$

where $S = \text{span}(A_{i_1}, \ldots, A_{i_t})$, are there still directions highly-correlated with many of the x_i 's?

> Yes, as long as the residuals are not too small.

$(\tau, \alpha, \beta)\text{-}\mathsf{TC}$ implies approximate DL

In the following, let $X \in \mathbb{R}^{d \times n}$ such that there exists $A^* \in \mathbb{R}^{d \times m}$ and $Z^* \in \mathbb{R}^{m \times n}$ satisfying:

- (a) the columns of A^* are unit vectors
- (b) the columns of Z^* are k-sparse and satisfy $||z_i^*||^2 \leq \Lambda ||x_i||^2$
- (c) we have $||X A^*Z^*||_F^2 \le \gamma^* ||X||_F^2$.

Theorem

Let $\varepsilon > 0$ be an accuracy parameter. If there is an efficient algorithm solving the (τ, α, β) -TC problem, then there is an efficient algorithm that outputs $A \in \mathbb{R}^{d \times M}$ and $Z \in \mathbb{R}^{M \times n}$ with:

•
$$||X - AZ||_F^2 \le (\gamma^* + \varepsilon) ||X||_F^2$$

• the size of the dictionary is $M = O(m\Lambda/\beta\varepsilon)$,

• the z_i 's are K-sparse with $K = O(k\Lambda/\alpha\varepsilon^2)$.

Norm bound to fix first potential issue

Condition (b) states $||z_i^*||^2 \leq \Lambda ||x_i||^2$. In the exact case, $X = A^*Z^*$, this means:

$$|z_i^*||^2 \le \Lambda ||A^* z_i^*||^2.$$

That is, A^* doesn't shrink z_i^* much: if two columns contribute to the sparse representation, then their contributions can't significantly cancel each other out.

Lemma to fix second potential issue

Lemma (Residuals preserve correlations)

Let $v, A_1^*, \ldots, A_k^* \in S^{d-1}$ and $v = \sum_i \alpha_i A_i^* + y$. For any subspace $S \subset \mathbb{R}^d$, let $v' = v - \prod_S v$ be the residual. Then:

$$\sum_{i=1}^{k} \langle A_i^*, v' \rangle^2 \ge \frac{(\|v'\|^2 - \|y\|^2)_+^2}{4\left(\sum_i \alpha_i^2\right)},$$

where $(r)_+ = \max\{0, r\}$ for $r \in \mathbb{R}$.

- ▶ **Read:** v has optimal representation $\sum_i \alpha_i A_i^*$ and error y.
- ▶ As long as residual still large: $\|v'\|^2 \|y\|^2 \ge \varepsilon^2$,
- ▶ then the residual will be highly-correlated with at least one A_i^* ,

$$\langle A_i^*, v' \rangle^2 \ge \frac{\varepsilon^2}{4k\Lambda}.$$

Individual correlation to collective correlation

- ► The previous lemma shows that if the reconstruction error of x_i is large, then it is highly-correlated with some A^{*}_i.
- ▶ But is there an A^{*}_j highly correlated to many x_i's that still have large reconstruction error?
- ► Suppose at time t of Algorithm GreedyPursuit, we have matrices A^(t) and Z^(t) satisfying:

$$||X - A^{(t)}Z^{(t)}||_F^2 = \gamma^{(t)}||X||_F^2 \ge (\gamma^* + \varepsilon)||X||_F^2,$$

then a significant number of residuals still have large reconstruction error.

- ► Each residual is highly correlated to some A_j^* ; a large fraction of reconstruction error is shared across these *m* directions.
- At least one of the A_i^* account for at least $\frac{1}{m}$ -fraction.

Collective correlation

Lemma (Existence of highly-correlated dictionary atom) Let $A^{(t)}$, $Z^{(t)}$ and $\gamma^{(t)}$ as above. Let $x_i^{(t)} = x_i - A^{(t)} z_i^{(t)}$ be the residual of x_i at time t. There is a $j \in [m]$ and $R \subset [n]$ so that:

$$\langle A_j^*, x_i^{(t)} \rangle^2 \ge \frac{\varepsilon^2}{16k\Lambda} \|x_i\|^2$$

for all $i \in R$ and

$$\sum_{i \in R} \langle A_j^*, x_i^{(t)} \rangle^2 \ge \frac{(\gamma^{(t)} - \gamma^*)^2}{16m\Lambda} \|X\|_F^2.$$

▶ Read: there is an A^{*}_j highly correlated to x_i for i ∈ R ⊂ [n],
 ▶ and adding A^{*}_i can significantly decrease reconstruction error.

Apply (τ, α, β) -TC

Corollary

If we have an algorithm to solve (τ, α, β) -threshold correlation, where $\tau = \varepsilon^2/16k\Lambda$, then at time t of Algorithm GreedyPursuit, then we can construct a vector A_t so for some subset $R' \subset [m]$,

$$\langle A_t, x_i^{(t)} \rangle^2 \ge \frac{\boldsymbol{\alpha} \cdot \boldsymbol{\varepsilon}^2}{16k\Lambda} \|x_i\|^2$$

for all $i \in R'$ and

$$\sum_{i \in R'} \langle A_t, x_i^{(t)} \rangle^2 \ge \frac{\beta \cdot (\gamma^{(t)} - \gamma^*)^2}{16m\Lambda} \|X\|_F^2.$$

Corollary implies Theorem

Proof sketch of Theorem.

► The first result of the corollary: every time we update z_i with a nonzero entry, we decrease the approximation error for x_i by

$$(\alpha \varepsilon^2 / 16k\Lambda) \cdot ||x_i||^2.$$

The final sparsity of z_i is at most $K = O(k\Lambda/\alpha\varepsilon^2)$.

 As for the reconstruction error, algebra applied to the second result of the corollary shows that

$$\gamma^{(t)} - \gamma^* \le 16m\Lambda/\beta t.$$

To obtain approximation error $(\gamma^* + \varepsilon) \|X\|_F^2$, need at most $M = O(m\Lambda/\beta\varepsilon)$ steps.

Efficient algorithm for (τ, α, β) -TC

Existence of efficient algorithm

Theorem (Efficient solution to (τ, α, β) -TC)

Let $\tau \in (0, 1)$. There is a polynomial time algorithm that solves $(\tau, \tau/4, \tau^2/32)$ -threshold correlation.

Algorithm

Suppose $v_1, \ldots, v_n \in S^{d-1}$ and $w_1, \ldots, w_n \in \mathbb{R}_{\geq 0}$ and u maximizes τ -TC. WLOG, let first q vectors be highly-correlated:

$$\langle u, v_1 \rangle^2, \dots, \langle u, v_q \rangle^2 \ge \tau.$$

- These v_i 's are contained in spherical cap around $\pm u$.
- ▶ In fact, one of the v_ℓ 's for $\ell \in [q]$ correlated with many others:

$$\mathrm{TC}_{\tau \cdot \tau/4}(v_{\ell}; v_1, \dots, v_q; w_1, \dots, w_q) \geq \frac{\tau^2}{32} \sum_{i=1}^q w_i^2 \langle u, v_i \rangle^2.$$

▶ Algorithm: iterate through v_1, \ldots, v_n and compute the $\tau^2/4$ -TC with the whole set. Return v_ℓ satisfying above.