The double descent phenomenon

Generalization of overparametrized models

Geelon So, agso@eng.ucsd.edu DSC291 Machine Learning — November 8, 2022

Review: classical statistical learning framework

A learner would like to answer a question about the world.

- 1. The learner selects a **model**—a family of possible explanations/hypotheses.
- 2. The learner collects **data** from the world.
- 3. The learner then **fits** the model to the data.

The model's ability to **generalize** is how well it accounts for out-of-sample data.

Learning through risk minimization

The standard approach to learning

- 1. Select a **model** \mathcal{H} .
- **2**. Define the **risk** of a hypothesis $h \in \mathcal{H}$ as:

R(h) = a measure of how poorly *h* explains the world.

- ▶ The goal is to find the *best-in-class explanation* $h^* = \arg \min_{h \in \mathcal{H}} R(h)$.
- ▶ The *model bias* measures the risk $R(h^*)$ of the best explanation.
- > We generally cannot compute the risk directly, but we can estimate it.
- **3.** Construct a **risk estimation** procedure that finds an estimate $\hat{R}(h)$ of R(h).
- 4. Minimize the risk estimator:

$$\hat{h} := \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \hat{R}(h).$$

Generalization theory through empirical risk minimization

We can decompose the risk R(h) as:

$$R(h) = \underbrace{\hat{R}(h) - \hat{R}(h^*)}_{\text{estimated gap}} + \underbrace{\left(R(h) - \hat{R}(h)\right)}_{\text{estimation error for }h} + \underbrace{\left(\hat{R}(h^*) - R(h^*)\right)}_{\text{estimation error for }h^*} + \underbrace{R(h^*)}_{\text{model bias}}$$

For the empirical risk minimizer \hat{h} , the *estimated gap* term is non-positive, so:

 $R(\hat{h}) \leq \text{estimation error terms} + \text{model bias term.}$

Results from classical generalization theory

Generalization theory tends to give us bounds on the estimation error term so that:

$$R(\hat{h}) \leq \sqrt{\frac{\text{capacity of model}}{\text{amount of training data}} + \text{model bias.}}$$

- The **capacity** of \mathcal{H} measures how many worlds \mathcal{H} can explain.
- Generally, the bias of a model increases as its capacity shrinks.
 - > This leads to the **bias-variance tradeoff**.

Intuition: how the bias of \mathcal{H} relate to the capacity of \mathcal{H} .

- ► Small capacity: if *H* cannot explain many worlds, it may poorly explain the one in which the learner lives. This leads to a large bias term.
- Large capacity: if many (very different) explanations account for what the learner sees, how to pick among these explanations? This leads to a large variance term.

Classical bias-variance tradeoff

Figure 1: Belkin et al. (2018)

Question. How complicated of a model should you try to fit?

- Classical statistics says not too large: try to find the 'sweet spot'.
- However, in modern machine learning, we often fit very over-parameterized models and achieve good generalization.
 - The capacity of neural nets often allow for training loss to be driven down to zero (that is, the model *interpolates* the training data).

Double descent phenomenon

Figure 2: In the 'modern' interpolating regime, increasing model capacity often empirically leads to better generalization, Belkin et al. (2018).

Double descent a robust phenomenon

Figure 3: Double descent is observed across many models, tasks, optimizers, training time, and noise levels. Pictured is the train/test error for family of ResNet18 on CIFAR-10 (Nakkiran et al., 2021).

Generalization theory: what's missing?

- ► In an over-parameterized model where many explanations equally account for the training data, how does the learner select one?
 - > Generalization also depends on how we regularize and optimize.

Algorithms without double descent?

Figure 4: Generalization curves for different methods of learning a classifier on Boolean data $\{-1, +1\}^N$ using a dataset of size αN (Opper et al., 1990).

Double descent in ordinary least squares: warm-up

One explanation of double descent

Belkin et al. (2020) examines double descent through the lens of signal-to-noise ratio.

Intuition for ordinary least squares (OLS): if the number of data points is around the number of dimensions, then likely there are directions with a low signal-to-noise ratio. OLS will overfit those directions to noise.

Figure 5: The instances x_1 and x_2 (black) provides good signal along the horizontal direction, but poor signal along the vertical direction.

Linear regression problem

Problem. Suppose nature generates data as follows:

$$y = x^{\top}\beta + \varepsilon,$$

- ▶ the covariates $x \in \mathbb{R}^d$ are *d* dimensional
- the noise $\varepsilon \in \mathbb{R}$ is drawn from $\mathcal{N}(0, \sigma^2)$
- there is a true regressor β , but it is unknown to the learner

Goal. The goal of the learner is to use data to give an estimate $\hat{\beta}$ of β minimizing:

$$\|\hat{\beta} - \beta\|^2.$$

Linear regression in the interpolating regime

When the number of parameters *d* is at least the number of data points *n*, we can always perfectly fit a linear regressor:

$$\mathbf{Y} = \mathbf{X}\hat{\boldsymbol{\beta}},$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{Y} \in \mathbb{R}^{n}$, and $\hat{\beta} \in \mathbb{R}^{d}$.

▶ In fact, if d > n, then there are infinitely many interpolating $\hat{\beta}$'s.

• If we fit $\hat{\beta}$ using OLS, we obtain a specific choice:

$$\hat{\beta} = \mathbf{X}^{+}\mathbf{Y},$$

where X^+ is the Moore-Penrose pseudoinverse of X. In this setting, $XX^+ = I_d$.

Linear regression in the interpolating regime

Question. How poorly can $\hat{\beta}$ estimate β in the interpolating regime?

A 2D example

Setting. Consider data in \mathbb{R}^2 generated by:

$$y = x^{\top} e_1 + \varepsilon,$$

where e_1 is the first basis direction and ε is Gaussian.

Data. Suppose we are given two data points:

$$x_A = \begin{bmatrix} 1 \\ -\delta \end{bmatrix} \qquad x_B = \begin{bmatrix} 1 \\ +\delta \end{bmatrix}$$
$$y_A = 1 + \varepsilon_A \qquad y_B = 1 + \varepsilon_B$$

Solution. OLS estimate $\hat{\beta}$ is:

$$\hat{\beta}_1 = 1 + \frac{\varepsilon_A + \varepsilon_B}{2}$$
 $\hat{\beta}_2 = \frac{1}{\delta} \frac{\varepsilon_B - \varepsilon_A}{2}$

Computation of 2D example

Here, $\beta = e_1$ and OLS estimate $\hat{\beta}$ is:

$$\hat{\beta}_1 = 1 + \frac{\varepsilon_A + \varepsilon_B}{2} \qquad \hat{\beta}_2 = \frac{1}{\delta} \frac{\varepsilon_B - \varepsilon_A}{2}$$

Notice that: $e_1 = \frac{x_A + x_B}{2}$ and $\delta e_2 = \frac{x_B - x_A}{2}$.

• The vector e_1 has to explain β_1 and some noise:

$$\frac{y_A + y_B}{2} = 1 + \frac{\varepsilon_A + \varepsilon_B}{2}$$

b But, the small vector δe_2 also has to explain a (relatively large) part of the noise:

$$rac{y_B-y_A}{2}=rac{arepsilon_B-arepsilon_A}{2}.$$

Double descent from 2D example

Suppose instead that x_A and x_B were actually (d + 1)-dimensional vectors:

$$egin{array}{lll} x_A &= egin{bmatrix} 1 & -\delta/\sqrt{d} & \cdots & -\delta/\sqrt{d} \end{bmatrix}^ op \ x_B &= egin{bmatrix} 1 & +\delta/\sqrt{d} & \cdots & +\delta/\sqrt{d} \end{bmatrix}^ op. \end{array}$$

▶ The same part of the noise $\frac{\varepsilon_B - \varepsilon_A}{2}$ needs to be explained by a vector:

$$rac{x_B-x_A}{2}=rac{\delta}{\sqrt{d}}\cdotegin{bmatrix}0&1&\cdots&1\end{bmatrix}^{ op},$$

which has norm δ , as before. But, the same noise is spread out across *d* directions:

$$\hat{\beta}_j = \frac{1}{\delta d} \frac{\varepsilon_B - \varepsilon_A}{2} \qquad j > 1.$$

Double descent from 2D example

We can now compute the generalization error:

$$\mathbb{E}\left[\left\|\hat{\beta}-\beta\right\|^{2}\right] = \mathbb{E}\left[\left(\frac{\varepsilon_{A}+\varepsilon_{B}}{2}\right)^{2}\right] + \sum_{j>1}\mathbb{E}\left[\left(\frac{1}{\delta d}\frac{\varepsilon_{B}-\varepsilon_{A}}{2}\right)\right] = \frac{1}{2} + \frac{1}{d}\frac{1}{2\delta^{2}}.$$

The ¹/₂ terms comes from the noise explained by the first term.
The ¹/_d ¹/_{2δ²} goes to zero as *d* goes to infinity.

Double descent in ordinary least squares: Gaussian model

Linear regression problem

Problem. Suppose nature generates data as follows:

$$y = x^{\top}\beta + \varepsilon,$$

- ▶ the covariates $x \in \mathbb{R}^d$ are d dimensional standard Gaussians, $x \sim \mathcal{N}(0, \frac{1}{d}\mathbf{I}_d)$
- $\blacktriangleright \,$ the noise $\varepsilon \in \mathbb{R}$ is drawn from $\mathcal{N}(\mathbf{0},\sigma^2)$
- there is a true regressor β , but it is unknown to the learner

Goal. The goal of the learner is to use data to give an estimate $\hat{\beta}$ of β minimizing:

$$\|\hat{\beta} - \beta\|^2.$$

Linear regression on a single data point

Data. Let $y = x^{\top}\beta + \varepsilon$ where:

$$x \sim \mathcal{N}ig(0, rac{1}{d} \mathbf{I}_dig) \qquad ext{and} \qquad arepsilon \sim \mathcal{N}(0, \sigma^2).$$

Solution. OLS returns the following:

$$\hat{eta} = rac{xy}{\|x\|^2} = rac{xx^ op eta + xarepsilon}{\|x\|^2} = \Pi_xeta + rac{xarepsilon}{\|x\|^2},$$

where Π_x is the projection operator onto span(*x*).

• Note that
$$\hat{\beta}$$
 satisfies: $x^{\top}\hat{\beta} = \frac{x^{\top}xy}{\|x\|^2} = y$

Generalization error

Denote $\beta_x = \prod_x \beta$ and $\beta_x^{\perp} = \beta - \beta_x$ its orthogonal complement.

$$\mathbb{E}\left[\|\hat{\beta} - \beta\|^{2}\right] = \mathbb{E}\left[\left\|\Pi_{x}\beta + \frac{x\varepsilon}{\|x\|^{2}} - \beta\right\|^{2}\right]$$
$$= \mathbb{E}\left[\left\|\beta_{x}^{\perp} + \frac{x\varepsilon}{\|x\|^{2}}\right\|^{2}\right]$$
$$= \underbrace{\mathbb{E}\left[\left\|\beta_{x}^{\perp}\|^{2}\right]}_{\text{error from unseen directions}} + \underbrace{\mathbb{E}\left[\frac{\varepsilon^{2}}{\|x\|^{2}}\right]}_{\text{error from explaining noise}}$$

Notice that the last term is related to the signal-to-noise ratio.

.

Generalization error

Because *x* is isotropic Gaussian, the error from unseen directions is:

And the error from explaining all the noise in the x direction:

Note that when x is standard normal, 1/||x||² follows an inverse Wishart distribution (and ||x||² follows a χ²-distribution with degree of freedom d).

▶ If d = 1 or d = 2, then the expected generalization error is infinite.

χ^2 -distribution

Figure 6: χ^2 -distributions where *k* is the degree of freedom, from *Wikipedia*.

Main result from Belkin et al. (2020)

Setting. Their setting extends this setting of linear regression on single point $x \in \mathbb{R}^d$.

- ▶ They train a regressor on *n* data points $x_1, \ldots, x_n \sim \mathcal{N}(0, \frac{1}{d}\mathbf{I}_d)$.
- ▶ To compare across size of model, only p random dimensions of \mathbb{R}^d are revealed.

Theorem (Belkin et al. (2020))

Let $\hat{\beta}$ be the OLS regressor in this setting. Then its expected risk is:

$$\mathbb{E}\left[\left(y-x^{\top}\hat{\beta}\right)^{2}\right] = \begin{cases} \left(\left(1-\frac{p}{d}\right) \cdot \|\beta\|^{2} + \sigma^{2}\right) \cdot \left(1+\frac{p}{n-p-1}\right) & p \leq n-2\\ \infty & p = n, n+1\\ \|\beta\|^{2} \cdot \left(1-\frac{n}{d} \cdot \left(2-\frac{d-n-1}{p-n-1}\right)\right) + \sigma^{2} \cdot \left(1+\frac{n}{p-n-1}\right) & p \geq n+2 \end{cases}$$

Main result from Belkin et al. (2020)

Figure 7: Visualization of the double descent curve from previous theorem(Belkin et al., 2020).

References

- Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning practice and the bias-variance trade-off. *arXiv preprint arXiv:1812.11118*, 2018.
- Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. *SIAM Journal on Mathematics of Data Science*, 2(4):1167–1180, 2020.
- Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double descent: Where bigger models and more data hurt. *Journal of Statistical Mechanics: Theory and Experiment*, 2021(12):124003, 2021.
- M Opper, W Kinzel, J Kleinz, and R Nehl. On the ability of the optimal perceptron to generalise. *Journal of Physics A: Mathematical and General*, 23(11):L581, 1990.