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Review: classical statistical learning framework

A learner would like to answer a question about the world.

1. The learner selects amodel—a family of possible explanations/hypotheses.

2. The learner collects data from the world.

3. The learner then fits the model to the data.

The model’s ability to generalize is how well it accounts for out-of-sample data.
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Learning through risk minimization

The standard approach to learning
1. Select a modelH.

2. Define the risk of a hypothesis h ∈ H as:

R(h) = a measure of how poorly h explains the world.

▶ The goal is to find the best-in-class explanation h∗ = argminh∈H R(h).
▶ The model bias measures the risk R(h∗) of the best explanation.
▶ We generally cannot compute the risk directly, but we can estimate it.

3. Construct a risk estimation procedure that finds an estimate R̂(h) of R(h).

4. Minimize the risk estimator:

ĥ := argmin
h∈H

R̂(h).
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Generalization theory through empirical risk minimization

We can decompose the risk R(h) as:

R(h) = R̂(h)− R̂(h∗)︸ ︷︷ ︸
estimated gap

+
(
R(h)− R̂(h)

)︸ ︷︷ ︸
estimation error for h

+
(
R̂(h∗)− R(h∗)

)︸ ︷︷ ︸
estimation error for h∗

+ R(h∗)︸ ︷︷ ︸
model bias

▶ For the empirical risk minimizer ĥ, the estimated gap term is non-positive, so:

R(ĥ) ≤ estimation error terms+model bias term.
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Results from classical generalization theory

Generalization theory tends to give us bounds on the estimation error term so that:

R(ĥ) ≤

√
capacity of model

amount of training data
+model bias.

▶ The capacity ofH measures how many worldsH can explain.
▶ Generally, the bias of a model increases as its capacity shrinks.

▶ This leads to the bias-variance tradeoff.

5 / 30



Bias-variance tradeoff

Intuition: how the bias of H relate to the capacity ofH.

▶ Small capacity: ifH cannot explain many worlds, it may poorly explain the one in
which the learner lives. This leads to a large bias term.

▶ Large capacity: if many (very different) explanations account for what the learner
sees, how to pick among these explanations? This leads to a large variance term.
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Classical bias-variance tradeoff

Figure 1: Belkin et al. (2018)
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Model selection problem

Question. How complicated of a model should you try to fit?

▶ Classical statistics says not too large: try to find the ‘sweet spot’.
▶ However, in modern machine learning, we often fit very over-parameterized models

and achieve good generalization.
▶ The capacity of neural nets often allow for training loss to be driven down to zero

(that is, the model interpolates the training data).
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Double descent phenomenon

Figure 2: In the ‘modern’ interpolating regime, increasing model capacity
often empirically leads to better generalization, Belkin et al. (2018).
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Double descent a robust phenomenon

Figure 3: Double descent is observed across many models, tasks, optimizers,
training time, and noise levels. Pictured is the train/test error for family of
ResNet18 on CIFAR-10 (Nakkiran et al., 2021).
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Generalization theory: what’s missing?

▶ In an over-parameterized model where many explanations equally account for the
training data, how does the learner select one?
▶ Generalization also depends on how we regularize and optimize.
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Algorithms without double descent?

Figure 4: Generalization curves for different methods of learning a classifier
on Boolean data {−1,+1}N using a dataset of size αN (Opper et al., 1990).
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Double descent in ordinary least squares: warm-up
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One explanation of double descent
Belkin et al. (2020) examines double descent through the lens of signal-to-noise ratio.

Intuition for ordinary least squares (OLS): if the number of data points is around the
number of dimensions, then likely there are directions with a low signal-to-noise ratio.
OLS will overfit those directions to noise.

Figure 5: The instances x1 and x2 (black) provides good signal along the
horizontal direction, but poor signal along the vertical direction.
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Linear regression problem

Problem. Suppose nature generates data as follows:

y = x⊤β + ε,

▶ the covariates x ∈ Rd are d dimensional

▶ the noise ε ∈ R is drawn from N (0, σ2)

▶ there is a true regressor β, but it is unknown to the learner

Goal. The goal of the learner is to use data to give an estimate β̂ of β minimizing:

∥β̂ − β∥2.
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Linear regression in the interpolating regime

When the number of parameters d is at least the number of data points n, we can
always perfectly fit a linear regressor:

Y = Xβ̂,

where X ∈ Rn×d , Y ∈ Rn, and β̂ ∈ Rd .

▶ In fact, if d > n, then there are infinitely many interpolating β̂’s.

▶ If we fit β̂ using OLS, we obtain a specific choice:

β̂ = X+Y,

where X+ is the Moore-Penrose pseudoinverse of X. In this setting, XX+ = Id .
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Linear regression in the interpolating regime

Question. How poorly can β̂ estimate β in the interpolating regime?
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A 2D example
Setting. Consider data in R2 generated by:

y = x⊤e1 + ε,

where e1 is the first basis direction and ε is Gaussian.

Data. Suppose we are given two data points:

xA =

[
1
−δ

]
xB =

[
1
+δ

]
yA = 1+ εA yB = 1+ εB

Solution. OLS estimate β̂ is:

β̂1 = 1+
εA + εB

2
β̂2 =

1
δ

εB − εA
2

.
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Computation of 2D example
Here, β = e1 and OLS estimate β̂ is:

β̂1 = 1+
εA + εB

2
β̂2 =

1
δ

εB − εA
2

.

▶ Notice that: e1 =
xA + xB

2
and δe2 =

xB − xA
2

.

▶ The vector e1 has to explain β1 and some noise:

yA + yB
2

= 1+
εA + εB

2
.

▶ But, the small vector δe2 also has to explain a (relatively large) part of the noise:

yB − yA
2

=
εB − εA

2
.
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Double descent from 2D example
Suppose instead that xA and xB were actually (d + 1)-dimensional vectors:

xA =
[
1 −δ/

√
d · · · −δ/

√
d
]⊤

xB =
[
1 +δ/

√
d · · · +δ/

√
d
]⊤

.

▶ The same part of the noise εB−εA
2 needs to be explained by a vector:

xB − xA
2

=
δ√
d
·
[
0 1 · · · 1

]⊤
,

which has norm δ, as before. But, the same noise is spread out across d directions:

β̂j =
1
δd

εB − εA
2

j > 1.
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Double descent from 2D example

We can now compute the generalization error:

E
[∥∥∥β̂ − β

∥∥∥2] = E

[(
εA + εB

2

)2
]
+
∑
j>1

E
[(

1
δd

εB − εA
2

)]
=

1
2
+

1
d

1
2δ2

.

▶ The 1
2 terms comes from the noise explained by the first term.

▶ The 1
d

1
2δ2 goes to zero as d goes to infinity.
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Double descent in ordinary least squares: Gaussian model
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Linear regression problem

Problem. Suppose nature generates data as follows:

y = x⊤β + ε,

▶ the covariates x ∈ Rd are d dimensional standard Gaussians, x ∼ N
(
0, 1

d Id
)

▶ the noise ε ∈ R is drawn from N (0, σ2)

▶ there is a true regressor β, but it is unknown to the learner

Goal. The goal of the learner is to use data to give an estimate β̂ of β minimizing:

∥β̂ − β∥2.
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Linear regression on a single data point

Data. Let y = x⊤β + ε where:

x ∼ N
(
0,

1
d
Id
)

and ε ∼ N (0, σ2).

Solution. OLS returns the following:

β̂ =
xy
∥x∥2

=
xx⊤β + xε

∥x∥2
= Πxβ +

xε
∥x∥2

,

where Πx is the projection operator onto span(x).

▶ Note that β̂ satisfies: x⊤β̂ =
x⊤xy
∥x∥2

= y
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Generalization error

Denote βx = Πxβ and β⊥
x = β − βx its orthogonal complement.

E
[
∥β̂ − β∥2

]
= E

[∥∥∥∥Πxβ +
xε
∥x∥2

− β

∥∥∥∥2
]

= E

[∥∥∥∥β⊥
x +

xε
∥x∥2

∥∥∥∥2
]

= E
[
∥β⊥

x ∥2
]

︸ ︷︷ ︸
error from unseen directions

+ E
[

ε2

∥x∥2

]
︸ ︷︷ ︸

error from explaining noise

.

Notice that the last term is related to the signal-to-noise ratio.
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Generalization error
Because x is isotropic Gaussian, the error from unseen directions is:

E
[
∥β⊥

x ∥2
]

︸ ︷︷ ︸
error from unseen directions

=
d

d − 1
∥β∥2.

And the error from explaining all the noise in the x direction:

E
[

ε2

∥x∥2

]
︸ ︷︷ ︸

error from explaining noise

=
σ2

d − 2

▶ Note that when x is standard normal, 1/∥x∥2 follows an inverse Wishart
distribution (and ∥x∥2 follows a χ2-distribution with degree of freedom d).

▶ If d = 1 or d = 2, then the expected generalization error is infinite.
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χ2-distribution

Figure 6: χ2-distributions where k is the degree of freedom, from Wikipedia.
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Main result from Belkin et al. (2020)

Setting. Their setting extends this setting of linear regression on single point x ∈ Rd .

▶ They train a regressor on n data points x1, . . . , xn ∼ N
(
0, 1

d Id
)
.

▶ To compare across size of model, only p random dimensions of Rd are revealed.

Theorem (Belkin et al. (2020))
Let β̂ be the OLS regressor in this setting. Then its expected risk is:

E
[(

y − x⊤β̂
)2
]
=


((
1− p

d

)
· ∥β∥2 + σ2) · (1+ p

n−p−1

)
p ≤ n− 2

∞ p = n, n+ 1
∥β∥2 ·

(
1− n

d ·
(
2− d−n−1

p−n−1

))
+ σ2 ·

(
1+ n

p−n−1

)
p ≥ n+ 2
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Main result from Belkin et al. (2020)

Figure 7: Visualization of the double descent curve from previous theorem(Belkin et al., 2020).
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