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Review: classical statistical learning framework

A learner would like to answer a question about the world.
1. The learner selects a model—a family of possible explanations/hypotheses.
2. The learner collects data from the world.

3. The learner then fits the model to the data.

The model’s ability to generalize is how well it accounts for out-of-sample data.
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Learning through risk minimization

The standard approach to learning
1. Select a model H.
2. Define the risk of a hypothesis h € H as:

R(h) = a measure of how poorly h explains the world.

The goal is to find the best-in-class explanation h* = argmin,,, R(h).
The model bias measures the risk R(h*) of the best explanation.
We generally cannot compute the risk directly, but we can estimate it.

3. Construct a risk estimation procedure that finds an estimate R(h) of R(h).
4. Minimize the risk estimator:

h:= argmin R(h).
heH
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Generalization theory through empirical risk minimization

We can decompose the risk R(h) as:

R(h) = R(h) — R(h")+ (R(h) — R(h)) + (R(h") — R(h*)) + R(h")

estimated gap estimation error for A estimation error for h*  model bias

» For the empirical risk minimizer h, the estimated gap term is non-positive, so:

R(fz) < estimation error terms + model bias term.
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Results from classical generalization theory

Generalization theory tends to give us bounds on the estimation error term so that:

R (il) < \/ capacity of model + model bias.

amount of training data

» The capacity of H measures how many worlds H can explain.
» Generally, the bias of a model increases as its capacity shrinks.

This leads to the bias-variance tradeoff.

5/30



Bias-variance tradeoff

Intuition: how the bias of H relate to the capacity of H.
» Small capacity: if H cannot explain many worlds, it may poorly explain the one in
which the learner lives. This leads to a large bias term.

» Large capacity: if many (very different) explanations account for what the learner
sees, how to pick among these explanations? This leads to a large variance term.
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Classical bias-variance tradeoff
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Figure 1: Belkin et al. (2018)
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Model selection problem

Question. How complicated of a model should you try to fit?
» Classical statistics says not too large: try to find the ‘sweet spot’.

» However, in modern machine learning, we often fit very over-parameterized models
and achieve good generalization.

The capacity of neural nets often allow for training loss to be driven down to zero
(that is, the model interpolates the training data).
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Double descent phenomenon
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Figure 2: In the ‘modern’ interpolating regime, increasing model capacity
often empirically leads to better generalization, Belkin et al. (2018).
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Double descent a robust phenomenon
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Figure 3: Double descent is observed across many models, tasks, optimizers,
training time, and noise levels. Pictured is the train/test error for family of
ResNet18 on CIFAR-10 (Nakkiran et al., 2021).
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Generalization theory: what’s missing?

» In an over-parameterized model where many explanations equally account for the
training data, how does the learner select one?

Generalization also depends on how we regularize and optimize.
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Algorithms without double descent?
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Figure 4: Generalization curves for different methods of learning a classifier
on Boolean data {—1,+1}" using a dataset of size «N (Opper et al., 1990).
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Double descent in ordinary least squares: warm-up
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One explanation of double descent
Belkin et al. (2020) examines double descent through the lens of signal-to-noise ratio.
Intuition for ordinary least squares (OLS): if the number of data points is around the

number of dimensions, then likely there are directions with a low signal-to-noise ratio.
OLS will overfit those directions to noise.

Figure 5: The instances x; and x, (black) provides good signal along the
horizontal direction, but poor signal along the vertical direction.
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Linear regression problem

Problem. Suppose nature generates data as follows:

y=xB+e,

» the covariates x € R? are d dimensional
» the noise ¢ € R is drawn from N (0, 0%)

» there is a true regressor 3, but it is unknown to the learner

Goal. The goal of the learner is to use data to give an estimate B of 5 minimizing:

16 - BI*.
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Linear regression in the interpolating regime

When the number of parameters d is at least the number of data points n, we can
always perfectly fit a linear regressor:

where X € R™4 Y € R", and B € R4,
» In fact, if d > n, then there are infinitely many interpolating B’s.
> If we fit 3 using OLS, we obtain a specific choice:

B=X"Y,

where X is the Moore-Penrose pseudoinverse of X. In this setting, XX = 1.
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Linear regression in the interpolating regime

Question. How poorly can /3 estimate 3 in the interpolating regime?
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A 2D example

Setting. Consider data in R? generated by:

y:xTel + &,

where e; is the first basis direction and ¢ is Gaussian.

Data. Suppose we are given two data points:

o] a]l

ya=1+¢y yvg=1+¢p

Solution. OLS estimate B is:

N €atesp A lep—ea
-1+ 4 -2 —
B 5 Ba R
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Computation of 2D example
Here, 8 = e; and OLS estimate B is:

5 €At €B A leg—e€x
=1+— =-—.
A 5 Pe=5—
. XA+ X XrR — X
» Notice that: ¢, = % and dey = %
» The vector e; has to explain ; and some noise:
+ Eate
YA . VB _ 1454 . B

» But, the small vector de; also has to explain a (relatively large) part of the noise:

YB—YA _EB—EA

2 2
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Double descent from 2D example

Suppose instead that x4 and xp were actually (d + 1)-dimensional vectors:

R RN BN
=1 +6/Vd - +6/Vd] .

» The same part of the noise 25*4 needs to be explained by a vector:

XB—XA:i.[O Lo 1}T

2 Vi

)

which has norm §, as before. But, the same noise is spread out across d directions:

A _isB_EA
Bf_éd 2

j>1.
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Double descent from 2D example

We can now compute the generalization error:

E {HB_BHZ] : (€A+€B>

» The % terms comes from the noise explained by the first term.

» The %ﬁ goes to zero as d goes to infinity.
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Double descent in ordinary least squares: Gaussian model
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Linear regression problem

Problem. Suppose nature generates data as follows:

y=x'B+e,

» the covariates x € R? are d dimensional standard Gaussians, x ~ N(O, %Id)

» the noise ¢ € R is drawn from N (0, 0%)

» there is a true regressor 3, but it is unknown to the learner

Goal. The goal of the learner is to use data to give an estimate Bofp minimizing:

16 = BI*.
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Linear regression on a single data point

Data. Let y = x' 8 + € where:

X~ N(O, %Id) and e~ N(0,0%).

Solution. OLS returns the following:

.

A xy xx' B+ xe Xe

b= - —ILA+
] ]2 2

where I1, is the projection operator onto span(x).
x"xy B

» Note that 3 satisfies: xTB = e
x
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Generalization error

Denote 3, = I3 and 3+ = 3 — S, its orthogonal complement.

2
E[|3 - 8I°] =E an5+ T ]
—E ‘B%L x|
P

2]+ R[5
LI

error from unseen directions  error from explaining noise

Notice that the last term is related to the signal-to-noise ratio.

25/30



Generalization error

Because x is isotropic Gaussian, the error from unseen directions is:

d
E [ 1 2} _ 2
1821 <181
error from unseen directions

And the error from explaining all the noise in the x direction:

g? o?
E|-© - 7
[||x||2] d—2

error from explaining noise

» Note that when x is standard normal, 1/||x||* follows an inverse Wishart
distribution (and ||x|| follows a y?-distribution with degree of freedom d).

» If d =1or d = 2, then the expected generalization error is infinite.
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x2-distribution
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Figure 6: x2-distributions where k is the degree of freedom, from Wikipedia.
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Main result from Belkin et al. (2020)

Setting. Their setting extends this setting of linear regression on single point x € R
» They train a regressor on n data points xp, ..., x, ~ N(O, lId).

» To compare across size of model, only p random dimensions of R are revealed.

Theorem (Belkin et al. (2020))
Let 3 be the OLS regressor in this setting. Then its expected risk is:

(=5 - 1812 +0%) - (14 =) p<n—2
E{(y—xTﬁA)}: 00 p=nn+1
18P (1- 5 (2- =)+ 02 (14 52) P22
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Main result from Belkin et al. (2020)
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Figure 7: Visualization of the double descent curve from previous theorem(Belkin et al., 2020).
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