The double descent phenomenon

Generalization of overparametrized models
Geelon So, agso@eng.ucsd.edu
DSC291 Machine Learning - November 8, 2022

Review: classical statistical learning framework

A learner would like to answer a question about the world.

Review: classical statistical learning framework

A learner would like to answer a question about the world.

1. The learner selects a model-a family of possible explanations/hypotheses.

Review: classical statistical learning framework

A learner would like to answer a question about the world.

1. The learner selects a model-a family of possible explanations/hypotheses.
2. The learner collects data from the world.

Review: classical statistical learning framework

A learner would like to answer a question about the world.

1. The learner selects a model-a family of possible explanations/hypotheses.
2. The learner collects data from the world.
3. The learner then fits the model to the data.

Review: classical statistical learning framework

A learner would like to answer a question about the world.

1. The learner selects a model-a family of possible explanations/hypotheses.
2. The learner collects data from the world.
3. The learner then fits the model to the data.

The model's ability to generalize is how well it accounts for out-of-sample data.

Learning through risk minimization
The standard approach to learning

Learning through risk minimization
The standard approach to learning

1. Select a model \mathcal{H}.

Learning through risk minimization

The standard approach to learning

1. Select a model \mathcal{H}.
2. Define the risk of a hypothesis $h \in \mathcal{H}$ as:
$R(h)=$ a measure of how poorly h explains the world.

Learning through risk minimization

The standard approach to learning

1. Select a model \mathcal{H}.
2. Define the risk of a hypothesis $h \in \mathcal{H}$ as:
$R(h)=$ a measure of how poorly h explains the world.

- The goal is to find the best-in-class explanation $h^{*}=\arg \min _{h \in \mathcal{H}} R(h)$.

Learning through risk minimization

The standard approach to learning

1. Select a model \mathcal{H}.
2. Define the risk of a hypothesis $h \in \mathcal{H}$ as:
$R(h)=$ a measure of how poorly h explains the world.
The goal is to find the best-in-class explanation $h^{*}=\arg \min _{h \in \mathcal{H}} R(h)$.

- The model bias measures the risk $R\left(h^{*}\right)$ of the best explanation.

Learning through risk minimization

The standard approach to learning

1. Select a model \mathcal{H}.
2. Define the risk of a hypothesis $h \in \mathcal{H}$ as:
$R(h)=$ a measure of how poorly h explains the world.
The goal is to find the best-in-class explanation $h^{*}=\arg \min _{h \in \mathcal{H}} R(h)$.

- The model bias measures the risk $R\left(h^{*}\right)$ of the best explanation.
- We generally cannot compute the risk directly, but we can estimate it.

Learning through risk minimization

The standard approach to learning

1. Select a model \mathcal{H}.
2. Define the risk of a hypothesis $h \in \mathcal{H}$ as:

$$
R(h)=\text { a measure of how poorly } h \text { explains the world. }
$$

- The goal is to find the best-in-class explanation $h^{*}=\arg \min _{h \in \mathcal{H}} R(h)$.
- The model bias measures the risk $R\left(h^{*}\right)$ of the best explanation.
- We generally cannot compute the risk directly, but we can estimate it.

3. Construct a risk estimation procedure that finds an estimate $\hat{R}(h)$ of $R(h)$.

Learning through risk minimization

The standard approach to learning

1. Select a model \mathcal{H}.
2. Define the risk of a hypothesis $h \in \mathcal{H}$ as:

$$
R(h)=\text { a measure of how poorly } h \text { explains the world. }
$$

- The goal is to find the best-in-class explanation $h^{*}=\arg \min _{h \in \mathcal{H}} R(h)$.
- The model bias measures the risk $R\left(h^{*}\right)$ of the best explanation.
- We generally cannot compute the risk directly, but we can estimate it.

3. Construct a risk estimation procedure that finds an estimate $\hat{R}(h)$ of $R(h)$.
4. Minimize the risk estimator:

$$
\hat{h}:=\underset{h \in \mathcal{H}}{\arg \min } \hat{R}(h) .
$$

Generalization theory through empirical risk minimization

We can decompose the risk $R(h)$ as:

$$
R(h)=\underbrace{\hat{R}(h)-\hat{R}\left(h^{*}\right)}_{\text {estimated gap }}+\underbrace{(R(h)-\hat{R}(h))}_{\text {estimation error for } h}+\underbrace{\left(\hat{R}\left(h^{*}\right)-R\left(h^{*}\right)\right)}_{\text {estimation error for } h^{*}}+\underbrace{R\left(h^{*}\right)}_{\text {model bias }}
$$

Generalization theory through empirical risk minimization

We can decompose the risk $R(h)$ as:

$$
R(h)=\underbrace{\hat{R}(h)-\hat{R}\left(h^{*}\right)}_{\text {estimated gap }}+\underbrace{(R(h)-\hat{R}(h))}_{\text {estimation error for } h}+\underbrace{\left(\hat{R}\left(h^{*}\right)-R\left(h^{*}\right)\right)}_{\text {estimation error for } h^{*}}+\underbrace{R\left(h^{*}\right)}_{\text {model bias }}
$$

- For the empirical risk minimizer \hat{h}, the estimated gap term is non-positive, so:

$$
R(\hat{h}) \leq \text { estimation error terms }+ \text { model bias term. }
$$

Results from classical generalization theory

Generalization theory tends to give us bounds on the estimation error term so that:

$$
R(\hat{h}) \leq \sqrt{\frac{\text { capacity of model }}{\text { amount of training data }}}+\text { model bias. }
$$

Results from classical generalization theory

Generalization theory tends to give us bounds on the estimation error term so that:

$$
R(\hat{h}) \leq \sqrt{\frac{\text { capacity of model }}{\text { amount of training data }}}+\text { model bias. }
$$

- The capacity of \mathcal{H} measures how many worlds \mathcal{H} can explain.

Results from classical generalization theory

Generalization theory tends to give us bounds on the estimation error term so that:

$$
R(\hat{h}) \leq \sqrt{\frac{\text { capacity of model }}{\text { amount of training data }}}+\text { model bias. }
$$

- The capacity of \mathcal{H} measures how many worlds \mathcal{H} can explain.
- Generally, the bias of a model increases as its capacity shrinks.

Results from classical generalization theory

Generalization theory tends to give us bounds on the estimation error term so that:

$$
R(\hat{h}) \leq \sqrt{\frac{\text { capacity of model }}{\text { amount of training data }}}+\text { model bias. }
$$

- The capacity of \mathcal{H} measures how many worlds \mathcal{H} can explain.
- Generally, the bias of a model increases as its capacity shrinks.
- This leads to the bias-variance tradeoff.

Bias-variance tradeoff

Intuition: how the bias of \mathcal{H} relate to the capacity of \mathcal{H}.

Bias-variance tradeoff

Intuition: how the bias of \mathcal{H} relate to the capacity of \mathcal{H}.

- Small capacity: if \mathcal{H} cannot explain many worlds, it may poorly explain the one in which the learner lives. This leads to a large bias term.

Bias-variance tradeoff

Intuition: how the bias of \mathcal{H} relate to the capacity of \mathcal{H}.

- Small capacity: if \mathcal{H} cannot explain many worlds, it may poorly explain the one in which the learner lives. This leads to a large bias term.
- Large capacity: if many (very different) explanations account for what the learner sees, how to pick among these explanations? This leads to a large variance term.

Classical bias-variance tradeoff

Figure 1: Belkin et al. (2018)

Model selection problem

Question. How complicated of a model should you try to fit?

Model selection problem

Question. How complicated of a model should you try to fit?

- Classical statistics says not too large: try to find the 'sweet spot'.

Model selection problem

Question. How complicated of a model should you try to fit?

- Classical statistics says not too large: try to find the 'sweet spot'.
- However, in modern machine learning, we often fit very over-parameterized models and achieve good generalization.

Model selection problem

Question. How complicated of a model should you try to fit?

- Classical statistics says not too large: try to find the 'sweet spot'.
- However, in modern machine learning, we often fit very over-parameterized models and achieve good generalization.
- The capacity of neural nets often allow for training loss to be driven down to zero (that is, the model interpolates the training data).

Double descent phenomenon

Figure 2: In the 'modern' interpolating regime, increasing model capacity often empirically leads to better generalization, Belkin et al. (2018).

Double descent a robust phenomenon

Figure 3: Double descent is observed across many models, tasks, optimizers, training time, and noise levels. Pictured is the train/test error for family of ResNet18 on CIFAR-10 (Nakkiran et al., 2021).

Generalization theory: what's missing?

- In an over-parameterized model where many explanations equally account for the training data, how does the learner select one?
- Generalization also depends on how we regularize and optimize.

Algorithms without double descent?

Figure 4: Generalization curves for different methods of learning a classifier on Boolean data $\{-1,+1\}^{N}$ using a dataset of size αN (Opper et al., 1990).

Double descent in ordinary least squares: warm-up

One explanation of double descent

Belkin et al. (2020) examines double descent through the lens of signal-to-noise ratio.

One explanation of double descent

Belkin et al. (2020) examines double descent through the lens of signal-to-noise ratio.
Intuition for ordinary least squares (OLS): if the number of data points is around the number of dimensions, then likely there are directions with a low signal-to-noise ratio. OLS will overfit those directions to noise.

One explanation of double descent

Belkin et al. (2020) examines double descent through the lens of signal-to-noise ratio.
Intuition for ordinary least squares (OLS): if the number of data points is around the number of dimensions, then likely there are directions with a low signal-to-noise ratio. OLS will overfit those directions to noise.

Figure 5: The instances x_{1} and x_{2} (black) provides good signal along the horizontal direction, but poor signal along the vertical direction.

Linear regression problem

Problem. Suppose nature generates data as follows:

$$
y=x^{\top} \beta+\varepsilon,
$$

Linear regression problem

Problem. Suppose nature generates data as follows:

$$
y=x^{\top} \beta+\varepsilon,
$$

- the covariates $x \in \mathbb{R}^{d}$ are d dimensional

Linear regression problem

Problem. Suppose nature generates data as follows:

$$
y=x^{\top} \beta+\varepsilon,
$$

- the covariates $x \in \mathbb{R}^{d}$ are d dimensional
- the noise $\varepsilon \in \mathbb{R}$ is drawn from $\mathcal{N}\left(0, \sigma^{2}\right)$

Linear regression problem

Problem. Suppose nature generates data as follows:

$$
y=x^{\top} \beta+\varepsilon,
$$

- the covariates $x \in \mathbb{R}^{d}$ are d dimensional
- the noise $\varepsilon \in \mathbb{R}$ is drawn from $\mathcal{N}\left(0, \sigma^{2}\right)$
- there is a true regressor β, but it is unknown to the learner

Linear regression problem

Problem. Suppose nature generates data as follows:

$$
y=x^{\top} \beta+\varepsilon,
$$

- the covariates $x \in \mathbb{R}^{d}$ are d dimensional
- the noise $\varepsilon \in \mathbb{R}$ is drawn from $\mathcal{N}\left(0, \sigma^{2}\right)$
- there is a true regressor β, but it is unknown to the learner

Goal. The goal of the learner is to use data to give an estimate $\hat{\beta}$ of β minimizing:

$$
\|\hat{\beta}-\beta\|^{2}
$$

Linear regression in the interpolating regime

When the number of parameters d is at least the number of data points n, we can always perfectly fit a linear regressor:

$$
\mathbf{Y}=\mathbf{X} \hat{\beta},
$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}, \mathbf{Y} \in \mathbb{R}^{n}$, and $\hat{\beta} \in \mathbb{R}^{d}$.

Linear regression in the interpolating regime

When the number of parameters d is at least the number of data points n, we can always perfectly fit a linear regressor:

$$
\mathbf{Y}=\mathbf{X} \hat{\beta},
$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}, \mathbf{Y} \in \mathbb{R}^{n}$, and $\hat{\beta} \in \mathbb{R}^{d}$.

- In fact, if $d>n$, then there are infinitely many interpolating $\hat{\beta}$'s.

Linear regression in the interpolating regime

When the number of parameters d is at least the number of data points n, we can always perfectly fit a linear regressor:

$$
\mathbf{Y}=\mathbf{X} \hat{\beta},
$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}, \mathbf{Y} \in \mathbb{R}^{n}$, and $\hat{\beta} \in \mathbb{R}^{d}$.

- In fact, if $d>n$, then there are infinitely many interpolating $\hat{\beta}^{\prime}$ s.
- If we fit $\hat{\beta}$ using OLS, we obtain a specific choice:

$$
\hat{\beta}=\mathbf{X}^{+} \mathbf{Y}
$$

where \mathbf{X}^{+}is the Moore-Penrose pseudoinverse of \mathbf{X}. In this setting, $\mathbf{X X}^{+}=\mathbf{I}_{d}$.

Linear regression in the interpolating regime

Question. How poorly can $\hat{\beta}$ estimate β in the interpolating regime?

A 2D example

Setting. Consider data in \mathbb{R}^{2} generated by:

$$
y=x^{\top} e_{1}+\varepsilon,
$$

where e_{1} is the first basis direction and ε is Gaussian.

A 2D example

Setting. Consider data in \mathbb{R}^{2} generated by:

$$
y=x^{\top} e_{1}+\varepsilon,
$$

where e_{1} is the first basis direction and ε is Gaussian.
Data. Suppose we are given two data points:

$$
\begin{array}{ll}
x_{A}=\left[\begin{array}{c}
1 \\
-\delta
\end{array}\right] & x_{B}=\left[\begin{array}{c}
1 \\
+\delta
\end{array}\right] \\
y_{A}=1+\varepsilon_{A} & y_{B}=1+\varepsilon_{B}
\end{array}
$$

A 2D example

Setting. Consider data in \mathbb{R}^{2} generated by:

$$
y=x^{\top} e_{1}+\varepsilon,
$$

where e_{1} is the first basis direction and ε is Gaussian.
Data. Suppose we are given two data points:

$$
\begin{array}{ll}
x_{A}=\left[\begin{array}{c}
1 \\
-\delta
\end{array}\right] & x_{B}=\left[\begin{array}{c}
1 \\
+\delta
\end{array}\right] \\
y_{A}=1+\varepsilon_{A} & y_{B}=1+\varepsilon_{B}
\end{array}
$$

Solution. OLS estimate $\hat{\beta}$ is:

$$
\hat{\beta}_{1}=1+\frac{\varepsilon_{A}+\varepsilon_{B}}{2} \quad \hat{\beta}_{2}=\frac{1}{\delta} \frac{\varepsilon_{B}-\varepsilon_{A}}{2} .
$$

Computation of 2D example

Here, $\beta=e_{1}$ and OLS estimate $\hat{\beta}$ is:

$$
\hat{\beta}_{1}=1+\frac{\varepsilon_{A}+\varepsilon_{B}}{2} \quad \hat{\beta}_{2}=\frac{1}{\delta} \frac{\varepsilon_{B}-\varepsilon_{A}}{2} .
$$

- Notice that: $e_{1}=\frac{x_{A}+x_{B}}{2} \quad$ and $\quad \delta e_{2}=\frac{x_{B}-x_{A}}{2}$.

Computation of 2D example

Here, $\beta=e_{1}$ and OLS estimate $\hat{\beta}$ is:

$$
\hat{\beta}_{1}=1+\frac{\varepsilon_{A}+\varepsilon_{B}}{2} \quad \hat{\beta}_{2}=\frac{1}{\delta} \frac{\varepsilon_{B}-\varepsilon_{A}}{2} .
$$

- Notice that: $e_{1}=\frac{x_{A}+x_{B}}{2} \quad$ and $\quad \delta e_{2}=\frac{x_{B}-x_{A}}{2}$.
- The vector e_{1} has to explain β_{1} and some noise:

$$
\frac{y_{A}+y_{B}}{2}=1+\frac{\varepsilon_{A}+\varepsilon_{B}}{2} .
$$

Computation of 2D example

Here, $\beta=e_{1}$ and OLS estimate $\hat{\beta}$ is:

$$
\hat{\beta}_{1}=1+\frac{\varepsilon_{A}+\varepsilon_{B}}{2} \quad \hat{\beta}_{2}=\frac{1}{\delta} \frac{\varepsilon_{B}-\varepsilon_{A}}{2} .
$$

- Notice that: $e_{1}=\frac{x_{A}+x_{B}}{2} \quad$ and $\quad \delta e_{2}=\frac{x_{B}-x_{A}}{2}$.
- The vector e_{1} has to explain β_{1} and some noise:

$$
\frac{y_{A}+y_{B}}{2}=1+\frac{\varepsilon_{A}+\varepsilon_{B}}{2} .
$$

- But, the small vector δe_{2} also has to explain a (relatively large) part of the noise:

$$
\frac{y_{B}-y_{A}}{2}=\frac{\varepsilon_{B}-\varepsilon_{A}}{2} .
$$

Double descent from 2D example

Suppose instead that x_{A} and x_{B} were actually $(d+1)$-dimensional vectors:

$$
\begin{aligned}
& x_{A}=\left[\begin{array}{llll}
1 & -\delta / \sqrt{d} & \cdots & -\delta / \sqrt{d}
\end{array}\right]^{\top} \\
& x_{B}=\left[\begin{array}{llll}
1 & +\delta / \sqrt{d} & \cdots & +\delta / \sqrt{d}
\end{array}\right]^{\top} .
\end{aligned}
$$

Double descent from 2D example

Suppose instead that x_{A} and x_{B} were actually $(d+1)$-dimensional vectors:

$$
\begin{aligned}
& x_{A}=\left[\begin{array}{llll}
1 & -\delta / \sqrt{d} & \cdots & -\delta / \sqrt{d}
\end{array}\right]^{\top} \\
& x_{B}=\left[\begin{array}{llll}
1 & +\delta / \sqrt{d} & \cdots & +\delta / \sqrt{d}
\end{array}\right]^{\top} .
\end{aligned}
$$

- The same part of the noise $\frac{\varepsilon_{B}-\varepsilon_{A}}{2}$ needs to be explained by a vector:

$$
\frac{x_{B}-x_{A}}{2}=\frac{\delta}{\sqrt{d}} \cdot\left[\begin{array}{llll}
0 & 1 & \cdots & 1
\end{array}\right]^{\top}
$$

Double descent from 2D example

Suppose instead that x_{A} and x_{B} were actually $(d+1)$-dimensional vectors:

$$
\begin{aligned}
& x_{A}=\left[\begin{array}{llll}
1 & -\delta / \sqrt{d} & \cdots & -\delta / \sqrt{d}
\end{array}\right]^{\top} \\
& x_{B}=\left[\begin{array}{llll}
1 & +\delta / \sqrt{d} & \cdots & +\delta / \sqrt{d}
\end{array}\right]^{\top} .
\end{aligned}
$$

- The same part of the noise $\frac{\varepsilon_{B}-\varepsilon_{A}}{2}$ needs to be explained by a vector:

$$
\frac{x_{B}-x_{A}}{2}=\frac{\delta}{\sqrt{d}} \cdot\left[\begin{array}{llll}
0 & 1 & \cdots & 1
\end{array}\right]^{\top}
$$

which has norm δ, as before.

Double descent from 2D example

Suppose instead that x_{A} and x_{B} were actually $(d+1)$-dimensional vectors:

$$
\begin{aligned}
& x_{A}=\left[\begin{array}{llll}
1 & -\delta / \sqrt{d} & \cdots & -\delta / \sqrt{d}
\end{array}\right]^{\top} \\
& x_{B}=\left[\begin{array}{llll}
1 & +\delta / \sqrt{d} & \cdots & +\delta / \sqrt{d}
\end{array}\right]^{\top} .
\end{aligned}
$$

- The same part of the noise $\frac{\varepsilon_{B}-\varepsilon_{A}}{2}$ needs to be explained by a vector:

$$
\frac{x_{B}-x_{A}}{2}=\frac{\delta}{\sqrt{d}} \cdot\left[\begin{array}{llll}
0 & 1 & \cdots & 1
\end{array}\right]^{\top}
$$

which has norm δ, as before. But, the same noise is spread out across d directions:

$$
\hat{\beta}_{j}=\frac{1}{\delta d} \frac{\varepsilon_{B}-\varepsilon_{A}}{2} \quad j>1
$$

Double descent from 2D example

We can now compute the generalization error:

$$
\mathbb{E}\left[\|\hat{\beta}-\beta\|^{2}\right]=\mathbb{E}\left[\left(\frac{\varepsilon_{A}+\varepsilon_{B}}{2}\right)^{2}\right]+\sum_{j>1} \mathbb{E}\left[\left(\frac{1}{\delta d} \frac{\varepsilon_{B}-\varepsilon_{A}}{2}\right)\right]=\frac{1}{2}+\frac{1}{d} \frac{1}{2 \delta^{2}} .
$$

Double descent from 2D example

We can now compute the generalization error:

$$
\mathbb{E}\left[\|\hat{\beta}-\beta\|^{2}\right]=\mathbb{E}\left[\left(\frac{\varepsilon_{A}+\varepsilon_{B}}{2}\right)^{2}\right]+\sum_{j>1} \mathbb{E}\left[\left(\frac{1}{\delta d} \frac{\varepsilon_{B}-\varepsilon_{A}}{2}\right)\right]=\frac{1}{2}+\frac{1}{d} \frac{1}{2 \delta^{2}}
$$

- The $\frac{1}{2}$ terms comes from the noise explained by the first term.

Double descent from 2D example

We can now compute the generalization error:

$$
\mathbb{E}\left[\|\hat{\beta}-\beta\|^{2}\right]=\mathbb{E}\left[\left(\frac{\varepsilon_{A}+\varepsilon_{B}}{2}\right)^{2}\right]+\sum_{j>1} \mathbb{E}\left[\left(\frac{1}{\delta d} \frac{\varepsilon_{B}-\varepsilon_{A}}{2}\right)\right]=\frac{1}{2}+\frac{1}{d} \frac{1}{2 \delta^{2}}
$$

- The $\frac{1}{2}$ terms comes from the noise explained by the first term.
- The $\frac{1}{d} \frac{1}{2 \delta^{2}}$ goes to zero as d goes to infinity.

Double descent in ordinary least squares: Gaussian model

Linear regression problem

Problem. Suppose nature generates data as follows:

$$
y=x^{\top} \beta+\varepsilon
$$

- the covariates $x \in \mathbb{R}^{d}$ are d dimensional standard Gaussians, $x \sim \mathcal{N}\left(0, \frac{1}{d} \mathbf{I}_{d}\right)$
- the noise $\varepsilon \in \mathbb{R}$ is drawn from $\mathcal{N}\left(0, \sigma^{2}\right)$
- there is a true regressor β, but it is unknown to the learner

Goal. The goal of the learner is to use data to give an estimate $\hat{\beta}$ of β minimizing:

$$
\|\hat{\beta}-\beta\|^{2}
$$

Linear regression on a single data point

Data. Let $y=x^{\top} \beta+\varepsilon$ where:

$$
x \sim \mathcal{N}\left(0, \frac{1}{d} \mathbf{I}_{d}\right) \quad \text { and } \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Linear regression on a single data point

Data. Let $y=x^{\top} \beta+\varepsilon$ where:

$$
x \sim \mathcal{N}\left(0, \frac{1}{d} \mathbf{I}_{d}\right) \quad \text { and } \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Solution. OLS returns the following:

$$
\hat{\beta}=\frac{x y}{\|x\|^{2}}
$$

Linear regression on a single data point

Data. Let $y=x^{\top} \beta+\varepsilon$ where:

$$
x \sim \mathcal{N}\left(0, \frac{1}{d} \mathbf{I}_{d}\right) \quad \text { and } \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Solution. OLS returns the following:

$$
\hat{\beta}=\frac{x y}{\|x\|^{2}}=\frac{x x^{\top} \beta+x \varepsilon}{\|x\|^{2}}
$$

Linear regression on a single data point

Data. Let $y=x^{\top} \beta+\varepsilon$ where:

$$
x \sim \mathcal{N}\left(0, \frac{1}{d} \mathbf{I}_{d}\right) \quad \text { and } \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Solution. OLS returns the following:

$$
\hat{\beta}=\frac{x y}{\|x\|^{2}}=\frac{x x^{\top} \beta+x \varepsilon}{\|x\|^{2}}=\Pi_{x} \beta+\frac{x \varepsilon}{\|x\|^{2}},
$$

where Π_{x} is the projection operator onto span (x).

Linear regression on a single data point

Data. Let $y=x^{\top} \beta+\varepsilon$ where:

$$
x \sim \mathcal{N}\left(0, \frac{1}{d} \mathbf{I}_{d}\right) \quad \text { and } \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Solution. OLS returns the following:

$$
\hat{\beta}=\frac{x y}{\|x\|^{2}}=\frac{x x^{\top} \beta+x \varepsilon}{\|x\|^{2}}=\Pi_{x} \beta+\frac{x \varepsilon}{\|x\|^{2}},
$$

where Π_{x} is the projection operator onto span (x).

- Note that $\hat{\beta}$ satisfies: $x^{\top} \hat{\beta}=\frac{x^{\top} x y}{\|x\|^{2}}=y$

Generalization error

Denote $\beta_{x}=\Pi_{x} \beta$ and $\beta_{x}^{\perp}=\beta-\beta_{x}$ its orthogonal complement.

Generalization error

Denote $\beta_{x}=\Pi_{x} \beta$ and $\beta_{x}^{\perp}=\beta-\beta_{x}$ its orthogonal complement.

$$
\mathbb{E}\left[\|\hat{\beta}-\beta\|^{2}\right]
$$

Generalization error

Denote $\beta_{x}=\Pi_{x} \beta$ and $\beta_{x}^{\perp}=\beta-\beta_{x}$ its orthogonal complement.

$$
\mathbb{E}\left[\|\hat{\beta}-\beta\|^{2}\right]=\mathbb{E}\left[\left\|\Pi_{x} \beta+\frac{x \varepsilon}{\|x\|^{2}}-\beta\right\|^{2}\right]
$$

Generalization error

Denote $\beta_{x}=\Pi_{x} \beta$ and $\beta_{x}^{\perp}=\beta-\beta_{x}$ its orthogonal complement.

$$
\begin{aligned}
\mathbb{E}\left[\|\hat{\beta}-\beta\|^{2}\right] & =\mathbb{E}\left[\left\|\Pi_{x} \beta+\frac{x \varepsilon}{\|x\|^{2}}-\beta\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|\beta_{x}^{\perp}+\frac{x \varepsilon}{\|x\|^{2}}\right\|^{2}\right]
\end{aligned}
$$

Generalization error

Denote $\beta_{x}=\Pi_{x} \beta$ and $\beta_{x}^{\perp}=\beta-\beta_{x}$ its orthogonal complement.

$$
\begin{aligned}
\mathbb{E}\left[\|\hat{\beta}-\beta\|^{2}\right] & =\mathbb{E}\left[\left\|\Pi_{x} \beta+\frac{x \varepsilon}{\|x\|^{2}}-\beta\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|\beta_{x}^{\perp}+\frac{x \varepsilon}{\|x\|^{2}}\right\|^{2}\right] \\
& =\underbrace{\mathbb{E}\left[\left\|\beta_{x}^{\perp}\right\|^{2}\right]}_{\text {error from unseen directions }}+\underbrace{\mathbb{E}\left[\frac{\varepsilon^{2}}{\|x\|^{2}}\right]}_{\text {error from explaining noise }}
\end{aligned}
$$

Generalization error

Denote $\beta_{x}=\Pi_{x} \beta$ and $\beta_{x}^{\perp}=\beta-\beta_{x}$ its orthogonal complement.

$$
\begin{aligned}
\mathbb{E}\left[\|\hat{\beta}-\beta\|^{2}\right] & =\mathbb{E}\left[\left\|\Pi_{x} \beta+\frac{x \varepsilon}{\|x\|^{2}}-\beta\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|\beta_{x}^{\perp}+\frac{x \varepsilon}{\|x\|^{2}}\right\|^{2}\right] \\
& =\underbrace{\mathbb{E}\left[\left\|\beta_{x}^{\perp}\right\|^{2}\right]}_{\text {error from unseen directions }}+\underbrace{\mathbb{E}\left[\frac{\varepsilon^{2}}{\|x\|^{2}}\right]}_{\text {error from explaining noise }}
\end{aligned}
$$

Notice that the last term is related to the signal-to-noise ratio.

Generalization error

Because x is isotropic Gaussian, the error from unseen directions is:

$$
\mathbb{E}\left[\left\|\beta_{x}^{\perp}\right\|^{2}\right] \quad=\quad \frac{d}{d-1}\|\beta\|^{2}
$$

error from unseen directions

Generalization error

Because x is isotropic Gaussian, the error from unseen directions is:

$$
\underbrace{\mathbb{E}\left[\left\|\beta_{x}^{\perp}\right\|^{2}\right]}_{\text {error from unseen directions }}=\frac{d}{d-1}\|\beta\|^{2}
$$

And the error from explaining all the noise in the x direction:

$$
\underbrace{\mathbb{E}\left[\frac{\varepsilon^{2}}{\|x\|^{2}}\right]}_{\text {from explaining noise }}=\frac{\sigma^{2}}{d-2}
$$

Generalization error

Because x is isotropic Gaussian, the error from unseen directions is:

$$
\underbrace{\mathbb{E}\left[\left\|\beta_{x}^{\perp}\right\|^{2}\right]}_{\text {error from unseen directions }}=\frac{d}{d-1}\|\beta\|^{2} .
$$

And the error from explaining all the noise in the x direction:

$$
\underbrace{\mathbb{E}\left[\frac{\varepsilon^{2}}{\|x\|^{2}}\right]}_{\text {from explaining noise }}=\frac{\sigma^{2}}{d-2}
$$

- Note that when x is standard normal, $1 /\|x\|^{2}$ follows an inverse Wishart distribution (and $\|x\|^{2}$ follows a χ^{2}-distribution with degree of freedom d).

Generalization error

Because x is isotropic Gaussian, the error from unseen directions is:

$$
\underbrace{\mathbb{E}\left[\left\|\beta_{x}^{\perp}\right\|^{2}\right]}_{\text {error from unseen directions }}=\frac{d}{d-1}\|\beta\|^{2}
$$

And the error from explaining all the noise in the x direction:

$$
\underbrace{\mathbb{E}\left[\frac{\varepsilon^{2}}{\|x\|^{2}}\right]}_{\text {from explaining noise }}=\frac{\sigma^{2}}{d-2}
$$

- Note that when x is standard normal, $1 /\|x\|^{2}$ follows an inverse Wishart distribution (and $\|x\|^{2}$ follows a χ^{2}-distribution with degree of freedom d).
- If $d=1$ or $d=2$, then the expected generalization error is infinite.

χ^{2}-distribution

Figure 6: χ^{2}-distributions where k is the degree of freedom, from Wikipedia.

Main result from Belkin et al. (2020)

Setting. Their setting extends this setting of linear regression on single point $x \in \mathbb{R}^{d}$.

Main result from Belkin et al. (2020)

Setting. Their setting extends this setting of linear regression on single point $x \in \mathbb{R}^{d}$.

- They train a regressor on n data points $x_{1}, \ldots, x_{n} \sim \mathcal{N}\left(0, \frac{1}{d} \mathbf{I}_{d}\right)$.

Main result from Belkin et al. (2020)

Setting. Their setting extends this setting of linear regression on single point $x \in \mathbb{R}^{d}$.

- They train a regressor on n data points $x_{1}, \ldots, x_{n} \sim \mathcal{N}\left(0, \frac{1}{d} \mathbf{I}_{d}\right)$.
- To compare across size of model, only p random dimensions of \mathbb{R}^{d} are revealed.

Main result from Belkin et al. (2020)

Setting. Their setting extends this setting of linear regression on single point $x \in \mathbb{R}^{d}$.

- They train a regressor on n data points $x_{1}, \ldots, x_{n} \sim \mathcal{N}\left(0, \frac{1}{d} \mathbf{I}_{d}\right)$.
- To compare across size of model, only p random dimensions of \mathbb{R}^{d} are revealed.

Theorem (Belkin et al. (2020))
Let $\hat{\beta}$ be the OLS regressor in this setting. Then its expected risk is:

$$
\mathbb{E}\left[\left(y-x^{\top} \hat{\beta}\right)^{2}\right]= \begin{cases}\left(\left(1-\frac{p}{d}\right) \cdot\|\beta\|^{2}+\sigma^{2}\right) \cdot\left(1+\frac{p}{n-p-1}\right) & p \leq n-2 \\ \infty & p=n, n+1 \\ \|\beta\|^{2} \cdot\left(1-\frac{n}{d} \cdot\left(2-\frac{d-n-1}{p-n-1}\right)\right)+\sigma^{2} \cdot\left(1+\frac{n}{p-n-1}\right) & p \geq n+2\end{cases}
$$

Main result from Belkin et al. (2020)

Figure 7: Visualization of the double descent curve from previous theorem(Belkin et al., 2020).

References

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning practice and the bias-variance trade-off. arXiv preprint arXiv:1812.11118, 2018.
Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. SIAM Journal on Mathematics of Data Science, 2(4):1167-1180, 2020.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124003, 2021.
M Opper, W Kinzel, J Kleinz, and R Nehl. On the ability of the optimal perceptron to generalise. Journal of Physics A: Mathematical and General, 23(11):L581, 1990.

