Computationally efficient approximation mechanisms

Chapter 12 of Algorithmic Game Theory, Lavi (2007)

Geelon So, agso@eng.ucsd.edu Algorithmic game theory reading group — March 1, 2022

Preliminaries

Game setting

► *I* is a set of *n* **players**.

► *A* is a set of **alternatives**.

▶ Each player $i \in I$ has a **valuation function** $v_i : A \to \mathbb{R}$.

▶ $v_i(a)$ is the value of the alternative $a \in A$ to player $i \in I$

Say alternative *a* is chosen and player *i* pays some money m_i . The **utility** is:

utility_i = $v_i(a) - m_i$.

Each player is aiming to maximize their own utility.

Mechanism

Definition (Mechanism)

A **mechanism** is a:

- social choice function $f: V_1 \times \cdots \times V_n \to A$
- vector of payment functions $p_i: V_1 \times \cdots \times V_n \to \mathbb{R}$

The mechanism works as follows:

- 1. Each player reports their valuation function v_i .
- **2**. The alternative $a = f(v_1, \ldots, v_n)$ is chosen.
- **3.** Each player pays $p_i(v_1, \ldots, v_n)$, achieving utility:

$$v_i^*(a)-p_i(v_1,\ldots,v_n),$$

where v_i^* is the *i*th player's true valuation function.

Incentive-compatible mechanisms

An **incentive-compatible mechanism** is one where for each player, revealing their true valuation function is a dominant strategy. Formally, if:

utility^{true}_i =
$$v_i(f(v_1, \dots, v_i, \dots, v_n)) - p_i(v_1, \dots, v_i, \dots, v_n)$$

utility^{lie}_i = $v_i(f(v_1, \dots, v'_i, \dots, v_n)) - p_i(v_1, \dots, v'_i, \dots, v_n)$

Then:

utility_{*i*}^{true} \geq utility_{*i*}^{lie}.

Mechanism design

Goal: how can we design a mechanism that **implements** a social choice function *f*?

How can a mechanism be designed so that each player is incentivized to reveal their true valuation function, thus collectively achieving the target social choice?

Vickrey-Clarke-Groves (VCG) mechanism

The VCG mechanism (f, p_1, \ldots, p_n) is defined so that:

▶ the social choice function *f* maximizes the **social welfare**:

$$f(v_1,\ldots,v_n) \in \operatorname*{arg\,max}_{a \in A} \sum_{i \in I} v_i(a).$$

each player pays the following amount:

$$p_i(v_1,\ldots,v_n) = -\sum_{j\neq i} v_j(f(v_1,\ldots,v_n)).$$

► Thus, the utility to each player is the social welfare f(v₁,..., v_n), which by definition is maximized if each player is truthful.

VCG is incentive compatible

Theorem

The VCG mechanism is incentive compatible.

Incentive-compatible mechanisms

Question. What other social choice functions are incentive compatible?

Examples. Other reasonable social choice functions:

- ► $f(v_1, ..., v_n) \in \underset{a \in A}{\operatorname{arg max}} \min_{i \in I} \operatorname{utility}_i(a)$
- $f(v_1, \ldots, v_n)$ incorporates fairness into social welfare
- ► f(v₁,..., v_n) efficiently chooses an alternative that approximately maximizes the (possibly computationally intractable) social welfare

Randomized mechanisms

Definition (Randomized mechanism)

A randomized mechanism is a distribution over deterministic mechanisms.

- A randomized mechanism is incentive-compatible in a **universal sense** if it is supported over incentive-compatible deterministic mechanisms.
- A randomized mechanism is incentive-compatible in expectation if truth is a dominant strategy in the game induced by expectation.
 - ► That is, the utility to player *i* is:

utility_i =
$$\mathbb{E}_{(f,p_1,\ldots,p_n)} \left[v_i^* \left(f(v_1,\ldots,v_n) \right) - p_i \left(v_1,\ldots,v_n \right) \right].$$

Weaker that incentive-compatibility—for example, it does not take into account a player's risk-aversion (assumes players only care about maximizing expected utility). Mechanism design with computational considerations

Combinatorial auctions (CA)

Game setting:

- We allocate *m* items Ω to *n* players *I*.
- ► Players value subsets, so:

$$v_i(S)$$
 = value of $S \subset \Omega$ to player *i*.

- ► Assume valuations are monotonic: $v_i(S) \le v_i(T)$ if $S \subset T$
- ► Assume valuations are normalized: $v_i(\emptyset) = 0$.
- Our goal is to maximize **social welfare**:

$$f(v_1,\ldots,v_n) = \operatorname*{arg\,max}_{(S_1,\cdots,S_n)} \sum_{i\in I} v_i(S_i),$$

where $S_i, S_j \subset \Omega$ are disjoint for $i \neq j$.

CA through VCG

If we can exactly compute:

$$f(v_1,\ldots,v_n) = \operatorname*{arg\,max}_{(S_1,\cdots,S_n)} \sum_{i\in I} v_i(S_i),$$

then we can implement VCG to achieve an incentive-compatible mechanism.

- ► However, *f* is computationally infeasible.
 - > In general, even the valuation v_i is exponential in size.

Two models of CA

- **Bidding language model:** *v*_{*i*} must have a succinct representation.
 - ▶ It is NP-hard to approximate social welfare within a ratio of $\Omega(m^{1/2-\varepsilon})$ for any $\varepsilon > 0$.
- **Query access model:** the mechanism may query players for values $v_i(a)$.
 - Any algorithm with polynomial communication cannot approximate social welfare within a ratio of Ω(m^{1/2−ε}) for any ε > 0.

Impossibility of computational-efficiency and incentive-compatibility

Implication. If $P \neq NP$, then there does not exist a computationally-efficient incentive-compatible mechanism for either models of combinatorial auctions.

Approximation mechanisms through randomness

Goal: a randomized approximation mechanism that is truthful in expectation.

Key idea to design random mechanism:

- ▶ Relax problem and solve for optimal fractional allocation.
- Construct distribution over integral allocations such that allocations match the optimal fractional allocation in expectation.
 - ▶ Use VCG mechanism to ensure truthfulness in expectation.

Fractional domain

The fractional CA problem is the following linear program:

$$\begin{array}{ll} \max & \sum_{i \in I, S \neq \varnothing} x_{i,S} \cdot \nu_i(S) \\ \text{subject to} & \sum_{S \neq \varnothing} x_{i,S} \leq 1 \quad \text{for each player } i \in I \\ & \sum_{i \in I, S: j \in S} x_{i,S} \leq 1 \quad \text{for each item } j \in \Omega \\ & x_{i,S} \geq 0 \quad \text{for all } i \in I, S \neq \varnothing \end{array}$$

Player *i* receives a $x_{i,S}$ fraction of set *S*.

- ▶ The first constraint ensures each player is allocated at most one unit of subsets.
- ▶ The second ensures the amount of each item *j* allocated out is at most one.

Efficient optimal mechanism for fractional CA

Proposition

For the fractional CA problem, there is a truthful optimal mechanism with efficient computation and communication for the bidding language model and query-access models.

Solve the linear program (e.g. ellipsoid method) to obtain *optimal fractional allocation*; apply VCG.

Fractional CA to integral CA

Converting a fractional allocation to a distribution over integral allocations

Suppose we can verify that CA has a *c-integrality gap*. That is, we have an efficient algorithm returns an integral point \tilde{x} such that:

$$c \cdot \sum_{i,S} \tilde{x}_{i,S} \cdot v_i(S) \ge \max_{\text{feasible } x's} \sum_{i,S} x_{i,S} \cdot v_i(S).$$

We can find an integral allocation \tilde{x} no more than *c* times worse than optimal.

► Decomposition lemma. Suppose we can verify a *c*-integrality gap. If *x* is a feasible point, then we can efficiently decompose *x*/*c* into a convex combination of integral feasible points.

Decomposition-based random mechanism

1. Compute an optimal fractional solution x^* and VCG prices $p_i^*(v)$.

$$\blacktriangleright \text{ Let } v = (v_1, \ldots, v_n).$$

- 2. Obtain decomposition: $x^*/c = \sum_{\ell \in \mathcal{I}} \lambda_\ell \cdot x^\ell$
 - \blacktriangleright *I* set of feasible integral allocations
- **3.** With probability λ_{ℓ} :
 - (i) choose allocation x^{ℓ}
 - (ii) set prices $p_i(v) = [v_i(x^\ell) / v_i(x^*)]p_i^*(v)$.

Expected welfare and price

Expected welfare:

$$\mathbb{E}[ext{social welfare}] = rac{1}{c} \sum_{i \in I}
u_i(x^*).$$

Expected price per player:

$$egin{aligned} \mathbb{E}\left[p_i(m{v})
ight] &= \sum_{\ell\in\mathcal{I}}\lambda_\ell\cdot [m{v}_i(x^\ell)/m{v}_i(x^*)]p_i^*(m{v}) \ &= \left[p_i^*(m{v})/m{v}_i(x^*)
ight]\cdot\sum_{\ell\in\mathcal{I}}\lambda_\ell\cdotm{v}_i(x^\ell) = p_i^*(m{v})/c. \end{aligned}$$

Thus, truthfulness follows from the optimality of fractional CA.

Impossibilities of dominant strategy implementability

Nothing besides VCGs

Definition (Affine maximizer)

A social choice function f is an **affine maximizer** if there exist weights k_1, \ldots, k_n for each player and constants C_a for each alternative such that:

$$f(v_1,\ldots,v_n)\in rgmax_{a\in A}\ C_a+\sum_{i\in I}k_iv_i(x).$$

Theorem (Nothing but VCGs)

Suppose $|A| \ge 3$ and $v_i \in \mathbb{R}^A$ is unrestricted for all *i*. Then *f* is dominant-strategy implementable if and only if it is an affine maximizer.

Implication as impossibility result

- 1. Often, VCG is computationally intractable (e.g. CAs)
- 2. We can also seek goals different from welfare maximization.

Definition (Algorithmic implementation)

A mechanism M is an **algorithmic implementation** of a c-approximation in undominated strategies if there exists a set of strategies D such that:

- (i) *M* obtains a *c*-approximation for any combination of strategies from *D* in polytime
- (ii) for any strategy not in *D*, there is a strategy in *D* that weakly dominates it, and this transition is polynomial-time computable.

References

Ron Lavi. Computationally efficient approximation mechanisms. *Algorithmic Game Theory*, pages 301–329, 2007.