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Preliminaries
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Game setting

▶ I is a set of n players.
▶ A is a set of alternatives.
▶ Each player i ∈ I has a valuation function vi : A → R.

▶ vi(a) is the value of the alternative a ∈ A to player i ∈ I

▶ Say alternative a is chosen and player i pays some money mi. The utility is:

utilityi = vi(a)−mi.

Each player is aiming to maximize their own utility.
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Mechanism

Definition (Mechanism)
A mechanism is a:

▶ social choice function f : V1 × · · · × Vn → A

▶ vector of payment functions pi : V1 × · · · × Vn → R

The mechanism works as follows:

1. Each player reports their valuation function vi.

2. The alternative a = f (v1, . . . , vn) is chosen.

3. Each player pays pi(v1, . . . , vn), achieving utility:

v∗i (a)− pi(v1, . . . , vn),

where v∗i is the ith player’s true valuation function.
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Incentive-compatible mechanisms

An incentive-compatible mechanism is one where for each player, revealing their
true valuation function is a dominant strategy. Formally, if:

utilitytruei = vi
(
f (v1, . . . , vi, . . . vn)

)
− pi

(
v1, . . . , vi, . . . , vn

)
utilityliei = vi

(
f (v1, . . . , v′i , . . . vn)

)
− pi

(
v1, . . . , v′i , . . . , vn

)
Then:

utilitytruei ≥ utilityliei .
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Mechanism design

Goal: how can we design a mechanism that implements a social choice function f ?

▶ How can a mechanism be designed so that each player is incentivized to reveal
their true valuation function, thus collectively achieving the target social choice?
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Vickrey-Clarke-Groves (VCG) mechanism

The VCG mechanism (f , p1, . . . , pn) is defined so that:

▶ the social choice function f maximizes the social welfare:

f (v1, . . . , vn) ∈ argmax
a∈A

∑
i∈I

vi(a).

▶ each player pays the following amount:

pi
(
v1, . . . , vn

)
= −

∑
j ̸=i

vj
(
f (v1, . . . , vn)

)
.

▶ Thus, the utility to each player is the social welfare f (v1, . . . , vn), which by definition
is maximized if each player is truthful.
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VCG is incentive compatible

Theorem
The VCG mechanism is incentive compatible.
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Incentive-compatible mechanisms

Question. What other social choice functions are incentive compatible?

Examples. Other reasonable social choice functions:
▶ f (v1, . . . , vn) ∈ argmax

a∈A
min
i∈I

utilityi(a)

▶ f (v1, . . . , vn) incorporates fairness into social welfare

▶ f (v1, . . . , vn) efficiently chooses an alternative that approximately maximizes the
(possibly computationally intractable) social welfare
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Randomized mechanisms

Definition (Randomized mechanism)
A randomized mechanism is a distribution over deterministic mechanisms.

▶ A randomized mechanism is incentive-compatible in a universal sense if it is
supported over incentive-compatible deterministic mechanisms.

▶ A randomized mechanism is incentive-compatible in expectation if truth is a
dominant strategy in the game induced by expectation.
▶ That is, the utility to player i is:

utilityi = E
(f ,p1,...,pn)

[
v∗i
(
f (v1, . . . , vn)

)
− pi

(
v1, . . . , vn

)]
.

▶ Weaker that incentive-compatibility—for example, it does not take into account a
player’s risk-aversion (assumes players only care about maximizing expected utility).
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Mechanism design with computational considerations
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Combinatorial auctions (CA)

Game setting:
▶ We allocate m items Ω to n players I .

▶ Players value subsets, so:

vi(S) = value of S ⊂ Ω to player i.

▶ Assume valuations are monotonic: vi(S) ≤ vi(T) if S ⊂ T
▶ Assume valuations are normalized: vi(∅) = 0.

▶ Our goal is to maximize social welfare:

f (v1, . . . , vn) = argmax
(S1,··· ,Sn)

∑
i∈I

vi(Si),

where Si, Sj ⊂ Ω are disjoint for i ̸= j.
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CA through VCG

If we can exactly compute:

f (v1, . . . , vn) = argmax
(S1,··· ,Sn)

∑
i∈I

vi(Si),

then we can implement VCG to achieve an incentive-compatible mechanism.
▶ However, f is computationally infeasible.

▶ In general, even the valuation vi is exponential in size.
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Two models of CA

▶ Bidding language model: vi must have a succinct representation.
▶ It is NP-hard to approximate social welfare within a ratio of Ω(m1/2−ε) for any ε > 0.

▶ Query access model: the mechanism may query players for values vi(a).
▶ Any algorithm with polynomial communication cannot approximate social welfare

within a ratio of Ω(m1/2−ε) for any ε > 0.
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Impossibility of computational-efficiency and incentive-compatibility

Implication. If P ̸= NP, then there does not exist a computationally-efficient
incentive-compatible mechanism for either models of combinatorial auctions.
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Approximation mechanisms through randomness

Goal: a randomized approximation mechanism that is truthful in expectation.

Key idea to design random mechanism:
▶ Relax problem and solve for optimal fractional allocation.
▶ Construct distribution over integral allocations such that allocations match the

optimal fractional allocation in expectation.
▶ Use VCG mechanism to ensure truthfulness in expectation.
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Fractional domain

The fractional CA problem is the following linear program:

max
∑

i∈I ,S ̸=∅

xi,S · vi(S)

subject to
∑
S ̸=∅

xi,S ≤ 1 for each player i ∈ I

∑
i∈I ,S:j∈S

xi,S ≤ 1 for each item j ∈ Ω

xi,S ≥ 0 for all i ∈ I , S ̸= ∅

Player i receives a xi,S fraction of set S.

▶ The first constraint ensures each player is allocated at most one unit of subsets.

▶ The second ensures the amount of each item j allocated out is at most one.
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Efficient optimal mechanism for fractional CA

Proposition
For the fractional CA problem, there is a truthful optimal mechanism with efficient
computation and communication for the bidding language model and query-access models.

▶ Solve the linear program (e.g. ellipsoid method) to obtain optimal fractional
allocation; apply VCG.
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Fractional CA to integral CA

Converting a fractional allocation to a distribution over integral allocations
▶ Suppose we can verify that CA has a c-integrality gap. That is, we have an efficient

algorithm returns an integral point x̃ such that:

c ·
∑
i,S

x̃i,S · vi(S) ≥ max
feasible x’s

∑
i,S

xi,S · vi(S).

We can find an integral allocation x̃ no more than c times worse than optimal.

▶ Decomposition lemma. Suppose we can verify a c-integrality gap. If x is a
feasible point, then we can efficiently decompose x/c into a convex combination of
integral feasible points.
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Decomposition-based random mechanism

1. Compute an optimal fractional solution x∗ and VCG prices p∗i (v).
▶ Let v = (v1, . . . , vn).

2. Obtain decomposition: x∗/c =
∑
ℓ∈I

λℓ · xℓ

▶ I set of feasible integral allocations

3. With probability λℓ:
(i) choose allocation xℓ

(ii) set prices pi(v) = [vi(xℓ)/vi(x∗)]p∗i (v).

20 / 26



Expected welfare and price

Expected welfare:

E[social welfare] =
1
c

∑
i∈I

vi(x∗).

Expected price per player:

E [pi(v)] =
∑
ℓ∈I

λℓ · [vi(xℓ)/vi(x∗)]p∗i (v)

=
[
p∗i (v)/vi(x

∗)
]
·
∑
ℓ∈I

λℓ · vi(xℓ) = p∗i (v)/c.

Thus, truthfulness follows from the optimality of fractional CA.
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Impossibilities of dominant strategy implementability
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Nothing besides VCGs

Definition (Affine maximizer)
A social choice function f is an affine maximizer if there exist weights k1, . . . , kn for each
player and constants Ca for each alternative such that:

f (v1, . . . , vn) ∈ argmax
a∈A

Ca +
∑
i∈I

kivi(x).

Theorem (Nothing but VCGs)
Suppose |A| ≥ 3 and vi ∈ RA is unrestricted for all i. Then f is dominant-strategy
implementable if and only if it is an affine maximizer.
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Implication as impossibility result

1. Often, VCG is computationally intractable (e.g. CAs)

2. We can also seek goals different from welfare maximization.
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Alternative solution concept

Definition (Algorithmic implementation)
A mechanism M is an algorithmic implementation of a c-approximation in
undominated strategies if there exists a set of strategies D such that:

(i) M obtains a c-approximation for any combination of strategies from D in polytime

(ii) for any strategy not in D, there is a strategy in D that weakly dominates it, and this
transition is polynomial-time computable.
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