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Source material

The material for this presentation is essentially all copied directly from the Simons
Institute Learning and Games Bootcamp, from Constantinos Daskalakis’ tutorial.

▶ Watch his talk here.

▶ See his slides here.
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https://simons.berkeley.edu/workshops/games2022-boot-camp
https://simons.berkeley.edu/workshops/games2022-boot-camp
https://simons.berkeley.edu/talks/min-max-optimization-part-i
https://www.dropbox.com/s/fd7l81gw2cle6pm/2022%20-%20minmax%20tutorial%20-%20Simons%20-%20temp.pptx?dl=0


Classical learning theory framework

Model:
▶ nature chooses a fixed data distribution D
▶ learner aims to find parameters x minimizing some loss ℓ(x;D)
▶ learner only gets sample access Z = {Z1, . . . ,Zn} where Zi ∼ D
▶ learner minimizes empirical estimate ℓ(x;Z)
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Machine learning: optimization viewpoint

Success in machine learning through casting learning as an optimization problem:

min
x

ℓ(x)

▶ x is often very high-dimensional
▶ ℓ is nonconvex objective, but Lipschitz and smooth

▶ access via 0th or 1st order information, e.g. ℓ(x) and ∇ℓ(x)
▶ optimize using gradient descent: x ← x − η∇ℓ(x)

▶ theoretical guarantee: efficiently find local minima
▶ empirical finding: local minima good enough
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Non-stationary (reactive) environments

Beyond the classical setting: can we learn in settings where the agent’s choice x can
affect its environment? The environment can be reactive due to:
▶ the presence of other learning agents with conflicting or aligned interests

▶ markets, traffic, games, ecological/biological systems
▶ distributed optimization, model of brain, evolution of language, homeostasis

▶ noise/adversaries/distribution shifts poisoning, corrupting, or changing the data
▶ adversarial learning, gaming a decision making system

▶ the need to enforce constraints on the learning outcome
▶ introduce constraints via competing interests (like GANs)
▶ robust statistics, privacy-preserving learning, causal inference
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Machine learning: equilibrium computation viewpoint

▶ Minimization: an agent is learning and decision-making in a stationary
environment

▶ Equilibrium computation: an agent is learning and decision-making in an
environment that is reactive
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Multi-agent learning setting

Setting:
▶ k agents

▶ the ith agent gets to choose parameter xi in:

x ≡ (x1, . . . , xk)

▶ the ith agent aims to minimize ℓi(x), where:1

ℓi : X1 × . . .×Xk → R

Sources of tension:
▶ the ℓi’s may be misaligned

▶ agents may be uncoordinated, have partial observability of action, payoff, and
information of others

1In game theory, the problem is to maximize the utility ui = −ℓi .
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Motivating example: GANs

How to train a Deep Generative Model?

“ Set up a two-player zero-game between a player tuning the parameters x of a
deep neural network (called the ‘generator’) and a player tuning the parameters
y of a deep neural network (called the ‘discriminator’).

f (x, y) = E
Z∼µ

[
Dy(Z)

]
− E

Z∼N (0,I)

[
Dy(Gx(Z))

]

Goodfellow et al. (2020)
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Motivating example: GANs

▶ Objective function nonconvex.

▶ Inputs x and y high-dimensional.

▶ Existence of equilibria not guaranteed.
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Simultaneous gradient descent

Suppose each agent simply runs gradient descent:

x(t+1)
i ← x(t)i − η

(t)
i ∇xiℓi(x

(t)).

▶ This dynamics might not converge, let alone to something meaningful.

▶ Can exhibit cycling or divergent behaviors.

▶ Note: in two-player zero-sum games, where ℓ1 = −ℓ0, this dynamics is called
gradient descent/ascent (GDA)
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Example of cycles

Example (Simultaneous gradient descent can lead to cycles)
Consider the two-player zero-sum game with f : R2 → R,

f (x, y) = x⊤y.

▶ Objective is convex/concave with a unique Nash equilibrium (0, 0).
▶ GDA defines cyclic vector field (−∇xf ,∇yf ) = (−y, x).
▶ Discretization of continuous dynamics leads to divergence:

x ← x − η∇xf (x, y)

y ← y + η∇yf (x, y)

since ∥(x, y)∥ increases at each step.
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Example of cycles

Figure 1: The vector field (−∇xf ,∇yf ) = (−y, x) is tangent to the circle centered at (0, 0).
The continuous GDA dynamics cycles, while its discretization also expands outward.
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Convergence on average to equilibrium

“ For this problem, it is known that Gradient Descent/Ascent (GDA) is a no-regret
learning procedure, corresponding to follow-the-regularized leader (FTRL) with
ℓ2-regularization. As such, the average trajectory traveled by GDA converges to
a min-max solution.

Daskalakis and Panageas (2018)
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Example of divergence

Example (Simultaneous gradient descent can diverge)
Define strongly-convex f , g : R2 → R by:

f (x, y) =
1
2
(x + y + 1)2 +

1
2
y2 and g(x, y) =

1
2
(x + y − 1)2 +

1
2
x2.

The vector field
(
−∇xf ,−∇yg

)
has no stationary point, as ∇xf = ∇yg = 0 can never

hold simultaneously:

∇xf (x, y) = x + y + 1 and ∇yg(x, y) = x + y − 1.
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Visualization of divergence

Figure 2: Here, f is black (bottom) and g is blue. The vector field corresponds to the
dynamics dxt = −ηx∇xf (xt , yt) and dyt = −ηx∇yg(xt , yt).
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Trouble in ‘easy’ setting

Training oscillation and garbage solutions arise even when:

▶ 2-player game, convex-concave, low-dimensional

▶ objective does not need to be learned (i.e. it is perfectly known)
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Equilibrium finding in games

Question 1. Is simultaneous gradient descent (or some variant) able to arrive at the
solution concepts offered by game theory?

▶ Nash equilibria, (coarse) correlated equilibria, regret minimization, etc.

Question 2. Are these equilibria meaningful? Do they exist? Efficiently computable?

Question 3. What is not captured by the study of equilibria?
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Existence and tractability

We say the game is convex if each player i is minimizing a convex objective ℓi.
▶ Computing the Nash equilibrium is generally intractable (PPAD complete).

▶ Computing approximate Brouwer fixed points is PPAD complete in 2+ dimensions
Daskalakis et al. (2009), Chen and Deng (2009)

For nonconvex games, existence of equilibrium not guaranteed.
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