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10,000 Foot View of Machine Learning

Complex problems often require a division of labor or decentralization.
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Example: Tragedy of the Commons

Question: How often should
agents send jobs?

SHARED
COMPUTE



Three Possible Worlds

Under-utilization Ideal load balancing Wasted overhead
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World One: Under-Utilization

Agents send jobs sporadically.
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World One: Under-Utilization

Agents send jobs sporadically.
A lot of idle time: socially inefficient.

Everyone benefits from slightly increasing their
utilization rate: unstable.
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World Two: Perfect Utilization

Demand matches supply.
No wasted compute: socially optimal.

Individuals marginally benefit from increasing
usage, as long as others do not: unstable.
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World Three: Over-Utilization

Agents overwhelm the server.
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World Three: Over-Utilization

Agents overwhelm the server.

Leads to thrashing— most of time is spent in
context switching: very socially inefficient.
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World Three: Over-Utilization

Agents overwhelm the server.

Leads to thrashing— most of time is spent in
context switching: very socially inefficient.

The individual is marginally worse off by sending
fewer jobs: stable equilibrium.

® OVERHEAD
@ COMPUTE
® IDLE



The Tragedy

Everyone is better off in World Two,
but only World Three iIs stable.
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Guardrails:

 \WWe can change the agent
behavior to limit utilization.



Tragedy of the Commons

Guardrails:

 \WWe can change the agent
behavior to limit utilization.

 \We can introduce a
to handle usage.



Real-World Solutions

@
Exponential Backoff Traffic Light
(Client behavior in TCP) (Central coordinator)




10,000 Foot View of Machine Learning

But, what happens if we cannot explicitly design the agent behaviors?
In modern ML systems, the behaviors of agents are often learned.



Nash Equilibria

Nash equilibria (NE) describe behaviors of multi-agent
systems that may have long-term relevance.



Nash Equilibria

Nash equilibria (NE) describe behaviors of multi-agent
systems that may have long-term relevance.

But not all NE are stable, and not all are good.
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equilibria are well-understood.
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Prior Work: Stability of Social Conventions

’ Dynamics of multi-agent systems around strict Nash
equilibria are well-understood.

’ STOP/GO, everyone else is forced to adopt this convention.

Example. Once enough people agree RED/GREEN means

I

Stability does not guarantee
collective rationality.
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Stability in Non-Strict Equilibria

What about dynamics around
non-strict Nash equilibria?

oY

Example. When the job market is at equilibrium, many

i ' career options are viable, leading to a mixed population.
“ “ CAREER

OPTIONS

ﬁ g Stability guarantees collective rationality.

Learnable Mixed Nash Equilibria are
Collectively Rational

Geelon So and Yi-An Ma, Preprint 2025



Comparison of Dynamics Around Non-Strict NE

Social Welfare

Unstable Nash equilibria are not Uniformly stable Nash equilibria are
strategically Pareto optimal. strategically Pareto optimal.



Takeaways

* Modern ML often implements multi-agent solutions.
 Decentralization introduces structural constraints.

- What are the ramifications and when are guardrails needed?



Contents

. A crash course in game theory
Il. Learning in games
lll. Simple models of learning

IV. Uniform stability and collective rationality



A crash course Iin game theory



Hallmark of a Game

Decisions are made individually, but the
outcome depends on collective choices.



Game Components

 Multiple decision makers (players, agents, learners)
* Possibly distinct goals (utilities, tasks, objectives)

* Disjoint decision variables (strategies, policies, parameters)



Optimization v. Games

Single-Objective
Optimization

Multi-Objective
Optimization

Games

One objective

One decision maker

Many objectives
One decision maker

Shared parameters

Many objectives
Many decision makers

Disjoint parameters
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Mathematical Formalism

An N-player game:

» Playersindexedbyn € {1,..., N}

» Each player has a decision variable x, € €2
» Joint decision: X = (xy, ..., xy) € 2

» Notation: X_, 1= (X, ..y X 1, X0 15 «ces Xp)

» Each player wants to maximize their utility u,, : €2 — |

u,(X) =u,(x,;X_).
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Improve their own utility
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Nash Equilibrium

Definition. A joint strategy x* is a Nash equilibrium if no player can unilaterally
Improve their own utility

*Y "
u,(X™) = max u,(x,; X", ).
x, €82,

This is a notion of individual rationality: players would
need to collaborate to further improve their utilities.
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Pareto Optimum

Definition. A joint strategy X~ is (weakly) Pareto optimal if there is no way to
improve all players at the same time

Ax € Q st u(x)>u (x*)foraln € [N].

It would be collectively irrational to jointly play x*
when everyone is happier with X.



Prisoners'
dilemma

confess

confess

2Ny

0

A
4
A

5 years

remain
silent

Q Y 4

k

<
S
@
c
O
7
i
Q

remain
silent

)

A
LI

20 years

© 2010 Encyclopeaedia Britannica, Inc.

Nash equilibria do not need

to be Pareto optimal.



Prisoners'

dilemma \6,

confess

remain
silent

k

confess
\‘ ’I |
Y/ |\
1
A
<
o 5 years
=
o)
0
ol
remain
silent

1 1
e

A
L] [

)

20 years

© 2010 Encyclopeaedia Britannica, Inc.

1 year

1 year

Nash equilibria do not need

to be Pareto optimal.

* The problem might not be due to
selfishness or lack of altruism.



Prisoners'

dilemma

Q V 4
confess V

remain
silent

[

O year 20 years

confess
7, |
6 A
1
A
<
O 5 years
=
o)
0
ol
remain
silent

1 1
e

A
L] [

)

20 years

© 2010 Encyclopeaedia Britannica, Inc.

1 year 1 year

Nash equilibria do not need
to be Pareto optimal.

* The problem might not be due to
selfishness or lack of altruism.

* Players may not know enough.



Prisoners'

dilemma

Q V 4
confess V

remain
silent

[

O year 20 years

confess
7, |
6 A
1
A
<
O 5 years
=
o)
0
ol
remain
silent

1 1
e

A
L] [

)

20 years

© 2010 Encyclopeaedia Britannica, Inc.

1 year 1 year

Nash equilibria do not need
to be Pareto optimal.

* The problem might not be due to
selfishness or lack of altruism.

* Players may not know enough.

 [hey may not have the ability to
communicate or coordinate.



Secret Santa: Gift Exchange

uAlice(X) = uAlice(xBob)

Alice’s utility depends fully on Bob’s choice.




Secret Santa: Gift Exchange

uAlice(X) = uAlice(xBob)

Alice’s utility depends fully on Bob’s choice.

Alice and EZob can’t give the ideal gift
(maximize the other’s utility) if they don’t
4 know what the other wants!




Mechanism Design

There’s a whole area of game theory devoted to
changing the structure of the game so that collectively
efficient decisions may be reached individually.

(We won’t go into this in this talk.)



Learning in Games

Instead, we go into another area of game theory
studying how/whether players reach a Nash equilibrium
and if they do, which ones do they end up at.



Learning in Games
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Nash Equilibrium

Definition. A joint strategy x* is a Nash equilibrium if no player can unilaterally improve their own utility:

i, (X*) = max u (x,;X* ).
x, 8

Why do we care about Nash equilibria? It is a minimal solution concept:
If a joint strategy X is not Nash, then it is not stable.

» At least one player could optimize further, causing the system to diverge from X.

* Collective behavior with long-term viability “must” be Nash.



Issues with the Nash Equilibrium

1. Existence
Uniqueness

Computability

> W DB

Stability



1. EXxistence

o -

\

Rock-Paper-Scissors does not have
a Nash equilibrium unless we allow
randomized strategies.

<
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Normal-Form Games

Each player has a finite set of alternatives o/, = {a'", ..., a\*")
« Foreacha = (ay,...,ay) € I X -+ X Iy, the utility is
un(a) — Ugl,...,aN

» We allow for randomized strategies x, € A(< )
» The mixed strategy x, describes a distribution over &/,

» Let u, be the expected utility when players randomize independently

un (X) _ _al.le. [Ual,...,aN]

n




Mixed Equilibrium

Each player picks R/P/S
uniformly at random.



Minimax Theorem & Nash Existence

Existence of mixed equilibria in zero-sum and general normal-form games.



Minimax Theorem & Nash Existence

Existence of mixed equilibria in zero-sum and general normal-form games.

“As far as | can see, there could be no theory of games ...
without that theorem.

| thought there was nothing worth publishing until the
Minimax Theorem was proved.”

— John von Neumann (1928)



Minimax Theorem & Nash Existence

Existence of mixed equilibria in zero-sum and general normal-form games.

“As far as | can see, there could be no theory of games ...
without that theorem.

| thought there was nothing worth publishing until the
Minimax Theorem was proved.”

— John von Neumann (1928)

Implication for algorithms with worst-case guarantees:
randomization may be necessary!
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A. (Red, Green) = (Stop, Go)
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2. Uniqueness

Multiple Nash equilibria:
A. (Red, Green) = (Stop, Go)
B. (Red, Green) = (Go, Stop)

C. Ignore signal and go with low probability.




The Equilibrium Selection Problem

If there are many equilibria, how do players know which one to play?

“The Nash equilibrium only makes sense if each player knows which
strategies the others are playing; if the equilibrium recommended by
the theory is not unique, the players will not have this knowledge.”

— Robert Aumann



The Equilibrium Selection Problem

Solution: develop a model of how players arrive at the equilibrium.
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The Equilibrium Selection Problem

Solution: develop a model of how players arrive at the equilibrium.

* We will need to introduce a dynamical aspect of games: how do
players use experience to |learn to play the game?

* |n economics, this may lead to fraught issues of “rationality”.

* |n computer science, we often get to define how agents learn.



3. Computability

The problem of finding a Nash equilibrium is PPAD' complete.

1Polynomial Parity Arguments on Directed graphs

“If your laptop cannot find [the Nash equilibrium], neither can the market.”

— Kamal Jain



3. Computability (as players)

There exist games, for which all game dynamics fail to converge to
Nash equilibria from all starting points.

(Milionis, Papadimitriou, Piliouras, Spendlove 2023)

(We won’t go into computabillity in this talk.)



4. Stability

C. Ignore signal and go with low probability.

This mixed equilibrium is not stable:

Once people start going slightly more often on green, the
system will quickly converge on (Red, Green) = (Stop, Go).



Learning in Games

Goal: understand the dynamics of players learning to play a game
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Learning in Games

Goal: understand the dynamics of players learning to play a game
* The equilibrium arises out of the dynamics (the players are not trying to compute it per se).

 Which equilibria can be robustly learned by players®?



lll. Simple Models of Learning



Repeated Games




Repeated Games

Players enter a game with limited knowledge:

 They know what set of actions they/others can take.

* They know their own utilities.
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Repeated Games

Players enter a game with limited knowledge:

 They know what set of actions they/others can take.

* They know their own utilities.

They do not know:

* What other players want. The players are uncoupled.

 How other players learn.




Repeated Games

Players enter a game with limited knowledge:

 They know what set of actions they/others can take.

* They know their own utilities.

They do not know: _
Players will repeatedly play the game,

e What other players want. observe what other do, and adjust their

owhn behaviors for future rounds.
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Repeated Games

Players enter a game with limited knowledge:

 They know what set of actions they/others can take.

* They know their own utilities.

They do not know:
 What other players want.

 How other players learn.

Players will repeatedly play the game,
observe what other do, and adjust their
own behaviors for future rounds.

A learning rule describes how a player
make use of past experience.



Simple Learning Rules

 Best Response: optimize, assuming that players in the next
round will continue to play the current strategy.
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Simple Learning Rules

 Best Response: optimize, assuming that players in the next
round will continue to play the current strategy.

 Follow the Leader: optimize, assuming that past experience
forms a representative sample of strategies that will be played.

* No-Regret Learning: apply standard online learning algorithms.
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Learning rules define a dynamical system

The dynamics of a (Markov) learning rule is governed by a transition map:
T:Q — Q.

where X(7 + 1) = T(X(t)).

* A joint strategy x" is an equilibrium or a fixed point if:

x" = T(x").
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Best-Response Dynamics

The best-response map defines the learning rule:

— /o
I (X) = arg max u, (xn, X_n>.
x, Q.

* A Nash equilibrium is a fixed point of the best-response map.



Gradient Ascent-Ascent: a learning rule

Assume that utilities are smooth: 1, : €2, — R.

Forr=1,2,...:
 Players update their strategies by gradient ascent:

x,(t+1)=x(1)+n- Vnun(x(t))



Classic Notions of Dynamical Stability

1. Asymptotic stability
2. Non-asymptotic/Lyapunov stability

3. Instability



1. Asymptotic Stability

An equilibrium x' is asymptotically stable if
there is some ¢ > (O such that:

1x(0) = xT|| <8 = Ilimx(®) =x"

[— 0

A strong notion of stability: convergence toward
equilibrium is stable against small perturbations.



Asymptotic Stability for Strict NE
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Asymptotic Stability for Strict NE

Strict Nash equilibria admit asymptotically stable dynamics.

\

Given that others play x* , there is a
clear, deterministic best response x .

The traffic light game is
an example of this.




2. Lyapunov (Non-Asymptotic) Stability

Lyapunot stable

An equilibrium x' is Lyapunov stable if for
all ¢ > 0, there is some 0 > 0 such that:

asymptot)

Ix(0) -x'[| <6 = sup|lx()—x'|| <e
>0

A weaker notion of stability: dynamics near
equilibrium remains close to it.



3. Unstable

Stable fixed point Unstable fixed point

An equilibrium X' is unstable if it is
not Lyapunov stable.




Asymptotically-Stable Uncoupled Dynamics

Theorem (Hart & Mas-Colell 2003). Uncoupled dynamics cannot
achieve asymptotically-stable convergence to all Nash equilibria.

Read: due to informational constraints, not
all Nash equilibria are “strongly learnable”.



Instability for non-strict/mixed NE

Many learning dynamics exhibit around mixed NE.

T

It is troubling for the theoretical
viability of mixed NE, if it is the case
that players cannot converge to it.



Convergence in Zero-Sum Games

However, there are uncoupled dynamics that do robustly find
certain equilibria (e.g. those Iin zero-sum games):

* Optimistic gradient descent-ascent
* Extragradient method

 Smoothed best-response



This Work

Which mixed equilibria admit convergence?

Learnable Mixed Nash Equilibria are Collectively Rational

Geelon So and Yi-An Ma, Preprint 2025



V. Uniform Stability and Collective Rationality
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Linear Stability Analysis

Consider the following continuous-time, smooth dynamical system:

x(1) = T(x(1)).

 Example: x, (1) = Vnun(x(t))

 We can study the stability of the dynamics around a fixed point X"
by looking at the around X"
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Linearized Dynamics

For simplicity, let x € R". The Jacobian J(x) € RY" is given by:
Vily Vol - VI

V,T

J=VT= 12

Vvt

Around the fixed point, the linearized dynamics are defined by:
2(1) = J(x") z(1)

wherez = X — XT.



Stability from Spectral Analysis

Stability of linear dynamical systems well-understood:
e |f all eigenvalues of J have negative real parts —> asymptotic stability
* |f there is an eigenvalue with positive real part — instability

 |f all eigenvalues are purely imaginary — neutral stability

* This case is much harder to characterize for non-linear systems
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Barrier to Asymptotic Stability

The Jacobian of many game dynamics look this:

0 Vo1, - VuT,
Jxh=| 120
VN711

« The dynamics are traceless: tr(J (XT)) = 0.
» But, the sum of eigenvalues of J is the trace:
tr(J) = A, + - + Ay

» Asymptotic stability requires that R(4,) < O for alln € [N]. This
IS Impossible for traceless dynamics.



Not unstable — purely imaginary eigenvalues
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Jacobians of uncoupled game dynamics

The Jacobian of many uncoupled game dynamics look this:

Hl O Vle e VNTl

where H, are positive-definite matrices (think: preconditioners, player-dependent geometry).
« Example: x,(1) = H, Vnun(x(t))

o Stability for uncoupled dynamics requires all eigenvalues of J(XT; H) be be purely imaginary.



Jacobians of uncoupled game dynamics

Definition. An equilibrium X' is uniformly stable if the game Jacobian J(x; H)
has purely imaginary eigenvalues

e |t is locally uniformly stable if this holds for all X in an open set around X'



Main Result: Economic Meaning of Stability

Local Uniform Stability — Strategic Pareto Optimality

Strategic Pareto Optimality — Uniform Stability



Main Result: Uniform Stability and Convergence

Local Uniform Stability —> Dynamics can be stabilized

Not Uniformly Stable — Dynamics cannot be stabilized



Comparison of Dynamics Around Non-Strict NE

Social Welfare

Unstable Nash equilibria are not Uniformly stable Nash equilibria are
strategically Pareto optimal. strategically Pareto optimal.



Takeaways

* Modern ML often implements multi-agent solutions.
 Decentralization introduces structural constraints.

- What are the ramifications and when are guardrails needed?



