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DATA GOAL

Complex problems often require a division of labor or decentralization.
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Prisoner’s Dilemma Tragedy of the 
Commons
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Question: How often should 
agents send jobs?
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Everyone benefits from slightly increasing their 
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World Three: Over-Utilization

Agents overwhelm the server. 

Leads to thrashing—most of time is spent in 
context switching: very socially inefficient.


The individual is marginally worse off by sending 
fewer jobs: stable equilibrium.
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Three Possible Worlds

OVERHEAD COMPUTE IDLE

Under-utilization Wasted overheadIdeal load balancing

The Tragedy 
Everyone is better off in World Two, 
but only World Three is stable.
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• We can introduce a central 
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AGENTS SHARED 
COMPUTE

Guardrails:


• We can change the agent 
behavior to limit utilization.


• We can introduce a central 
coordinator to handle usage.



Real-World Solutions

Exponential Backof Traffic Light
(Client behavior in TCP) (Central coordinator)



10,000 Foot View of Machine Learning

DATA GOAL

But, what happens if we cannot explicitly design the agent behaviors? 
In modern ML systems, the behaviors of agents are often learned.
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Nash Equilibria

Nash equilibria (NE) describe behaviors of multi-agent 
systems that may have long-term relevance.

But not all NE are stable, and not all are good.
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Prior Work: Stability of Social Conventions

Stability does not guarantee 
collective rationality.

Dynamics of multi-agent systems around strict Nash 
equilibria are well-understood.
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Stability in Non-Strict Equilibria

CAREER 
OPTIONS

What about dynamics around 
non-strict Nash equilibria?

Example. When the job market is at equilibrium, many 
career options are viable, leading to a mixed population.

Stability guarantees collective rationality.

Learnable Mixed Nash Equilibria are 
Collectively Rational 

Geelon So and Yi-An Ma, Preprint 2025



Comparison of Dynamics Around Non-Strict NE

Unstable Nash equilibria are not 
strategically Pareto optimal.

Uniformly stable Nash equilibria are 
strategically Pareto optimal.



Takeaways

• Modern ML often implements multi-agent solutions. 

• Decentralization introduces structural constraints. 

• What are the ramifications and when are guardrails needed?
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I. A crash course in game theory



Hallmark of a Game

Decisions are made individually, but the 
outcome depends on collective choices.



Game Components

• Multiple decision makers (players, agents, learners)


• Possibly distinct goals (utilities, tasks, objectives)


• Disjoint decision variables (strategies, policies, parameters)



Optimization v. Games

Single-Objective 
Optimization

Multi-Objective 
Optimization Games

One objective 

One decision maker 

 Parameters

Many objectives 

One decision maker 

Shared parameters

Many objectives 

Many decision makers 

Disjoint parameters



Mathematical Formalism
An N-player game: 

• Players indexed by 


• Each player has a decision variable 


• Joint decision: 


• Notation: 


• Each player wants to maximize their utility 


.

n ∈ {1,…, N}

xn ∈ Ωn

x = (x1, …, xN) ∈ Ω

x−n := (x1, …, xn−1, xn+1, …, xN)

un : Ω → ℝ

un(x) ≡ un(xn; x−n)
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Nash Equilibrium

Definition. A joint strategy  is a Nash equilibrium if no player can unilaterally 
improve their own utility


.


x⋆

un(x⋆) = max
xn∈Ωn

un(xn; x⋆
−n)

This is a notion of individual rationality: players would 
need to collaborate to further improve their utilities.



Pareto Optimum

Definition. A joint strategy  is (weakly) Pareto optimal if there is no way to 
improve all players at the same time
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Pareto Optimum

Definition. A joint strategy  is (weakly) Pareto optimal if there is no way to 
improve all players at the same time


    s.t.    for all .


x⋆

/∃x ∈ Ω un(x) > un(x⋆) n ∈ [N]

It would be collectively irrational to jointly play  
when everyone is happier with .

x⋆

x
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Secret Santa: Gift Exchange

Alice and Bob can’t give the ideal gift 
(maximize the other’s utility) if they don’t 
know what the other wants!

uAlice(x) ≡ uAlice(xBob)
Alice’s utility depends fully on Bob’s choice.



Mechanism Design

There’s a whole area of game theory devoted to 
changing the structure of the game so that collectively 
efficient decisions may be reached individually.

(We won’t go into this in this talk.)



Learning in Games

Instead, we go into another area of game theory 
studying how/whether players reach a Nash equilibrium 
and if they do, which ones do they end up at.



II. Learning in Games



Nash Equilibrium
Definition. A joint strategy  is a Nash equilibrium if no player can unilaterally improve their own utility:


.
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un(x⋆) = max
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un(xn; x⋆
−n)

Why do we care about Nash equilibria? It is a minimal solution concept: 


If a joint strategy  is not Nash, then it is not stable.


• At least one player could optimize further, causing the system to diverge from .


• Collective behavior with long-term viability “must” be Nash.
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Issues with the Nash Equilibrium
1. Existence 

2. Uniqueness 

3. Computability 

4. Stability



1. Existence

Rock-Paper-Scissors does not have 
a Nash equilibrium unless we allow 
randomized strategies.



Each player has a finite set of alternatives 𝒜n = {a(1)
n , …, a(Kn)

n }
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Each player picks R/P/S 
uniformly at random.

Mixed Equilibrium



Minimax Theorem & Nash Existence

Existence of mixed equilibria in zero-sum and general normal-form games. 



Minimax Theorem & Nash Existence

“As far as I can see, there could be no theory of games … 
without that theorem.


I thought there was nothing worth publishing until the 
Minimax Theorem was proved.”


— John von Neumann (1928)

Existence of mixed equilibria in zero-sum and general normal-form games. 



Minimax Theorem & Nash Existence

“As far as I can see, there could be no theory of games … 
without that theorem.


I thought there was nothing worth publishing until the 
Minimax Theorem was proved.”


— John von Neumann (1928)

Existence of mixed equilibria in zero-sum and general normal-form games. 

Implication for algorithms with worst-case guarantees: 
randomization may be necessary!



2. Uniqueness

Multiple Nash equilibria: 

A. (Red, Green) = (Stop, Go)


B. (Red, Green) = (Go, Stop)


C. Ignore signal and go with low probability.
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The Equilibrium Selection Problem

“The Nash equilibrium only makes sense if each player knows which 
strategies the others are playing; if the equilibrium recommended by 
the theory is not unique, the players will not have this knowledge.”


— Robert Aumann

If there are many equilibria, how do players know which one to play?



The Equilibrium Selection Problem

Solution: develop a model of how players arrive at the equilibrium.
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The Equilibrium Selection Problem

Solution: develop a model of how players arrive at the equilibrium.

• We will need to introduce a dynamical aspect of games: how do 
players use experience to learn to play the game?


• In economics, this may lead to fraught issues of “rationality”.


• In computer science, we often get to define how agents learn.



3. Computability

The problem of finding a Nash equilibrium is PPAD1 complete.
1Polynomial Parity Arguments on Directed graphs

“If your laptop cannot find [the Nash equilibrium], neither can the market.”


— Kamal Jain



3. Computability (as players)

There exist games, for which all game dynamics fail to converge to 
Nash equilibria from all starting points.

(We won’t go into computability in this talk.)

(Milionis, Papadimitriou, Piliouras, Spendlove 2023)



4. Stability

Multiple Nash equilibria: 

A. (Red, Green) = (Stop, Go)


B. (Red, Green) = (Go, Stop)


C. Ignore signal and go with low probability.
This mixed equilibrium is not stable: 

Once people start going slightly more often on green, the 
system will quickly converge on (Red, Green) = (Stop, Go).



Learning in Games

Goal: understand the dynamics of players learning to play a game 

• The equilibrium arises out of the dynamics (the players do not explicitly try to compute it).


• Which equilibria can be robustly learned by players?
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Players enter a game with limited knowledge: 

• They know what set of actions they/others can take.


• They know their own utilities.


They do not know: 

• What other players want.


• How other players learn.

Players will repeatedly play the game, 
observe what other do, and adjust their 
own behaviors for future rounds.

A learning rule describes how a player 
make use of past experience.



Simple Learning Rules

• Best Response: optimize, assuming that players in the next 
round will continue to play the current strategy.


• Follow the Leader: optimize, assuming that past experience 
forms a representative sample of strategies that will be played.  

• No-Regret Learning: apply standard online learning algorithms.
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The dynamics of a (Markov) learning rule is governed by a transition map:
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Best-Response Dynamics

The best-response map defines the learning rule:


.


• A Nash equilibrium is a fixed point of the best-response map.

Tn(x) = arg max
x′￼n∈Ωn

un(x′￼n; x−n)



Best-Response Dynamics

The best-response map defines the learning rule:


.


• A Nash equilibrium is a fixed point of the best-response map.

Tn(x) = arg max
x′￼n∈Ωn

un(x′￼n; x−n)



Gradient Ascent-Ascent: a learning rule

Assume that utilities are smooth: . un : Ωn → ℝ

For  : 

• Players update their strategies by gradient ascent: 

t = 1,2,…

xn(t + 1) = xn(t) + η ⋅ ∇nun(x(t))



Classic Notions of Dynamical Stability

1. Asymptotic stability 

2. Non-asymptotic/Lyapunov stability 

3. Instability



1. Asymptotic Stability

An equilibrium  is asymptotically stable if 
there is some  such that: 

x†

δ > 0

∥x(0) − x†∥ < δ ⟹ lim
t→∞

x(t) = x†x†

x(0)

A strong notion of stability: convergence toward 
equilibrium is stable against small perturbations.
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Asymptotic Stability for Strict NE

Strict Nash equilibria admit asymptotically stable dynamics.

Given that others play , there is a 
clear, deterministic best response .

x⋆
−n

x⋆
n

The traffic light game is 
an example of this.



2. Lyapunov (Non-Asymptotic) Stability

An equilibrium  is Lyapunov stable if for 
all , there is some  such that: 

x†

ε > 0 δ > 0

∥x(0) − x†∥ < δ ⟹ sup
t>0

∥x(t) − x†∥ < εx†

x(0)

A weaker notion of stability: dynamics near 
equilibrium remains close to it.



3. Unstable

An equilibrium  is unstable if it is 
not Lyapunov stable.

x†



Asymptotically-Stable Uncoupled Dynamics

Theorem (Hart & Mas-Colell 2003). Uncoupled dynamics cannot 
achieve asymptotically-stable convergence to all Nash equilibria.

Read: due to informational constraints, not 
all Nash equilibria are “strongly learnable”.



Instability for non-strict/mixed NE

 Many learning dynamics exhibit instability around mixed NE.

It is troubling for the theoretical 
viability of mixed NE, if it is the case 
that players cannot converge to it.



Convergence in Zero-Sum Games

However, there are uncoupled dynamics that do robustly find 
certain equilibria (e.g. those in zero-sum games): 

• Optimistic gradient descent-ascent


• Extragradient method


• Smoothed best-response



This Work

Which mixed equilibria admit convergence?

Learnable Mixed Nash Equilibria are Collectively Rational 

Geelon So and Yi-An Ma, Preprint 2025



IV. Uniform Stability and Collective Rationality
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Consider the following continuous-time, smooth dynamical system:
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• Example: 
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Linearized Dynamics

For simplicity, let . The Jacobian  is given by:
x ∈ ℝN J(x) ∈ ℝN×N

J = ∇T =

∇1T1 ∇2T1 ⋯ ∇NT1
∇1T2 ⋱

⋮
∇NT1



Linearized Dynamics

Around the fixed point, the linearized dynamics are defined by:





where . 

·z(t) = J(x†) z(t)

z ≡ x − x†

For simplicity, let . The Jacobian  is given by:
x ∈ ℝN J(x) ∈ ℝN×N

J = ∇T =

∇1T1 ∇2T1 ⋯ ∇NT1
∇1T2 ⋱

⋮
∇NT1



Stability from Spectral Analysis

Stability of linear dynamical systems well-understood:


• If all eigenvalues of  have negative real parts  asymptotic stability


• If there is an eigenvalue with positive real part  instability 


• If all eigenvalues are purely imaginary  neutral stability


• This case is much harder to characterize for non-linear systems

J ⟹

⟹

⟹



Barrier to Asymptotic Stability
The Jacobian of many game dynamics look this:





• The dynamics are traceless:  

• But, the sum of eigenvalues of  is the trace:


 .


• Asymptotic stability requires that  for all . This 
is impossible for traceless dynamics.

J(x†) =

0 ∇2T1 ⋯ ∇NT1

∇1T2 0
⋮ ⋱

∇NT1

tr(J(x†)) = 0.

J

tr(J) = λ1 + ⋯ + λN

ℜ(λn) < 0 n ∈ [N]
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Not unstable  purely imaginary eigenvalues⟹



Jacobians of uncoupled game dynamics
The Jacobian of many uncoupled game dynamics look this:





where  are positive-definite matrices (think: preconditioners, player-dependent geometry).


• Example: 


• Stability for uncoupled dynamics requires all eigenvalues of  be be purely imaginary.

J(x†; H) =

H1
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⋱
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⋮ ⋱
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Jacobians of uncoupled game dynamics

Definition. An equilibrium  is uniformly stable if the game Jacobian  
has purely imaginary eigenvalues for all  where .


• It is locally uniformly stable if this holds for all  in an open set around .

x† J(x†; H)
H = (H1, …, Hn) Hn ≻ 0

x x†



Main Result: Economic Meaning of Stability

Local Uniform Stability  Strategic Pareto Optimality⟹

Strategic Pareto Optimality  Uniform Stability⟹



Main Result: Uniform Stability and Convergence

Local Uniform Stability  Dynamics can be stabilized⟹

Not Uniformly Stable  Dynamics cannot be stabilized⟹



Comparison of Dynamics Around Non-Strict NE

Unstable Nash equilibria are not 
strategically Pareto optimal.

Uniformly stable Nash equilibria are 
strategically Pareto optimal.



Takeaways

• Modern ML often implements multi-agent solutions. 

• Decentralization introduces structural constraints. 

• What are the ramifications and when are guardrails needed?


