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Adaptive data analysis

Given a dataset S, we wish to perform a sequence of analyses,

q1, q2, . . . , qk

where the queries qt adapt to the previous answers.

I Problem: reusing data can lead to overfitting

I Baseline solution: partition data into k parts

I amount of data grows linearly with number of queries
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Connection to differential privacy

A differentially private mechanism is a randomized algorithm
where the distributions of the outputs computed from similar
datasets are also similar.

I Intuition: if an analysis is differentially private, then answers
generalize since they don’t depend closely on the particular dataset
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Transfer theorem

Informal theorem. A differentially private analysis that has high
in-sample accuracy must also have high out-of-sample accuracy.
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Transfer theorem: prior works

Proofs

I Original connection to differential privacy: [DFHPRR15]

I Best analysis via the ‘monitor argument’: amount of data
grows

√
k with respect to number of queries k. [BNSSSU16]

Lower bounds

I The analysis in [BNSSSU16] is asymptotically tight, as seen in
[HU14], [SU15]. This work [JLNRSS19] improves concrete
bounds through new proof techniques.
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Transfer theorem: this work

Adaptive data analysis consists of the following generating process:

1. collect a dataset S from an underlying distribution Pn

2. interact with data to produce transcript Π of interaction
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Transfer theorem: this work

The Bayesian resampling lemma states that this generating
process is equivalent to the following:

1. sample an interaction Π

2. sample a dataset S′ from the posterior distribution
conditioned on the interaction Π

8 / 54



Transfer theorem: this work

The Bayesian resampling lemma states that this generating
process is equivalent to the following:

1. sample an interaction Π

2. sample a dataset S′ from the posterior distribution
conditioned on the interaction Π

8 / 54



Transfer theorem: this work

Sketch of argument

1. The Bayesian resampling lemma implies that adaptive analysis
is equivalent to non-adaptive analysis over posterior.

2. Relate analysis of dataset drawn from Pn to one drawn from
the posterior through posterior sensitivity.

3. If an analysis has high in-sample accuracy and low posterior
sensitivity, then it generalizes well.

4. Differential privacy implies low posterior sensitivity.
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Preliminaries: setting

Ingredients

I X an abstract data domain

I P a distribution over X
I S = {Si}ni=1 ∈ X n a collection of n data records

I Q is a family of queries q

I q : X ∗ → [0, 1] a linear data query:

q(S) =
1

n

n∑
i=1

q(Si).
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Preliminaries: setting

Additional notation

I Let Si denote the random variable and x its realization

I If D is a distribution over datasets, q(D) is the expectation:

q(D) = E
S∼D

[q(S)].
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Preliminaries: adaptive analysis

Interacting parties

I A : R∗ → Q∗ an analyst

I M : X n ×Q∗ → R∗ a (possibly stateful) statistical estimator
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Preliminaries: adaptive analysis

Analyst: A Estimator: M

q1

a1

q2

...

qk

ak

Transcript: π = {(q1, a1), . . . , (qk, ak)}.
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Preliminaries: adaptive analysis

Notation

I π ∈ Π = (Q× R)∗ the transcript of interaction

I Π denotes the random variable and π its realizations
I Interact(M,A;S) is the transcript of the interaction

I for brevity, abbreviate Interact(M,A;S) by I(S)
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Preliminaries: adaptive analysis

Analyst: A Estimator: M

qt = A(a1, . . . , at−1)

at = M(S; qt)

Figure 1: The interaction between A and M on dataset S generates a
transcript Interact(M,A;S) ∈ Π.
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Preliminaries: product and posterior distribution

We consider datasets S drawn from two distributions, Pn and Qπ:

I Pn is the product distribution over datasets with n records

I if π ∈ Π is a transcript, the posterior Qπ is the conditional
distribution:

Qπ = (Pn)|Interact(M,A;S) = π.
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Roadmap

Sketch

1. The Bayesian resampling lemma implies that adaptive analysis
is equivalent to non-adaptive analysis over posterior.

2. Relate analysis of dataset drawn from Pn to one drawn from
the posterior through posterior sensitivity.

3. If an analysis has high in-sample accuracy and low posterior
sensitivity, then it generalizes well.

4. Differential privacy implies low posterior sensitivity.
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Bayesian resampling lemma

Lemma
Let E ⊂ X n ×Π be any event. Then:

Pr
S∼Pn,Π∼I(S)

[(S,Π) ∈ E] = Pr
S∼P,Π∼I(S),S′∼QΠ

[
(S′,Π) ∈ E

]
.
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Bayesian resampling lemma

Proof sketch.

I Expand out the probability.
Pr

S∼P,Π∼I(S),S′∼QΠ

[
(S′,Π) ∈ E

]
=
∑
π

∑
x′

Pr[Π = π] Pr
S′∼Qπ

[S′ = x′]1[(x′, π) ∈ E].

I Apply Bayes rule.

I Collapse terms.
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Roadmap

Sketch

1. Bayesian resampling lemma.

2. Define posterior sensitivity.

3. Prove general transfer theorem.

4. Specialize transfer theorem to differential privacy
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Definitions

1. (ε, δ)-posterior sensitivity

2. (α, β)-sample accuracy and (α, β)-distributional accuracy

3. (ε, δ)-differential privacy
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Definitions

Definition
An interaction Interact(M,A; · ) is (ε, δ)-posterior sensitive if
for every data distribution P:

Pr
S∼Pn,Π∼I(S)

[
max
j
|qj(Pn)− qj(QΠ)| ≥ ε

]
≤ δ.
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Definitions

Definition
A statistical estimator M satisfies (α, β)-sample accuracy if for
every data analyst A and every data distribution P,

Pr
S∼Pn,Π∼I(S)

[
max
j
|qj(S)− aj | ≥ α

]
≤ β.
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Definitions

Definition
A statistical estimator M satisfies (α, β)-distributional accuracy
if for every data analyst A and every data distribution P,

Pr
S∼Pn,Π∼I(S)

[
max
j
|qj(Pn)− aj | ≥ α

]
≤ β.
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Definitions

Definition
Two datasets S, S′ ∈ X n are neighbors if they differ in at most
one coordinate.

Definition
An interaction Interact(M,A;S) satisfies (ε, δ)-differential
privacy if for all data analysts A, pairs of neighboring datasets
S, S′ ∈ X n, and for all events E ⊂ Π,

Pr [I(S) ∈ E] ≤ eε · Pr
[
I(S′) ∈ E

]
+ δ.
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Roadmap

Sketch

1. Bayesian resampling lemma.

2. Define posterior sensitivity.

3. Prove general transfer theorem.

4. Specialize transfer theorem to differential privacy
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General transfer theorem

Theorem (General transfer theorem)

Let Interact(M,A; · ) be (α, β)-sample accurate and
(ε, δ)-posterior sensitive. Then, it is (α′, β′)-distributionally
accurate, where α′ = α+ c+ ε and β′ = β

c + δ and c > 0.
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Accuracy over samples to accuracy over posterior

Lemma
Let M be (α, β)-sample accurate. Then for all c > 0,

Pr
S∼Pn,Π∼I(S)

[
max
j
|aj − qj(QΠ)| > α+ c

]
≤ β

c
.
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Accuracy over samples to accuracy over posterior

Pr
S∼Pn,Π∼I(S)

[
max
j
|qj(S)− aj | ≥ α

]
≤ βwww�

Pr
S∼Pn,Π∼I(S)

[
max
j
|aj − qj(QΠ)| > α+ c

]
≤ β

c
.

30 / 54



Accuracy over samples to accuracy over posterior

Proof sketch. First, we obtain a one-sided tail bound:

Pr
S∼Pn,Π∼I(S)

[
max
j

aj − qj(QΠ) > α+ c

]
≤

1

c
E

S∼Pn,Π∼I(S)

[
Pr

S′∼QΠ

[
max
j
aj − qj(S′) > α

]]
,

almost directly from an application of Markov’s inequality.
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Accuracy over samples to accuracy over posterior

Proof sketch (cont). But we can rewrite this upper bound as the
following probability:

1

c
Pr

S∼Pn,Π∼I(S),S′∼QΠ

[
max
j
aj − qj(S′) > α

]
,

which can be converted via the Bayesian resampling lemma into:

1

c
Pr

S∼Pn,Π∼I(S)

[
max
j
aj − qj(S) > α

]
.
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Accuracy over samples to accuracy over posterior

Proof sketch (cont). The same analysis holds for the other tail;
combining them, we obtain the two-sided tail bound:

Pr
S∼Pn,Π∼I(S)

[∣∣∣∣max
j

aj − qj(QΠ)

∣∣∣∣ > α+ c

]
≤

1

c
Pr

S∼Pn,Π∼I(S)

[∣∣∣∣max
j
aj − qj(S)

∣∣∣∣ > α

]
︸ ︷︷ ︸

≤β

.
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Proof of general transfer theorem

Proof.
Lemma shows that if M is (α, β)-sample accurate, then

Pr
S∼Pn,Π∼I(S)

[
max
j
|aj − qj(QΠ)| > α+ c

]
≤ β

c
.

If Interact(M,A; · ) is (ε, δ)-posterior sensitive, then

Pr
S∼Pn,Π∼I(S)

[
max
j
|qj(Pn)− qj(QΠ)| ≥ ε

]
≤ δ.

By the triangle inequality,

Pr
S∼Pn,Π∼I(S)

[
max
j
|qj(Pn)− aj)| > α+ c+ ε

]
<
β

c
+ δ.
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Roadmap

Sketch

1. Bayesian resampling lemma.

2. Define posterior sensitivity.

3. Prove general transfer theorem.

4. Specialize transfer theorem to differential privacy
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Differential privacy implies low posterior sensitivity

Let M be a statistical estimator for a family Q of linear queries.

Lemma
If M is (ε, δ)-differentially private, then for any data distribution P
and any analyst A, it is (ε′, δ′)-posterior sensitive, for all c > 0 and
ε′ = eε − 1 + 2c and δ′ = δ/c.
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Differential privacy implies low posterior sensitivity

Notation. If S ∼ Pn, let Si be uniformly random record from S.

Proof sketch. Proceed by contradiction. We will aim to define an
event E ⊂ X n ×Π so that a high posterior sensitivity implies:

Pr
(Si,Π)

[(Si,Π) ∈ E]− Pr
Si⊗Π

[(Si,Π) ∈ E]

is large, but differential privacy implies that it is small.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Notice that this difference can be split
apart in two ways:1

Pr
(Si,Π)

[(Si,Π) ∈ E]− Pr
Si⊗Π

[(Si,Π) ∈ E]

=
∑
π∈Π

Pr[Π = π]
∑

x∈E(π)

(Pr [Si = x|Π = π]− Pr[Si = x])

=
∑
x∈X

Pr[Si = x]
(

Pr [Π ∈ E(x)|Si = x]− Pr[Π ∈ E(x)]
)
.

The first relates well to posterior sensitivity while the second to
differential privacy.

1On ad hoc notation: let E(π) be the set {x ∈ X : (x, π) ∈ E}, and
similarly for E(π). Note that E ⊂ X ×Π.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Suppose that M has high posterior
sensitivity, where:

Pr

[
max
j
|qj(QΠ)− qj(Pn)| > α

]
>
δ

c
.

One of the tails must have at least half of the probability mass.
Without loss of generality, assume:

Pr

[
max
j

qj(QΠ)− qj(Pn) > α

]
>

δ

2c
.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Define Πα to be the event:

Πα =

{
π ∈ Π : max

j
qj(Qπ)− qj(Pn) > α

}
.

These are the transcripts π = {(qi, ai)}ki=1 where one of the
queries qj distinguish between Qπ and Pn well. The previous slide
just states that high posterior sensitivity implies:

Pr [Π ∈ Πα] >
δ

2c
.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Recall the first decomposition:

Pr
(Si,Π)

[(Si,Π) ∈ E]− Pr
Si⊗Π

[(Si,Π) ∈ E]

=
∑
π∈Π

Pr[Π = π]
∑

x∈E(π)

(Pr [Si = x|Π = π]− Pr[Si = x]) .

If E ⊂ X ×Π contains only transcripts from Πα, and the inner
sum is o(1), then posterior sensitivity gives a lower bound:

Pr
(Si,Π)

[(Si,Π) ∈ E]− Pr
Si⊗Π

[(Si,Π) ∈ E]

> o(1) · Pr [Π ∈ Πα] .
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Recall the first decomposition:
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Recall the first decomposition:
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Construct E so that:

I The projection of E to Π is Πα

I The terms in the inner sum is nonnegative

E(π) = {x ∈ X : Pr [Si = x|Π = π]− Pr[Si = x] > 0}

Explicitly, define E to be:

E =
⋃

π∈Πα

E(π)× {π}.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). If E defined this way, then:

Pr
(Si,Π)

[(Si,Π) ∈ E]− Pr
Si⊗Π

[(Si,Π) ∈ E]

> o(1) · Pr [Π ∈ Πα]

we obtain a good lower bound.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). If E defined this way, then:

Pr
(Si,Π)

[(Si,Π) ∈ E]− Pr
Si⊗Π

[(Si,Π) ∈ E]

> α · Pr [Π ∈ Πα]

we obtain a good lower bound.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). On the other hand, if M is differentially
private, then the second decomposition:

Pr
(Si,Π)

[(Si,Π) ∈ E]− Pr
Si⊗Π

[(Si,Π) ∈ E]

=
∑
x∈X

Pr[Si = x]
(

Pr [Π ∈ E(x)|Si = x]− Pr[Π ∈ E(x)]
)
.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). On the other hand, if M is differentially
private, then the second decomposition:

Pr
(Si,Π)

[(Si,Π) ∈ E]− Pr
Si⊗Π

[(Si,Π) ∈ E]

≤
∑
x∈X

Pr[Si = x] [(eε − 1) Pr [Π ∈ E(x)] + δ]
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). This provides an upper bound:

Pr
(Si,Π)

[(Si,Π) ∈ E]− Pr
Si⊗Π

[(Si,Π) ∈ E]

< ((eε − 1) + 2c) · Pr [Π ∈ Πα] .

We obtain a contradiction if α ≥ (eε − 1) + 2c. Thus, a
differentially private mechanism must also have low posterior
sensitivity.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). This provides an upper bound:
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Transfer theorem for differential privacy

Theorem
Suppose that M is (ε, δ)-differentially private and (α, β)-sample
accurate for linear queries. Then for every analyst A and c, d > 0,
it is also (α′, β′)-distributionally accurate.2

2α′ = α+ (eε − 1) + c+ 2d and β′ = β
c
+ δ

d
.
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Application to the Gaussian mechanism

Figure 2: Comparison of lower bounds on the number of adaptive linear
queries that can be answered using the Gaussian mechanism.
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Extensions

I Recall in the proof that accuracy over samples implies
accuracy over posterior, we made use of Markov’s inequality
to upper bound the error of analysis performed over the
posterior. In the setting of (ε, 0)-differential privacy, they
obtain even better bounds by directly bounding the tail using
a Chernoff-like concentration.

I In addition to linear queries, they also provide transfer
theorems for low sensitive and minimization queries.
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Figures

1. Database icon made by Smashicons from www.flaticon.com.

2. Graph icon made by Freepik from www.flaticon.com.

3. Interaction LATEXcode from
https://tex.stackexchange.com/questions/211779/security-protocols-in-latex.
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Appendix: Bayesian resampling lemma

Proof.
Expanding out the probability:

Pr
S∼P,Π∼I(S),S′∼QΠ

[
(S′,Π) ∈ E

]
=
∑
π

∑
x′

Pr[Π = π] Pr
S′∼Qπ

[S′ = x′]1[(x′, π) ∈ E]

=
∑
π

∑
x′

Pr[Π = π] Pr[S′ = x′|Π = π]1[(x′, π) ∈ E]

=
∑
π

∑
x′

Pr[Π = π]
Pr[Π = π|S′ = x′] · Pr[S = x′]

Pr[Π = π]
1[(x′, π) ∈ E]

= Pr
S∼Pn,Π∼I(S)

[(S,Π) ∈ E] ,

where we made use of Bayes’ rule.
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Appendix: accuracy over samples and posterior

Proof. Denote by j∗(π) = arg maxj |aj − qj(Qπ)|.
Consider the one-sided tail probability:

Pr
S∼Pn,Π∼I(S)

[
aj∗(Π) − qj∗(Π)(QΠ) > α+ c

]
.

Expanding out the expectation qj∗(Π)(QΠ), we get equality with:

Pr
S∼Pn,Π∼I(S)

[
E

S′∼QΠ

[
aj∗(Π) − qj∗(Π)(S

′)− α
]
> c

]
,

which is bounded above by:

Pr
S∼Pn,Π∼I(S)

[
E

S′∼QΠ

[(
aj∗(Π) − qj∗(Π)(S

′)− α
)

+

]
> c

]
,

where (x)+ = max{0, x}.
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Appendix: accuracy over samples and posterior

Proof (cont). Markov’s inequality yields the upper bound:

1

c
E

S∼Pn,Π∼I(S)

[
E

S′∼QΠ

[(
aj∗(Π) − qj∗(Π)(S

′)− α
)

+

]]
.

Since (aj∗(Π) − qj∗(Π)(S
′)− α)+ ≤ 1, a further upper bound:

1

c
E

S∼Pn,Π∼I(S)

[
Pr

S′∼QΠ

[
aj∗(Π) − qj∗(Π)(S

′)− α > 0
]]
,

which can be collapsed to:

1

c
Pr

S∼Pn,Π∼I(S),S′∼QΠ

[
aj∗(Π) − qj∗(Π)(S

′) > α
]
.
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Appendix: accuracy over samples and posterior

Proof (cont). Applying the Bayesian resampling lemma, we see
that the original one-sided tail probability is upper bounded:

Pr
S∼Pn,Π∼I(S)

[
aj∗(Π) − qj∗(Π)(QΠ) > α+ c

]
≤

1

c
Pr

S∼Pn,Π∼I(S)

[
aj∗(Π) − qj∗(Π)(S) > α

]
.

This fills in the gaps in the above proof sketch.

54 / 54


