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Abstract

We give a new proof of the “transfer theorem” underlying adaptive data analysis: that
any mechanism for answering adaptively chosen statistical queries that is differentially private
and sample-aceurate is also accurate out-ofsample. Our new proof is elementary and gives
structural insights that we expect will be useful elsewhere. We shows: 1) that differential privacy
ensures that the expectation of any query on the posterior distribution on datasets induced
by the transeript of the interaction is close to its true value on the data distribution, and
2) sample accuracy on its own ensures that any query answer produced by the mechanism
is close to its posterior expectation with high probability. This second claim follows from
a thought experiment in which we imagine that the dataset is resampled from the posterior
distribution after the mechanism has committed to its answers. The transfer theorem then
follows by summing these two bounds, and in particular, avoids the “monitor argument” used
to derive high probability bounds in prior work.

An upshot of our new proof technique is that the concrete bounds we obtain are substan-
tially better than the best previously known bounds, even though the improvements are in the
constants, rather than the asymptotics (which are known to be tight). As we show, our new

bounds the naive “sample-splitting™ baseline at ically smaller dataset sizes
compared to the previous state of the art, bringing techniques from this literature closer to
practicality.

https://arxiv.org/abs/1909.03577.


https://arxiv.org/abs/1909.03577

Adaptive data analysis

Given a dataset S, we wish to perform a sequence of analyses,

q1,492, .-, 4k

where the queries ¢; adapt to the previous answers.

» Problem: reusing data can lead to overfitting
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Adaptive data analysis

Given a dataset S, we wish to perform a sequence of analyses,
41,492, - - -5 qk

where the queries ¢; adapt to the previous answers.

» Problem: reusing data can lead to overfitting
» Baseline solution: partition data into k parts
» amount of data grows linearly with number of queries
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Connection to differential privacy

A differentially private mechanism is a randomized algorithm
where the distributions of the outputs computed from similar
datasets are also similar.
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Connection to differential privacy

A differentially private mechanism is a randomized algorithm
where the distributions of the outputs computed from similar
datasets are also similar.

» Intuition: if an analysis is differentially private, then answers
generalize since they don't depend closely on the particular dataset
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Transfer theorem

Informal theorem. A differentially private analysis that has high
in-sample accuracy must also have high out-of-sample accuracy.
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Transfer theorem: prior works

Proofs
» Original connection to differential privacy: [DFHPRR15]

P> Best analysis via the ‘monitor argument’: amount of data
grows v/k with respect to number of queries k. [BNSSSU16]

Lower bounds

» The analysis in [BNSSSU16] is asymptotically tight, as seen in
[HU14], [SU15]. This work [JLNRSS19] improves concrete
bounds through new proof techniques.
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Transfer theorem: this work

Adaptive data analysis consists of the following generating process:

1. collect a dataset S from an underlying distribution P"
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Transfer theorem: this work

Adaptive data analysis consists of the following generating process:

1. collect a dataset S from an underlying distribution P"

2. interact with data to produce transcript II of interaction
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Transfer theorem: this work

The Bayesian resampling lemma states that this generating
process is equivalent to the following:

1. sample an interaction II
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Transfer theorem: this work

The Bayesian resampling lemma states that this generating
process is equivalent to the following:

1. sample an interaction II

2. sample a dataset S’ from the posterior distribution
conditioned on the interaction II
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Transfer theorem: this work

Sketch of argument

1. The Bayesian resampling lemma implies that adaptive analysis
is equivalent to non-adaptive analysis over posterior.
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Transfer theorem: this work

Sketch of argument

1.

The Bayesian resampling lemma implies that adaptive analysis
is equivalent to non-adaptive analysis over posterior.

. Relate analysis of dataset drawn from P’ to one drawn from

the posterior through posterior sensitivity.

If an analysis has high in-sample accuracy and low posterior
sensitivity, then it generalizes well.

Differential privacy implies low posterior sensitivity.
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Preliminaries: setting

Ingredients

» X an abstract data domain

10/54



Preliminaries: setting

Ingredients
» X an abstract data domain
» P a distribution over X

10/54



Preliminaries: setting

Ingredients
> X an abstract data domain
» P a distribution over X
> S = {5}, € X" a collection of n data records

10/54



Preliminaries: setting

Ingredients
> X an abstract data domain
» P a distribution over X
> S = {5}, € X" a collection of n data records
> () is a family of queries ¢

10/54



Preliminaries: setting

Ingredients
> X an abstract data domain
» P a distribution over X
> S = {5}, € X" a collection of n data records
> () is a family of queries ¢
>

q:X* —[0,1] a linear data query:

10/54



Preliminaries: setting

Additional notation

» Let S; denote the random variable and x its realization
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Preliminaries: setting

Additional notation
» Let S; denote the random variable and x its realization

» If D is a distribution over datasets, ¢(D) is the expectation:
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Preliminaries: adaptive analysis

Interacting parties
> A:R* — @Q* an analyst
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Preliminaries: adaptive analysis

Interacting parties
> A:R* — @Q* an analyst
> M : X" x Q" — R* a (possibly stateful) statistical estimator
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Preliminaries: adaptive analysis

il

Analyst: A Estimator: M
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Preliminaries: adaptive analysis

qn
a1
q2 .¢I~f
Analyst: A ak Estimator: M
ag
Transcript: © = {(q1,a1),...,(qk,ar)}
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Preliminaries: adaptive analysis

Notation
» 7 eIl =(Q x R)* the transcript of interaction
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Preliminaries: adaptive analysis

Notation
» 7 eIl =(Q x R)* the transcript of interaction
» II denotes the random variable and 7 its realizations

» Interact(M, .A;S) is the transcript of the interaction
» for brevity, abbreviate Interact(M, A; S) by I(S)
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Preliminaries: adaptive analysis

g = Ala,.. . ar1) w
a; = M(S;qt) IIII

Analyst: A Estimator: M

Figure 1: The interaction between A and M on dataset S generates a
transcript Interact(M, A; S) € II.
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Preliminaries: product and posterior distribution

We consider datasets S drawn from two distributions, P™ and Q;:

> P is the product distribution over datasets with n records
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Preliminaries: product and posterior distribution

We consider datasets S drawn from two distributions, P™ and Q;:
> P is the product distribution over datasets with n records

» if m € Il is a transcript, the posterior Q is the conditional
distribution:

Qr = (P")|Interact(M, A; §) = 7.
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Roadmap

Sketch

1.

The Bayesian resampling lemma implies that adaptive analysis
is equivalent to non-adaptive analysis over posterior.

. Relate analysis of dataset drawn from P’ to one drawn from

the posterior through posterior sensitivity.

If an analysis has high in-sample accuracy and low posterior
sensitivity, then it generalizes well.

Differential privacy implies low posterior sensitivity.
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Roadmap

Sketch

1.

Bayesian resampling lemma.

Relate analysis of dataset drawn from P™ to one drawn from
the posterior through posterior sensitivity.

If an analysis has high in-sample accuracy and low posterior
sensitivity, then it generalizes well.

Differential privacy implies low posterior sensitivity.
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Roadmap

Sketch

1. Bayesian resampling lemma.
2. Define posterior sensitivity.
3. If an analysis has high in-sample accuracy and low posterior

sensitivity, then it generalizes well.

4. Differential privacy implies low posterior sensitivity.
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Bayesian resampling lemma

Lemma
Let E C X™ x II be any event. Then:

Pr [(S,1I) € E] = Pr (5, 10) € E].
S~Pn I~ (S) S~P,II~I(S),S' ~ O
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Bayesian resampling lemma

Proof sketch.

» Expand out the probability.

Pr [($',1I) € E]
S~P,I~I(S),S' ~On

=> Y Prll=n] Pr [$' =21 7)€ E].

S/~ Qx

> Apply Bayes rule.

» Collapse terms.
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Roadmap

Sketch

1. Bayesian resampling lemma.
2. Define posterior sensitivity.
3. Prove general transfer theorem.

4. Specialize transfer theorem to differential privacy
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Definitions

1. (e,d)-posterior sensitivity
2. (a, B)-sample accuracy and («, 3)-distributional accuracy
3.

(e, 0)-differential privacy
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Definitions

Definition
An interaction Interact(M, A; -) is (e, 0)-posterior sensitive if
for every data distribution P:

b (P") = ¢;(Qn)| > ¢| <.
S~7>n,rf~1(5) max g;(P") — ¢;(Qu)| > €| <
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Definitions

Definition
A statistical estimator M satisfies («, 3)-sample accuracy if for
every data analyst A and every data distribution P,

Pr max |q;(S) —a;| > «a| <8.
SPrTInI(S) | g |g;(S) —a;| = <p
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Definitions

Definition
A statistical estimator M satisfies («, 3)-distributional accuracy
if for every data analyst A and every data distribution P,

Pr max |q;(P") —a;| > a| < B.
SprTin(S) | g;(P") — a;| = <pB
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Definitions

Definition
Two datasets S, S’ € X™ are neighbors if they differ in at most
one coordinate.

Definition
An interaction Interact(M, A; S) satisfies (e, 0)-differential

privacy if for all data analysts A, pairs of neighboring datasets
S,S" € X", and for all events I/ C 11,

Pr(I(S)e E] <e - Pr[I(S) € E] +0.
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Roadmap

Sketch

1. Bayesian resampling lemma.
2. Define posterior sensitivity.
3. Prove general transfer theorem.

4. Specialize transfer theorem to differential privacy
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General transfer theorem

Theorem (General transfer theorem)

Let Interact(M, A; -) be (a, B)-sample accurate and
(€, 0)-posterior sensitive. Then, it is (¢, 3')-distributionally
accurate, where o/ = a+c+¢€ and 3/ = g + 6 and ¢ > 0.
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Accuracy over samples to accuracy over posterior

Lemma
Let M be («, )-sample accurate. Then for all ¢ > 0,

B
Pr max |a; — q; >a4c| < —.
SprinI(S) |3 ‘ J QJ(QH)‘ =
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Accuracy over samples to accuracy over posterior

p (S) —aj| > <
S [ max |q5(5) —aj] 2 o ] =5

Pr max |a; — q; >a+c| <
o PE s [l = gQul > ] <

o™
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Accuracy over samples to accuracy over posterior

Proof sketch. First, we obtain a one-sided tail bound:

P ax a; — ¢ > o+
SmPrTI~I(S) [mjxa’ 9i(€n) > a c}

<
! E P (S") >
— r maxa; — (g, (0%
¢ SmPrTimI(S) [Smon |y T ’

almost directly from an application of Markov’s inequality.
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Accuracy over samples to accuracy over posterior

Proof sketch (cont). But we can rewrite this upper bound as the
following probability:

1
- r maxa; — q;(S") > af,
€ S~PnII~I(S),S'~Qp | J
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Accuracy over samples to accuracy over posterior

Proof sketch (cont). But we can rewrite this upper bound as the
following probability:

1
- Pr maxa; — qi(S") > «
¢ S~Pn II~I(S),5'~ O [ i 4;(5) '

which can be converted via the Bayesian resampling lemma into:

1
- P i —q;(S) > af.
. SNPH’HrNI(S) {mjax aj —q;(5) a}
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Accuracy over samples to accuracy over posterior

Proof sketch (cont). The same analysis holds for the other tail;
combining them, we obtain the two-sided tail bound:

Hmjax a; —qj(Qm)| > o+ c}

Pr
S~Pn T~ (S)

<

1
- P —q;(S .
¢ SmprIl~i(S) Hmjaxaj 4 )' - a]

/

<B
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Proof of general transfer theorem

Proof.

Lemma shows that if M is («, 3)-sample accurate, then

B
Pr max |a; — q; >a+c| < —.
S~PrIINI(S) | g laj = 4;(Qr)l o
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Proof of general transfer theorem

Proof.

Lemma shows that if M is («, 3)-sample accurate, then

P a P — >a+tc| <
SNPn,HrNI(S) {mjx‘% 4(Qn)| > o c} N

If Interact(M, A; -) is (e, )-posterior sensitive, then

Pr o [mex o - ol = o] <

S~PrII~I(S) | J

B
-
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Proof of general transfer theorem

Proof.

Lemma shows that if M is («, 3)-sample accurate, then

B
-

P a P — >a+tc| <
SNPn,HrNI(S) {mjx‘% 4(Qn)| > o c} N

If Interact(M, A; -) is (e, )-posterior sensitive, then

P - n — . > < .
S~Pn,r¥~I(S) [m?X |4;(P") = ¢;(Qn)| = 6] <9

By the triangle inequality,

P i(P") —a, +c+ — 44
o ﬂ/ﬁwl(s){mjax\qj( )—aj)| >a+c e}<c o
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Roadmap

Sketch

1. Bayesian resampling lemma.
2. Define posterior sensitivity.
3. Prove general transfer theorem.

4. Specialize transfer theorem to differential privacy
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Differential privacy implies low posterior sensitivity

Let M be a statistical estimator for a family @ of linear queries.

Lemma

If M is (e, 0)-differentially private, then for any data distribution P
and any analyst A, it is (¢,¢)-posterior sensitive, for all ¢ > 0 and
€ =e"—1+2cand ¥ =d/c.
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Differential privacy implies low posterior sensitivity

Notation. If S ~ P", let S; be uniformly random record from S.

Proof sketch. Proceed by contradiction. We will aim to define an
event I/ C X™ x II so that a high posterior sensitivity implies:

Pr [(S;,11) € E]

~ Pr [(S,T0) € B

is large, but differential privacy implies that it is small.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Notice that this difference can be split
apart in two ways:!

Pr (810 € )= Pr (5,10 € £

'On ad hoc notation: let E(r) be the set {x € X : (z,7) € E}, and
similarly for E(m). Note that £ C X x IL.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Notice that this difference can be split
apart in two ways:!

Pr (810 € )= Pr (5,10 € £

:Zpr[nzﬁ] Z (Pr[S; = z|lI = 7] — Pr[S; = z])

mell r€E(m)

'On ad hoc notation: let E(7) be the set {x € X : (z,7) € E}, and
similarly for E/(m). Note that £ C X x IL
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Notice that this difference can be split
apart in two ways:!

Pr (810 € )= Pr (5,10 € £

:Zpr[nzﬁ] Z (Pr[S; = z|lI = 7] — Pr[S; = z])

mell r€E(m)
=) Pr[S (Pr[ll € E(x)|S; = x] — Pr[ll € E(2)]).
reX

'On ad hoc notation: let E(7) be the set {x € X : (z,7) € E}, and
similarly for E/(7). Note that £ C X x IL
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Notice that this difference can be split
apart in two ways:!

Pr (810 € )= Pr (5,10 € £

:Zpr[nzﬁ] Z (Pr[S; = z|lI = 7] — Pr[S; = z])

mell r€E(m)
=) Pr[S (Pr[ll € E(x)|S; = x] — Pr[ll € E(2)]).
reX

The first relates well to posterior sensitivity while the second to
differential privacy.

'On ad hoc notation: let E(7) be the set {x € X : (z,7) € E}, and
similarly for E/(7). Note that £ C X x IL
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Suppose that M has high posterior
sensitivity, where:

1)
Pr s lg;(Qn) — ¢;(P™")| > a| > -
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Suppose that M has high posterior
sensitivity, where:

1)
Pr [mjax lg;(Qm) — ¢;(P™)| > oc} > -

One of the tails must have at least half of the probability mass.
Without loss of generality, assume:

Pr {max ¢;(Qmn) — q;(P") > a] > ;
j c
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Define I1, to be the event:

I, = {77 ell: mjaxqj(Qﬁ) —qi(P") > a} .
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Define I1, to be the event:
II, = {71 € Il : max ¢;(Qr) — ¢;(P") > a} .
J
These are the transcripts T = {(g;, a;)}%_, where one of the
queries g; distinguish between Q, and P™ well. The previous slide

just states that high posterior sensitivity implies:

19
Pr (Il € T1,, —
r[II € I1,] > 50
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Recall the first decomposition:

Pr [(S;,II) € E] - Pr
(S:.10) S;@ll

= > Prlll=x] Y (Pr[Si=a(ll=x]-Pr[S; =uz]).

mell z€E(T)

[(S;, 1) € E]
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Recall the first decomposition:

Pr [(S;,1I) € E] — Pr [(S;,1I) € E]
(S3,1T) S; @11
= > Prlll=x] Y (Pr[Si=a(ll=x]-Pr[S; =uz]).
melly z€E(T)

If £ C X x II contains only transcripts from II,,
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Recall the first decomposition:

Pr [(S;,11) € E]

— Pr [(S;,1I) € E]
(S;,10) 5;®I1

= > Prlll=x] > (Pr[Si=all=x]—Pr[S; =u1]).

melly z€E(T)

If £ C X x II contains only transcripts from II,, and the inner
sum is o(1),
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Recall the first decomposition:

Pr [(S;,1I) € E] — Pr [(S;,1I) € E]
(S3,1T) S; @11
= > Prlll=x] > (Pr[Si=all=x]—Pr[S; =u1]).
€l zeE(m)

If £ C X x II contains only transcripts from II,, and the inner
sum is o(1), then posterior sensitivity gives a lower bound:

Pr [(S;,II) € E] - Pr
(S:.10) i@l

>o(1)-Pr[IIeIl,].

[(S;, 1) € E]
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). Construct E so that:
» The projection of F to IT is I,

» The terms in the inner sum is nonnegative
E(rm)={zx € X :Pr[S; = z|Il = 7] — Pr[S; = z] > 0}
Explicitly, define F to be:

E = U E(m) x {r}.

7T€Ha
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). If E defined this way, then:
P S;, 1) e E] — P S;, 1) € B
&r, 180 10) € Bl = Pr. [(5:,1T) € E]
> o(1) - Pr[II € M)
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). If E defined this way, then:
P S;, 1) e E] — P S;, 1) € B
Pr(S.I) € Bl = Pr [(S.T1) € 7
> o - PriIl € I1,]

we obtain a good lower bound.
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). On the other hand, if M is differentially
private, then the second decomposition:

Pr [(S,,11) € E] — Pr

= Pr[S; = 2](Pr[Il € E(x)|S; = 2] — Pr[Il € E(x))).
reX

[(5:,11) € E]
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). On the other hand, if M is differentially
private, then the second decomposition:

P LI e Bl — Pr [(S;,T) € E
(Si’g])[(s ) € E] = Pr [(5;,1I) € E]

< ) Pr[Si =] [(ef — 1) Pr I € E(x)] + ]
rzeX
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). This provides an upper bound:

Pr [(S;,II) € E]— Pr
(53,10 S; @11

< ((e°=1)+2¢)-Pr[ll € I1,] .

[(Si,1T) € E]
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Differential privacy implies low posterior sensitivity

Proof sketch (cont). This provides an upper bound:

Pr [(S;,II) € E]— Pr
(53,10 S; @11

< ((e°=1)+2¢)-Pr[ll € I1,] .

[(Si,1T) € E]

We obtain a contradiction if & > (e — 1) + 2¢. Thus, a
differentially private mechanism must also have low posterior
sensitivity. O
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Transfer theorem for differential privacy

Theorem

Suppose that M is (e, 0)-differentially private and («, [3)-sample
accurate for linear queries. Then for every analyst A and c¢,d > 0,
it is also (o, 3')-distributionally accurate.?

d’=a+(e—1)+c+2dand g/ =2 4 2.
4654



Application to the Gaussian mechanism

Max Queries Answered with Width a= 0.1 and Uniform Coverage 95.0%

fy — Sample Splitting Baseline
Optimized BNSSSU

20000 - DFHPRR
~ —— Our Bound
8
£ 15000

=3
o
s
& 10000

€
E

5000
o -~

200000 400000 600000 800000 1000000 1200000 1400000 1600000
Data Set Size n

Figure 2: Comparison of lower bounds on the number of adaptive linear
queries that can be answered using the Gaussian mechanism.
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Extensions

» Recall in the proof that accuracy over samples implies
accuracy over posterior, we made use of Markov's inequality
to upper bound the error of analysis performed over the
posterior. In the setting of (¢, 0)-differential privacy, they
obtain even better bounds by directly bounding the tail using
a Chernoff-like concentration.

» In addition to linear queries, they also provide transfer
theorems for low sensitive and minimization queries.
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Figures

1. Database icon made by Smashicons from www.flaticon.com.
2. Graph icon made by Freepik from www.flaticon.com.

3. Interaction IATEXcode from
https://tex.stackexchange.com/questions/211779/security-protocols-in-latex.
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Appendix: Bayesian resampling lemma

Proof.
Expanding out the probability:

Pr [($',1I) € E]
S~P,~I(S),S'~On

=> Y Prll=7] Pr [§'=2]1[(z/,7) € E]

S/~ Qr

=" " Pr[ll = 7] Pr[$’ = /|1 = 7]1[(/, 7) € E]

Tz

Pr[Il = 7]

™

= Pr [(S,II) € E],
S~P T~ (S)

where we made use of Bayes' rule.

— S Yo pefr = g P TS = L PUS =0y gy
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Appendix: accuracy over samples and posterior

Proof. Denote by j*(7) = arg max; |a; — ¢;(Qxr)|.
Consider the one-sided tail probability:

P T — (e '
S~P",r¥~1(s) [aﬂ (I — 95 (H)(QH) > o+ C]

Expanding out the expectation Qj*(H)(QH), we get equality with:

b E  [ajm — ¢+ (S) —
SNP”,I{\/I(S) |:S/NQH [a] (11) q] (H)( ) Oé] > C:| ,

which is bounded above by:

Smprtit(s) [S/lEQH [(aj*(n) — g m(5) - a)+] - C] ’

where (z)4 = max{0, z}.
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Appendix: accuracy over samples and posterior

Proof (cont). Markov's inequality yields the upper bound:

1

!
¢ S~Pn II~I(S) [S’EEQH [(aj*(n) ~ g an(S) = a)+H '

Since (a;+(r) — ¢+ () — @)1 < 1, a further upper bound:

1

P ) — ¢+ an(S) —a >0
¢ S~Pm II~I(S) [Swrgn [aj-a = g (5) —a > ]} )
which can be collapsed to:

1

= . g / .
c SNPH,HNI(YS),SINQH [aj+qn) — 45 (S") > o]
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Appendix: accuracy over samples and posterior

Proof (cont). Applying the Bayesian resampling lemma, we see
that the original one-sided tail probability is upper bounded:

P T — (i
SNP",HrNI(s) [a] (1) — 95 (H)(QH) > o+ C}

<

This fills in the gaps in the above proof sketch.
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