Oops I took a gradient: Gibbs with gradients

Scalable sampling for discrete distributions (Grathwohl et al., 2021)

Geelon So, agso@eng.ucsd.edu Time series reading group — November 11, 2021 **Goal:** sample from distribution π over discrete space \mathcal{X} of the form:

$$\log \pi(x) = f(x) - \log Z,$$

where f(x) is the unnormalized log-probability of x and Z is a normalization constant. • We consider $\mathcal{X} = \{0, 1\}^D$, or more generally, $\mathcal{X} = \{0, 1, \dots, K\}^D$.

Metropolis-Hastings algorithm

- ▶ Initialize X_0 arbitrarily from \mathcal{X}
- ▶ For t = 0, 1, ..., T 1
 - ▶ Sample from proposal distribution $X' \sim q(x' | X_t)$
 - Accept proposal with probability A(X', X)
 - $\blacktriangleright \text{ If accept, set } X_{t+1} \leftarrow X'$
 - Otherwise, set $X_{t+1} \leftarrow X_t$
- ▶ Return X_T approximately drawn from π

Derivation of MH

Metropolis-Hastings designs a Markov process P(x' | x) with stationary distribution π .

• Key idea: π is a stationary distribution of a Markov process if:

$$\pi(x)P(x' \mid x) = \pi(x')P(x \mid x').$$
(*)

• Decompose P(x' | x) as q(x' | x)A(x', x)

▶ If we want the decomposition to satisfy condition (*), we need:

$$\frac{A(x', x)}{A(x, x')} = \frac{P(x')}{P(x)} \frac{q(x \mid x')}{q(x' \mid x)}.$$

► An example of an acceptance probability satisfying this is:

$$A(x', x) = \min\left\{1, \frac{P(x')}{P(x)} \frac{q(x \mid x')}{q(x' \mid x)}\right\}.$$

MNIST example

Figure 1: Most pixels are in the background, so will likely not change. This amounts to a wasted computation almost every time MH proposes changing a background pixel.

Hamming update

Consider the MH algorithm with proposal distribution:

$$q(x' \,|\, x) = \sum_{i \in [D]} q(x' \,|\, x, i) q(i \,|\, x),$$

where x' differ from x only on one coordinate:

- Choose a random coordinate according to q(i | x) over [D].
- ▶ Then, propose a change x' on only the *i*th coordinate.

MNIST example: can choose q(i | x) to focus on pixels at the edge of a digit.

Locally-informed proposals

Consider the locally-informed proposal,

$$q_{\tau}(x' \mid x) \propto \exp\left(\frac{1}{\tau}(f(x') - f(x))\right) \mathbf{1}\{\|x - x'\|_1 \le r\}.$$

- This tends to propose a change x' around x that increases the local likelihood.
- The temperature τ controls how aggressively the local likelihood is optimized in,

$$A(x', x) = \min\left\{1, \frac{P(x')}{P(x)} \frac{q(x \mid x')}{q(x' \mid x)}\right\}.$$

- $\blacktriangleright~$ If τ is too low, reverse transition probability collapsed.
- $\blacktriangleright~$ If τ is too high, does not take local likelihood into accout.
- ▶ Previous work: $\tau = 2$ is the optimal locally-informed proposal (Zanella, 2020).

Efficient computation of locally-informed proposals

Problem: how to efficiently compute f(x') - f(x) over the Hamming *r*-ball?

Many useful discrete distributions have a related continuous distribution.

Distribution	$\log \pi(x) + \log Z$
Categorical	$x^T heta$
Poisson	$x\log\lambda - \log\Gamma(x+1)$
RBM	$\sum_i \operatorname{softplus}(Wx + b)_i + c^T x$
lsing	$x^T W x + b^T x$
Deep EBM	$f_{ heta}(x)$

Table 1: Examples of discrete distributions with a differentiable extension to continuous space.

Approximation via gradients

For simplicity, consider the binary setting $\mathcal{X} = \{-\frac{1}{2}, \frac{1}{2}\}^D$.

► The likelihood ratios of flipping each bit is:

$$\tilde{d}(x) = -\operatorname{sign}(x) \odot \nabla f(x),$$

so that $\tilde{d}_i(x) \approx f(x_{-i}) - f(x)$ where x_{-i} corresponds to flipping the *i*th bit.

Algorithm: Gibbs with gradients

When the proposal x' satisfies $||x' - x||_1 \le 1$, it corresponds to flipping at most one bit. Set proposal distribution $q(x_{-i} | x)$ to:

$$q(i | x) \propto \text{Categorical}\left(\operatorname{softmax}\left(\frac{1}{2}\tilde{d}(x)\right)\right).$$

Algorithm: Gibbs with gradients

Input: unnormalized log-probability f and current sample x

• Compute
$$\tilde{d}(x) = -\text{sign}(x) \odot \nabla f(x)$$

- Compute $q(i | x) \propto \text{Categorical}(\text{softmax}(\frac{1}{2}\tilde{d}(x)))$
- Sample index $i \sim q(i \mid x)$
- ▶ Propose flipping the *i*th coordinate
- ► Accept proposal with probability:

$$\min\left\{1, \exp\left(f(x') - f(x)\right) \cdot \frac{q(i \mid x')}{q(i \mid x)}\right\}.$$

Relationship to continuous relaxations

Prior works have made use of gradient information by:

- > Transport the discrete sampling problem into a continuous relaxation
- ▶ Perform updates in continuous space (e.g. SVGD, MALA, HMC)
- ► Transform back to discrete space

Issue: poor scalability in high-dimensions, introduces additional hyperparameters

Experiments: restricted Boltzmann machines and MNIST

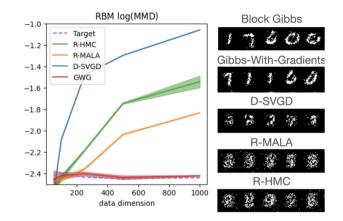


Figure 2: Ground truth distribution is given by Block Gibbs, where data distributions run up to 1000 dimensions. Plot compares Gibbs-with-Gradients with prior algorithms (lower is better).

Experiments: deep energy-based models and image generation

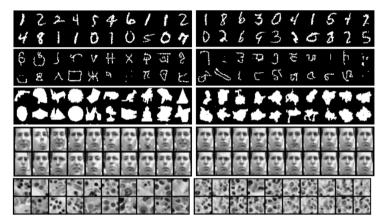


Figure 3: (*Left*) data. (*Right*) samples from ResNet EBM where samples are generated with annealed Markov chain using 300,000 GwG steps (MNIST, omniglot, Caltech Silhouettes, Frey Faces, Histopathology).

Approximation analysis

- Recall that q_{τ} where $\tau = 2$ is the optimal locally-informed proposal (Zanella, 2020).
- We've constructed an approximation to q_2 using gradients (Grathwohl et al., 2021).
- This paper shows that the approximated proposal distribution is at most a constant factor less efficient than q_2 .

Quantities of analysis

Asymptotic variance of a Markov kernel Q with stationary distribution π

$$\operatorname{Var}_{\pi}(h, Q) = \lim_{T \to \infty} \frac{1}{T} \operatorname{Var} \left(\sum_{t=1}^{T} h(x_t) \right),$$

where $h : \mathcal{X} \to \mathbb{R}$ and $X_{t+1} \sim Q(x' || X_t)$ and $X_1 \sim \pi$.

▶ The smaller $\operatorname{Var}_{\pi}(h, Q)$, the more efficient the MCMC estimation of $\mathbb{E}_{\pi}[h]$.

Spectral gap is defined:

$$\operatorname{Gap}(Q) = 1 - \lambda_2,$$

where λ_2 is the second largest eigenvalue of the transition probability matrix of Q.

▶ The larger the gap, the faster the mixing time.

Approximate proposal is efficient

Suppose that we have:

▶ *f* is the unnormalized log-probability, $\pi(x) = \frac{1}{Z} \exp(f(x))$

▶ $q_2(x' | x)$ is the optimal locally balanced proposal

- ▶ $q^{\nabla}(x' \mid x)$ is the gradient-based approximation
- ▶ Q(x', x) and $Q^{\nabla}(x', x)$ are the Markov transition kernel defined by MH

Theorem

If f is L-smooth, then: (a) $\operatorname{Var}_{\pi}(h, Q^{\nabla}) \leq \frac{1}{c} \operatorname{Var}_{\pi}(h, Q) + \frac{1-c}{c} \operatorname{Var}_{\pi}(h)$ (b) $\operatorname{Gap}(Q^{\nabla}) \geq c \cdot \operatorname{Gap}(Q)$, where $c = e^{-\frac{1}{2}L}$.

Practical implications of theorem

Since the decrease in efficiency has to do with the smoothness of f, if there is a choice for the functional representation, choose one that minimizes the Lipschitz constant.

Proof ingredients

The proof uses a result from Zanella (2020), reducing the problem to showing:

$$Q^{
abla}(x',x) \ge c \cdot Q(x',x).$$

► Make use of *L*-smoothness of *f*, so that:

$$||f(x') - f(x) - \nabla f(x)^T (x' - x)|| \le \frac{L}{2} ||x' - x||^2.$$

References

- Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris J Maddison. Oops i took a gradient: Scalable sampling for discrete distributions. *arXiv preprint arXiv:2102.04509*, 2021.
- Giacomo Zanella. Informed proposals for local mcmc in discrete spaces. *Journal of the American Statistical Association*, 115(530):852-865, 2020.