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Sampling problem

Goal: sample from distribution π over discrete space X of the form:

log π(x) = f (x)− log Z ,

where f (x) is the unnormalized log-probability of x and Z is a normalization constant.

▶ We consider X = {0, 1}D, or more generally, X = {0, 1, . . . ,K}D.
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Metropolis-Hastings algorithm

▶ Initialize X0 arbitrarily from X
▶ For t = 0, 1, . . . , T − 1

▶ Sample from proposal distribution X ′ ∼ q(x′ |Xt)
▶ Accept proposal with probability A(X ′,X)

▶ If accept, set Xt+1 ← X ′

▶ Otherwise, set Xt+1 ← Xt

▶ Return XT approximately drawn from π
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Derivation of MH
Metropolis-Hastings designs a Markov process P(x′ | x) with stationary distribution π.

▶ Key idea: π is a stationary distribution of a Markov process if:

π(x)P(x′ | x) = π(x′)P(x | x′). (∗)

▶ Decompose P(x′ | x) as q(x′ | x)A(x′, x)
▶ If we want the decomposition to satisfy condition (∗), we need:

A(x′, x)
A(x, x′)

=
P(x′)
P(x)

q(x | x′)
q(x′ | x)

.

▶ An example of an acceptance probability satisfying this is:

A(x′, x) = min

{
1,

P(x′)
P(x)

q(x | x′)
q(x′ | x)

}
.
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MNIST example

Figure 1: Most pixels are in the background, so will likely not change. This amounts to
a wasted computation almost every time MH proposes changing a background pixel.
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Hamming update

Consider the MH algorithm with proposal distribution:

q(x′ | x) =
∑
i∈[D]

q(x′ | x, i)q(i | x),

where x′ differ from x only on one coordinate:

▶ Choose a random coordinate according to q(i | x) over [D].
▶ Then, propose a change x′ on only the ith coordinate.

MNIST example: can choose q(i | x) to focus on pixels at the edge of a digit.
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Locally-informed proposals

Consider the locally-informed proposal,

qτ (x′ | x) ∝ exp

(
1
τ

(
f (x′)− f (x)

))
1{∥x − x′∥1 ≤ r}.

▶ This tends to propose a change x′ around x that increases the local likelihood.

▶ The temperature τ controls how aggressively the local likelihood is optimized in,

A(x′, x) = min

{
1,

P(x′)
P(x)

q(x | x′)
q(x′ | x)

}
.

▶ If τ is too low, reverse transition probability collapsed.
▶ If τ is too high, does not take local likelihood into accout.

▶ Previous work: τ = 2 is the optimal locally-informed proposal (Zanella, 2020).
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Efficient computation of locally-informed proposals

Problem: how to efficiently compute f (x′)− f (x) over the Hamming r-ball?

▶ Many useful discrete distributions have a related continuous distribution.

Distribution log π(x) + log Z

Categorical xTθ

Poisson x log λ− log Γ(x + 1)

RBM
∑

i softplus(Wx + b)i + cTx

Ising xTWx + bTx

Deep EBM fθ(x)

Table 1: Examples of discrete distributions with a differentiable extension to continuous space.
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Approximation via gradients

For simplicity, consider the binary setting X = {− 1
2 ,

1
2}

D.

▶ The likelihood ratios of flipping each bit is:

d̃(x) = −sign(x)⊙∇f (x),

so that d̃i(x) ≈ f (x−i)− f (x) where x−i corresponds to flipping the ith bit.
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Algorithm: Gibbs with gradients

When the proposal x′ satisfies ∥x′ − x∥1 ≤ 1, it corresponds to flipping at most one bit.
Set proposal distribution q(x−i | x) to:

q(i | x) ∝ Categorical
(
softmax

(
1
2
d̃(x)

))
.
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Algorithm: Gibbs with gradients

Input: unnormalized log-probability f and current sample x

▶ Compute d̃(x) = −sign(x)⊙∇f (x)

▶ Compute q(i | x) ∝ Categorical
(
softmax( 12 d̃(x))

)
▶ Sample index i ∼ q(i | x)
▶ Propose flipping the ith coordinate

▶ Accept proposal with probability:

min

{
1, exp

(
f (x′)− f (x)

)
· q(i | x

′)

q(i | x)

}
.
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Relationship to continuous relaxations

Prior works have made use of gradient information by:

▶ Transport the discrete sampling problem into a continuous relaxation

▶ Perform updates in continuous space (e.g. SVGD, MALA, HMC)

▶ Transform back to discrete space

Issue: poor scalability in high-dimensions, introduces additional hyperparameters
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Experiments: restricted Boltzmann machines and MNIST

Figure 2: Ground truth distribution is given by Block Gibbs, where data distributions run up to
1000 dimensions. Plot compares Gibbs-with-Gradients with prior algorithms (lower is better).
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Experiments: deep energy-based models and image generation

Figure 3: (Left) data. (Right) samples from ResNet EBM where samples are
generated with annealed Markov chain using 300,000 GwG steps (MNIST,
omniglot, Caltech Silhouettes, Frey Faces, Histopathology).
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Approximation analysis

▶ Recall that qτ where τ = 2 is the optimal locally-informed proposal (Zanella, 2020).

▶ We’ve constructed an approximation to q2 using gradients (Grathwohl et al., 2021).

▶ This paper shows that the approximated proposal distribution is at most a constant
factor less efficient than q2.
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Quantities of analysis

▶ Asymptotic variance of a Markov kernel Q with stationary distribution π

Varπ(h,Q) = lim
T→∞

1
T
Var

(
T∑
t=1

h(xt)

)
,

where h : X → R and Xt+1 ∼ Q(x′∥Xt) and X1 ∼ π.
▶ The smaller Varπ(h,Q), the more efficient the MCMC estimation of Eπ[h].

▶ Spectral gap is defined:
Gap(Q) = 1− λ2,

where λ2 is the second largest eigenvalue of the transition probability matrix of Q.
▶ The larger the gap, the faster the mixing time.
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Approximate proposal is efficient

Suppose that we have:

▶ f is the unnormalized log-probability, π(x) = 1
Z exp

(
f (x)

)
▶ q2(x′ | x) is the optimal locally balanced proposal

▶ q∇(x′ | x) is the gradient-based approximation

▶ Q(x′, x) and Q∇(x′, x) are the Markov transition kernel defined by MH

Theorem
If f is L-smooth, then:

(a) Varπ(h,Q∇) ≤ 1
cVarπ(h,Q) +

1−c
c Varπ(h)

(b) Gap(Q∇) ≥ c · Gap(Q),
where c = e−

1
2L.
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Practical implications of theorem

Since the decrease in efficiency has to do with the smoothness of f , if there is a choice
for the functional representation, choose one that minimizes the Lipschitz constant.
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Proof ingredients

The proof uses a result from Zanella (2020), reducing the problem to showing:

Q∇(x′, x) ≥ c · Q(x′, x).

▶ Make use of L-smoothness of f , so that:

∥f (x′)− f (x)−∇f (x)T (x′ − x)∥ ≤ L
2
∥x′ − x∥2.
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