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Game setting
▶ I = {1, . . . , n} is a set of n players
▶ Each player controls their own decision variable xi ∈ Xi ⊂ Rmi

▶ Each player aims to minimize their own cost function fi :
∏

Xi → R,

fi(x) ≡ fi(x1, . . . , xn) ≡ fi(xi, x−i).

▶ Assume that each fi is smooth.

▶ Let ω(x) =
(
∇1f1(x), . . . ,∇nfn(x)

)
be the player derivatives.

▶ Let Dω(x), the Jacobian of ω, be the game Hessian,

Dω(x) =

D2
1f1(x) · · · Dn1f1(x)
...

. . .
...

D1nfn(x) · · · D2
nfn(x)

 .
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Game-theoretic solution concept: local Nash equilibria

Definition
A strategy x = (x1, . . . , xn) is a local Nash equilibrium for the game (f1, . . . , fn) if for
each player i ∈ I , there is an open setWi ⊂ Xi containing xi such that:

fi(xi, x−i) ≤ fi(wi, x−i) ∀wi ∈ Wi \ {xi}.

If all the inequalities as strict, then x is a strict local Nash equilibrium.

▶ In a neighborhood of x, no individual player is incentivized to unilaterally deviate.
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Game-theoretic solution concept: differential Nash equilibrium

Definition
A strategy x is a differentiable Nash equilibrium for the game (f1, . . . , fn) if for each i,

▶ the first derivative is zero,∇ifi(x) = 0
▶ the second derivative is positive definite D2

i fi(x) ≻ 0
If we further have det

(
Dω(x)

)
̸= 0, then we say that it is non-degenerate.
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Equivalence of local and non-degenerate differential NE

Theorem (Ratliff et al. (2014))
Local Nash equilibria are generically non-degenerate differential Nash equilibria.

▶ Games where LNE ̸= NDDNE form a measure zero set in the space of C2-games.
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Sufficient condition for isolated NE

Theorem (Ratliff et al. (2013))
Non-degenerate differential Nash equilibria are isolated strict local Nash equilibria.
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Comparison with optimization

Optimization Game theory
local minimum local Nash equilibrium

∇f (x) = 0 and ∇2f ≻ 0 ∇ifi(x) = 0 and ∇2
i fi(x) ≻ 0

det
(
∇2f

)
̸= 0 =⇒ isolated det

(
Dω(x)

)
̸= 0 =⇒ isolated
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Equilibrium computation

Question. How can differential Nash equilibria be computed?

▶ Often, gradient descent used in optimization.

▶ We consider simultaneous gradient descent for games.
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Gradient play, or simultaneous gradient descent

Consider the following learning dynamic:

x(t+1)
i ← x(t)i − ηi · ∇if

(
x(t)i , x(t)−i

)
.

▶ Each player simply takes a step in the direction that decreases their cost the fastest.

▶ The learning dynamic is a discretization of the continuous dynamics:

ẋ = −ω
(
x
)
.
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Dynamical system solution concept

Definition
A point x ∈ X is a locally asymptotically stable equilibrium of the continuous-time
dynamics ẋ = −ω(x) if ω(x) = 0 and Re(λ) > 0 for all eigenvalues λ of Dω(x).
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Properties of locally asymptotically stable equilibria

Let x be a locally asymptotically stable equilibrium. Then:

1. x is isolated (i.e. there is a neighborhood in which no other equilibrium exists)

2. the dynamics ẋ = −ω(x) is locally exponentially attracting

3. an appropriately discretized dynamics converges at rate O(1/t)
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Dynamical system solution concept

In the following, let λi be eigenvalues of Dω(x) ordered such that:

Re(λ1) ≤ Re(λ2) ≤ · · ·

Definition
A point x ∈ X is a saddle point of ẋ = −ω(x) if ω(x) = 0 and Re(λ1) ≤ 0. A saddle point
is strict if the real part of all eigenvalues are nonzero, and there is also some Re(λi) > 0.
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Relationship between dynamical and game-theoretic solutions?

Question. Are the dynamical equilibria related to game-theoretic equilibria?
▶ Analogous questions in optimization:

▶ Does gradient descent only converge to local minima? (Yes, Lee et al. (2016))
▶ How fast is convergence?
▶ What happens if there is noise (i.e. stochastic gradient descent)?

13 / 33



Result 1: convergence to non-game-theoretic solution
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Gradient play can converge to irrelevant (game theoretic) solution

Proposition
In the class of general-sum continuous games, there exists a continuum of games G such
that LASE(ω) ̸⊂ NDDNE(G. Moreover, LASE(ω) ̸⊂ local NE(G.
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Proof: construct a counterexample

Consider the two-player game:

f1(x1, x2) =
1
2
ax21 + bx1x2 and f2(x1, x2) =

1
2
dx22 + cx1x2.

The game Hessian is given by:

Dω(x) =
[
a b
c d

]
.

▶ If a > 0 and d < 0, there is a unique stationary point x = (0, 0).
▶ It is not a differential or local Nash equilibrium, since d < 0.
▶ If a > −d and ad > cb, then eigenvalues of Dω have positive real parts; x is a LASE.
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Result 2: non-convergence to some local Nash equilibria
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NDDNEs are LASEs or SSPs

Proposition
A non-degenerate differential Nash equilibrium is either a locally asymptotic stable
equilibrium or a strict saddle point of ẋ = −ω(x),

NDDNE(G) ⊂ LASE(G) ∪ SSP(G).

▶ LASE: all eigenvalues λ satisfy Re(λ) > 0.
▶ SSP: Re(λ) ̸= 0, and there are Re(λj) < 0 and Re(λj) > 0.

Note: this implies that a NDDNE is not strictly unstable or strictly marginally stable
(eigenvalues are imaginary).
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Proof that NDDNE(G) ⊂ LASE(G) ∪ SSP(G)

Let x ∈ NDDNE(G) be a non-degenerate differential Nash equilibrium. Need to show
that (i) some eigenvalue has Re(λ) > 0 and that (ii) no eigenvalue has Re(λ) = 0.
(i) Claim:

∑
λi = tr

(
Dω(x)

)
> 0.

▶ note that tr
(
Dω(x)

)
=

∑
tr
(
∇2

i fi(x)
)

▶ differential Nash equilibrium condition ∇2
i fi(x) ≻ 0 implies tr

(
∇2

i fi(x)
)
> 0

(ii) Claim: Re(λi) ̸= 0 for all i.
▶ note that det

(
Dω(x)

)
=

∏
λi

▶ non-degenerateness condition det
(
Dω(x)

)
̸= 0 implies Re(λi) ̸= 0 [why?]

19 / 33



Characterization of real and imaginary eigenvalues

20 / 33



An example of a SSP

Consider the two-player game from before:

f1(x1, x2) =
1
2
ax21 + bx1x2 and f2(x1, x2) =

1
2
dx22 + cx1x2.

The game Hessian is given by:

Dω(x) =
[
a b
c d

]
.

▶ We obtain a strict saddle point if a, d > 0 but det
(
Dω(x)

)
< 0.
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Non-convergence result overview

Let player i ∈ I have learning rate γi. Put γ = (γ1, . . . , γn). Consider the discretization:

xt+1 = g(xt),

where g(xt) = xt − γ ⊙ ω(x) where ⊙ is element-wise multiplication.

▶ We saw that some local Nash equilibria are strict saddle points.
▶ Simultaneous gradient descent avoids strict saddle points almost surely.

▶ Makes use of the stable manifold theorem.

Summary: gradient play will almost surely avoid certain local NE, while it may
converge to dynamical equilibria that are game-theoretically irrelevant.
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Stable manifold theorem: linear example

Consider the following discrete-time linear dynamical system on R4 where:

xt+1 = ϕ(xt) and ϕ =


0.5

0 1
1 0

2

 .

▶ Decompose R4 = E1 ⊕ E2,3 ⊕ E4 into its generalized eigenspaces.
▶ Points x = (x1, 0, 0, 0) ∈ E1 contract to 0 exponentially quickly
▶ Points x = (0, x2, x3, 0) ∈ E2,3 have limit cycles
▶ Points x = (0, 0, 0, x4) ∈ E4 diverge to∞ exponentially quickly

▶ If ϕt(x) remains in a small ball around 0 for all t > 0, then x must be in E1 ⊕ E2,3.
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Stable manifold theorem

Let ϕ : Rd → Rd be smooth and let x0 be a fixed point. Assume that ϕ is a local
diffeomorphism at x0, so that ϕ is smoothly invertible around x0.

Theorem (Stable manifold theorem)
Let ϕ and x0 as above. Then the tangent space at x0 has decomposition

Rd = Estable ⊕ Ecenter ⊕ Eunstable

into Dϕ(x0)-invariant generalized eigenspaces corresponding to eigenvalues |λ| less than 1,
equal to 1, and greater than 1. There is an invariant discW ⊂ Estable ⊕ Ecenter called the
local stable center manifold and a ball B around x0 such that:

▶ dimmanifold(W ) = dim(Estable ⊕ Ecenter) and ϕ(W ) ∩ B ⊂ W ,

▶ if ϕt(x) ∈ B for all t ≥ 0, then x ∈ W .
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Non-convergence to SSPs

Assume the following:

▶ fi : X → R is smooth and ∥Dω(x)∥2 ≤ L for all x.

▶ γi ∈ (0, 1/L) and γ = (γ1, . . . , γn).

▶ X =
∏

Xi is open and convex.

▶ Let g(x) = x − γ ⊙ ω(x) and Dg(x) = I − ΓDω(x) where Γ = diag(γ1, . . . , γn).

Theorem
If g(X) ⊂ X , then the set of initial conditions from which simultaneous gradient descent
converges to a strict saddle point has measure zero.
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Proof of non-convergence to SSPs

Let x∗ ∈ X be a SSP and letW be its local stable center manifold. Note thatW has
measure zero since it has positive codimension is dim(Eunstable): since x∗ is a strict saddle
point, I − γDω(x∗) as an eigenvalue greater than 1.

▶ Assume that g is a diffeomorphism for now.

▶ If gt(x0) converges to x∗, the stable manifold theorem implies:

x0 ∈
∞⋃
t=0

g−t(W ).

▶ Thus, the set of initial conditions converging to x∗ has measure zero since it is a
countable union of measure zero sets.
▶ Showing that the set of initial conditions converging to any SSP has measure zero is

slightly complicated if there are uncountably many SSPs [is this possible in Rd?].
However, the fix is to find countable a cover.
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Proof of non-convergence to SSPs: g is a diffeomorphism

(i) Claim: g is invertible.
▶ If g(x) = g(y), then y − x = Γ

(
ω(y)− ω(x)

)
.

▶ However, ω is L-Lipschitz while ∥γ∥op ≤ max |γi| < 1/L.
▶ Together, ∥y − x∥ < 1/L · L∥x − y∥, a contradiction.

(ii) Claim: g is a local diffeomorphism.
▶ Show that Dg is invertible then appeal to implicit function theorem.
▶ Since Dg = I − ΓDω, suffices to show that 1 is not an eigenvalue of ΓDω:

∥ΓDω∥op ≤ max |γi|︸ ︷︷ ︸
<1/L

· ∥Dω∥op︸ ︷︷ ︸
≤L

< 1.

Together: (i) shows invertibility while (ii) shows inverse is locally smooth. Thus g is
smooth and has smooth inverse.
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Other limiting behavior

Because ẋ = −ω(x) is not a gradient flow, it can exhibit more complicated behaviors
including limit cycles and chaos.
▶ Mazumdar et al. (2020) also show avoidance of linearly unstable limit cycles.
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Stochastic approximation
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Stochastic gradient play

Assume that each player updates with the rule:

x(t+1)
i ← x(t)i − γ

(t)
i ·

(
∇ifi(x(t)) + Z (t+1)

i
)
,

where Z (t+1)
i is mean-zero noise with finite variance.
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Stochastic gradient play does not converge to SSPs

Theorem
Consider a game (f1, . . . , fn) on X = Rm. Suppose each player applies the stochastic
gradient play update each step, with uniform learning rates γ(t)i = γ(t) satisfying

∑(
γ(t)

)2.
Further suppose that there exists some b > 0 such that for all unit vectors v,

E[(Z (t)
i · v)+ | Ft ] ≥ b.

Then, the iterates do not converge to strict saddle points almost surely.

▶ The condition E[(Z (t)
i · v)+ | Ft ] ≥ b prevents the case where “noise forces the

stochastic dynamics onto the stable manifold”.
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Summary

▶ We can analyze the behavior of gradient-based learning in games through a
dynamical systems perspective.

▶ The stability depends on the game Hessian D2f = Dω.

▶ Gradient play can converge to irrelevant game-theoretic solutions.

▶ Gradient play can almost surely avoid local Nash equilibria.

▶ Implications for gradient-based learning in multi-agent reinforcement learning,
multi-armed bandits, generative adversarial networks, online optimization?
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