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Percolation Theory

Percolation is one of the simplest models in probability theory
which exhibits...critical phenomena. [S2011]
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Percolation Theory

The classical problem: the d-dimensional lattice Zd with each
edge/bond removed with some probability p:

Figure 1: Z2 with percolation threshold 51%. Wikipedia.
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Percolation Theory

Figure 2: Z2 with percolation threshold 59.3%. Wikipedia.
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Node vs. Bond Percolation

We set p to be the probability that a [node/edge] is removed (the
probability that a component of the system incurs damage).

I This is often studied on infinite graphs (like Z2)

I yet, infinite networks percolation is “self-averaging” [B2018]
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Finite Networks

While infinite networks almost never deviate from typical, finite
networks may have large deviations.
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Finite Networks: the typical

Figure 3: Example of two different types of resulting damage. [B2018]
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Finite Networks: the typical

What is the size R of the giant component that results after
damage to an p-fraction of nodes?
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Finite Networks: the typical

We can calculate R using belief propagation (BP). The setup:

I Graph is a locally tree-like graph with nodes i = 1, 2, . . . , N .

I Each node is assigned a value xi, where xi = 0 if damaged,
xi = 1 if not.

I Each node i passes a message to its neighbor j:

σi→j = xi

1−
∏

`∈N(i)\j

(1− σ`→i)

 .
I Each node computes:

ρi = xi

1−
∏

j∈N(i)

(1− σj→i)

 .
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Finite Networks: the typical

The size of the giant component is:

Rx =

N∑
i=1

ρi,

where x = (x1, . . . , xN ).
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Finite Networks: the typical

The expected size of the giant component is:

R̂ =
∑
x

Pr(x)Rx,

where:

Pr(x) =
N∏
i=1

pxi(1− p)1−xi .

11 / 31



Finite Networks: the typical

The expected size of the giant component is:

R̂ =
∑
x

Pr(x)Rx,

where:

Pr(x) =

N∏
i=1

pxi(1− p)1−xi .

11 / 31



Finite Networks: the typical

Parametrizing the message probability, we can also show that:

R̂ =

N∑
i=1

ρ̂i,

where ρ̂i is the expected computation by node i.
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Finite Networks: the typical

This computes the expected damage that results to the network
over all possible damage; but can we describe the extent that the
system will probably be damaged?

I that is, what is π(R), the probability that the giant
component is size R?
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Detour: Large Deviation Theory

Large deviation theory formalizes the study of how different can
the behavior of a system be from average.

I concentration of measures

I e.g. variance
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Large Deviation Theory: Example

Toss a fair coin N times.

I What is the probability that we see heads r-fraction of times?

Pr [R = r] =
∑

b:R(b)=r

Pr(b),

I where b is a sequence of N coin tosses,
I R(b) = fractions of outcomes that are heads.
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Large Deviation Theory: Example

Pr [R = r] =
1

2N

(
N

r

)
=

1

2N
N !

(rN)!
[
(1− r)N

]
!

16 / 31



Large Deviation Theory: Example

Using Stirling’s, n! ∼ nne−n, we get:

Pr[R = r] ∼ e−nI(r),

where
I(r) = ln 2 + r ln r + (1− r) ln(1− r).
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Rate Function

Let An be a random variable indexed by n ∈ N. We say that
Pr[An = r] satisfies a large deviation principle with rate I(r) if the
following limit exists:

lim
n→∞

− 1

n
ln Pr[An = r] = I(r).

That is,
Pr[An = r] ∼ e−nI(r).
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Finite Networks: the atypical

Returning to π(R), the probability that the giant component is R,
we can express this in terms of the rate function:

π(R) ∼ e−NI(R).

Question: How do you calculate I(R)?
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Detour: Maximum Entropy Principle

This system has microstates and macrostates:

I microstates correspond to specific damage to the nodes,

I macrostates correspond to the number of giant components.

More generally, we can think of macrostates as viewing the
microstate of the system through the lens of a few features.
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Detour: Maximum Entropy Principle

How do the probabilites of the macrostates and microstates relate?

I If we know the distribution of microstates, we can compute
the distribution of macrostates (integrate/expectations).

I If we know the distribution of macrostates, what is the
probability distribution on the microstates that introduces the
fewest number of assumptions?
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Entropy

Question: Consider a coin toss that returns head with probability
p. If we don’t know p, what distribution of heads–tails “introduces
the fewest number of assumptions”?

(pH , pT ) = (0.5, 0.5).
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Entropy

Question: What if p = 0.01. That is, 1 out of 100 coin tosses will
be heads. Is this ‘more’ or ‘less’ random? How many bits does it
take on average to represent the outcome of this coin toss?
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Entropy

‘More randomness’ means we need more bits to write down the
outcome.

Let’s take this as the heuristic definition of entropy of a
random variable:

I the fewest number of bits needed to represent the outcome of
a random variable in expectation

I thus, ‘more randomness’ ⇐⇒ ‘greater entropy’
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Entropy

Reasonable properties of entropy H(X) of a random variable
X ∼ {1, . . . , n}: [D2005]

1. Expansibility: if X has distribution (p1, . . . , pn) and Y has
distribution (p1, . . . , pn, 0), then H(X) = H(Y ).

2. Symmetry: H(X) = H(σ(X)) for permutations σ ∈ Σn.

3. Additivity: If X and Y are independent, then
H(X,Y ) = H(X) +H(Y ).

4. Subadditivity: H(X,Y ) ≤ H(X) +H(Y ).

5. Normalization: H(fair coin) = 1.

6. Small for small probability: limp→0H(p) = 0.
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Entropy

It turns out that the only possible function that satisfies all these is:

H(X) = Ex∼p [− log p(x)] .
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Maximum Entropy Principle

Let X be the microstate of a system. Let Ti(X) for 1 ≤ i ≤ K be
the corresponding features.

I If we know the expectations EX [Ti] = bi, what distribution
over X introduces the fewest number of assumptions?

I that is, what distribution p(X) has the greatest entropy while
satisfying the constraints in expectations?
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Optimization Problem

Want to optimize:

max
∑
x

px log
1

px
,

constrained to: ∑
x

pxTi(x) = bi i = 1, . . . ,K,∑
x

px = 1

px ≥ 0
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Optimization Solution

Using Lagrange multipliers, we get:

p(x) =
1

Z
· exp

(
K∑
i=1

λiTi(x)

)
π(x),

where π(x) is the prior distribution and Z is a normalization
constant (that depends on the λ’s).

I We call Z(λ) the partition function.
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Returning to the Rate Function

Recall that we had π(R) ∼ e−NI(R). So, we can set the partition
function:

Z =
∑
x

P (x)e−λRx .

This is solvable using the Legendre-Fenchel transform given certain
conditions. This allowed [B2018] to analyze the behavior of finite
networks.
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