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Graphical games

Graphical games capture games with:

▶ large number of players
▶ direct influences that are local/sparse

▶ payoffs of each player can be determined locally (actions of adjacent players and itself)
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Traffic example

Consider all drivers on the road in San Diego.

▶ The payoff for each driver depends on the action of cars immediately around them.

▶ Effects like traffic or accidents can propagate beyond the immediate neighborhoods.
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Multiplayer game

Consider a multiplayer game with n players with:

▶ binary action space: ai ∈ {0, 1} is the action of the ith player
▶ payoff matrix: Mi(a) ∈ [0, 1] is the payoff for player i

▶ the joint action is given by a = (a1, . . . , an)
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Model

A graphical game with n players consists of:

▶ a graph G with n vertices
▶ local payoff matrices M1, . . . ,Mn

▶ given a player i, let N (i) be its neighborhood (set of adjacent players and itself)
▶ a payoff matrix Mi is local if Mi(a) = Mi(a′) for all a

∣∣
N(i) = a′

∣∣
N(i)
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Nash equilibria

▶ Amixed strategy for player i is given by the probability pi ∈ [0, 1] of choosing 1.
▶ A joint mixed strategy p = (p1, . . . , pn) describes a product distribution, where

each player chooses their actions independently.

▶ The expected payoff to player i is given by:

Mi(p) = E
a∼p

[
Mi(a)

]
.

▶ A Nash equilibrium is a joint mixed strategy p such that for any p′ differing only
in one coordinate i (so that pj = p′j for j ̸= i),

Mi(p) ≥ Mi(p′).
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Traffic example

Question: what would a Nash equilibria mean for the traffic example?
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Correlated equilibria

▶ More generally, the players may have random but correlated actions.

▶ A distribution P over the joint action space {0, 1}n is a correlated equilibrium if
for each player i and binary action b ∈ {0, 1},

E
a∼P

[
Mi(a)

∣∣ ai = b
]
≥ E

a∼P

[
Mi(a[i : ¬b])

∣∣ ai = b
]
,

where a[i : ¬b] sets the ith coordinate of a to ¬b.
▶ That is, the player is not incentivized to deviate from its jointly chosen action.
▶ Mechanistically, a trusted party draws a joint action a according to P and privately

distributes to each player i only their component ai.
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Traffic example

A traffic light could be informally understood as shared/public randomness.

▶ This allows player to coordinate their randomness.

▶ Since no player gains a greater payoff by unilaterally running a light, following
traffic rules can be understood as a correlated equilibrium.
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Problems of interest

1. Nash and correlated equilibria are models of ‘rational behavior’. We would like to
compute or approximate them efficiently leveraging topology.
▶ “If your PC cannot find the equilibria, then neither can the market.” Kamal Jain
▶ Even representing a correlated equilibrium may require bits exponential in player

2. Understand relationship between network structures and strategic outcomes.
3. Develop connections with graphical models

▶ “In probibalistic inference the interactions are stochastic, whereas in graphical games
they are strategic (best response).” Michael Kearns (Kearns, 2007)
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Computing Nash Equilibria
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Tree graphical games

Consider a graphical game where the graph is a tree.
▶ Without loss of generality, assume the tree has a root.

▶ Remaining vertices are either internal nodes or leaves.
▶ Given a vertex V , any vertex on the path from V down to the root is downstream
▶ Any vertex on the path from V up to a leaf is upstream

▶ Given a vertex V , define family of subgames GV
u on V and its upstream vertices:

▶ if U is the child of V (if it exists), then GV
u corresponds to the game induced by fixing

the action of player U to mixed strategy u
▶ this is well-defined because of the locality of the payoff matrices

▶ We can find equilibria by a belief propagation-style algorithm.
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Finding Nash equilibria: TreeNash

1. start upstream (leaves) and inductively work way downstream (root)

2. each vertex can have parents upstream and at most a single child downstream

3. for a vertex V and child U , define map TV ,U (v, u) ∈ {0, 1} so that:

TV ,U (v, u) = 1 ⇔ ∃ Nash equilibrium on GV
u where V plays v and U plays u,

where v, u ∈ [0, 1] are mixed strategies.
▶ each vertex V receives TP1,V , . . . , TPk,V from its parents
▶ the vertex V computes TV ,U by:

TV ,U (v, u) =

{
1 ∃(p1, . . . , pk, v, u) is a local Nash equilibrium
0 o.w.

where (p1, . . . , pk, v, u) is a local Nash equilibrium if v is optimal mixed strategy for V
given that each parent Pi plays pi and U plays u, and if TPi,V (pi, v) = 1 for all i.
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Approximation algorithm

For each player, discretize the mixed strategy space [0, 1]n by a τ -grid:

{0, τ, 2τ, . . . , 1}n.

Lemma
Let G be a graph with maximal degree d, and let (g,M1, . . . ,Mn) be a graphical game. Let p
be a Nash equilibrium and q be the nearest mixed strategy on the τ -grid in L1-distance.
Then q is a dτ -approximate Nash equilibrium.

▶ A joint strategy q is an ε-approximate Nash equilibrium if for each player i,
deviating from strategy qi improves their payoff by at most ε.
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Complexity of ε-approximation algorithm

▶ To store TV ,U we need (1/τ)2 bits of memory.

▶ To compute TV ,U , we need to query each entry of TPi,V , using (1/τ)2k lookups.
▶ Running time of algorithm polynomial in 1/ε, n, 2d
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Exact algorithm

▶ It turns out that TV ,U : [0, 1]2 → {0, 1} can be represented as a finite union of
axis-aligned rectangular regions.
▶ The number of regions multiplies with increasing depth.
▶ Worst-case bound on number of regions for root is exp(n).

▶ There is an exponential time algorithm computing all exact Nash equilibria.
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Nash equilibria on general graphs

▶ Need to compute TV ,U for each edge (V ,U )

▶ Even for approximate version, no guarantee to be polynomial time

▶ The algorithm finds a superset of all (approximate) Nash equilibria
▶ Even if TV ,U (pv, pu) = 1 for all edges, p is not necessarily a Nash equilibria
▶ Paring down superset may be computationally expensive
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Representing and computing correlated equilibria
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The representation problem

Because a correlated equilibrium P is no longer a joint distribution, even writing it down
may take exponentially many bits.

▶ A mixture of Nash equilibria is always a correlated equilibria; there are simple
games with exponentially many NE.

▶ It turns out that if P is a CE, then there is a Markov random field Q on the graph
equivalent to P . Such Q’s can be efficiently represented.
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Expected payoff equivalence

Definition
Two distributions P and Q over joint actions a ∈ {0, 1}n are expected payoff equivalent
P ≡EP Q if the expected payoffs for each player is the same:

E
a∼P

[
Mi(a)

]
= E

a∼Q

[
Mi(a)

]
.
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Local network equivalence

Definition
Given graph G, two distributions P and Q over joint actions are local neighborhood
equivalent P ≡LN Q with respect to the graph G if for each player i, the marginal
distributions of P and Q on its neighborhood N (i) are equal.

▶ Notice that LN equivalence depends only on the graph structure.
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LN is stronger than EP equivalence

Lemma
▶ If P ≡LN Q, then P ≡EP Q.

▶ If P ̸≡LN Q, then there exists payoff matrices M1, . . . ,Mn such that P ̸≡EP Q.
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LN preserves CE

Lemma
For any graphical game (G,M1, . . . ,Mn), if P is a correlated equilibrium and if P ≡LN Q,
then Q is also a correlated equilibrium.
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All CE are LN equivalent to an MRF on G

Theorem
For all graphical games (G,M1, . . . ,Mn), and for any correlated equilibrium P , there exists
distribution Q such that:

(i) Q is also a correlated equilibrium

(ii) Q is expected payoff equivalent to P

(iii) Q can be represented as a Markov random field on G

Note: an MRF on G has representation complexity linear in the size of G = (V , E).
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Markov random fields

Definition
A Markov random field is a pair (G,Ψ) where:

▶ G is an undirected graph on n vertices

▶ Ψ is a set of potential functions for each local neighborhood N (i),

ψi : {0, 1}N(i) → [0,∞).

An MRF defines a probability distribution by:

P(a) ≡ 1
Z

(
n∏

i=1
ψi
(
aN(i)

))
,

where Z is a normalization and aN(i) is the projection of a onto coordinates in N (i).
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LN equivalence to MRFs

Lemma
Let P be a joint distribution over {0, 1}G . There exists a distribution Q representable as a
MRF on G such that P ≡LN Q with respect to G.

Proof idea.
Max entropy distribution with the same marginal distributions is in an exponential
family factorizing over the graph.
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Computing correlated equilibria on trees
We just need to determine the marginal distributions on each neighborhood N (i). For
every player i and assignment aN(i), define the variable P(i)(aN(i)). Consider the LP:

1. CE constraints: for all players i and action b ∈ {0, 1},∑
aN(i):ai=b

P(i)(aN(i))Mi(aN(i)) ≥
∑

aN(i):ai=b

P(i)(aN(i))Mi
(
aN(i)[i : ¬b]

)
.

2. Marginal constraints: for all players i,

∀aN(i), P(i)(aN(i)) ≥ 0 and
∑
aN(i)

P(i)(aN(i)) = 1.

3. Intersection consistency constraints: for all players i and j,

P(i)(aN(i)∩N(j)) = P(j)(aN(i)∩N(j)).
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Solutions of LP are CE

Theorem
Given a tree graphical game, any solution to the above LP is a correlated equilibrium.

▶ If the tree has degree d, this LP has O(n2d) variables and O(n2d) linear inequalities.
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