Graphical games

Graph-theoretic models for multiplayer games

Geelon So, agso@eng.ucsd.edu Algorithmic game theory reading group — November 9, 2021

Graphical games

Graphical games capture games with:

- ► large number of players
- direct influences that are local/sparse
 - > payoffs of each player can be determined locally (actions of adjacent players and itself)

Consider all drivers on the road in San Diego.

- ▶ The payoff for each driver depends on the action of cars immediately around them.
- ▶ Effects like traffic or accidents can propagate beyond the immediate neighborhoods.

Consider a **multiplayer game** with *n* players with:

- **binary action space**: $a_i \in \{0, 1\}$ is the action of the *i*th player
- **• payoff matrix**: $M_i(\mathbf{a}) \in [0, 1]$ is the payoff for player *i*
 - ▶ the joint action is given by $\mathbf{a} = (a_1, \ldots, a_n)$

A graphical game with *n* players consists of:

- ▶ a graph *G* with *n* vertices
- ▶ local payoff matrices M_1, \ldots, M_n
 - **>** given a player *i*, let N(i) be its **neighborhood** (set of adjacent players and itself)
 - ▶ a payoff matrix M_i is **local** if $M_i(\mathbf{a}) = M_i(\mathbf{a}')$ for all $\mathbf{a}|_{N(i)} = \mathbf{a}'|_{N(i)}$

Nash equilibria

- ▶ A **mixed strategy** for player *i* is given by the probability $p_i \in [0, 1]$ of choosing 1.
- A joint mixed strategy $\mathbf{p} = (p_1, \dots, p_n)$ describes a product distribution, where each player chooses their actions independently.
- ► The **expected payoff** to player *i* is given by:

$$M_i(\mathbf{p}) = \underset{\mathbf{a}\sim\mathbf{p}}{\mathbb{E}} [M_i(\mathbf{a})].$$

► A **Nash equilibrium** is a joint mixed strategy **p** such that for any **p**' differing only in one coordinate *i* (so that $p_j = p'_j$ for $j \neq i$),

 $M_i(\mathbf{p}) \geq M_i(\mathbf{p}').$

Traffic example

Question: what would a Nash equilibria mean for the traffic example?

Correlated equilibria

- More generally, the players may have random but correlated actions.
- ► A distribution *P* over the joint action space {0, 1}ⁿ is a correlated equilibrium if for each player *i* and binary action *b* ∈ {0, 1},

$$\mathbb{E}_{\mathbf{x}\sim P}\left[M_{i}(\mathbf{a}) \mid a_{i}=b\right] \geq \mathbb{E}_{\mathbf{a}\sim P}\left[M_{i}(\mathbf{a}[i:\neg b]) \mid a_{i}=b\right],$$

where $\mathbf{a}[i:\neg b]$ sets the *i*th coordinate of \mathbf{a} to $\neg b$.

- > That is, the player is not incentivized to deviate from its jointly chosen action.
- Mechanistically, a trusted party draws a joint action a according to P and privately distributes to each player i only their component a_i.

Traffic example

A traffic light could be informally understood as shared/public randomness.

- ► This allows player to coordinate their randomness.
- Since no player gains a greater payoff by unilaterally running a light, following traffic rules can be understood as a correlated equilibrium.

Problems of interest

- 1. Nash and correlated equilibria are models of 'rational behavior'. We would like to compute or approximate them efficiently leveraging topology.
 - "If your PC cannot find the equilibria, then neither can the market." Kamal Jain
 - > Even *representing* a correlated equilibrium may require bits exponential in player
- 2. Understand relationship between network structures and strategic outcomes.
- 3. Develop connections with graphical models
 - "In probibalistic inference the interactions are stochastic, whereas in graphical games they are strategic (best response)." Michael Kearns (Kearns, 2007)

Computing Nash Equilibria

Tree graphical games

Consider a graphical game where the graph is a tree.

- Without loss of generality, assume the tree has a **root**.
 - > Remaining vertices are either internal nodes or leaves.
 - ▶ Given a vertex *V*, any vertex on the path from *V* down to the root is **downstream**
 - > Any vertex on the path from V up to a leaf is **upstream**
- Given a vertex V, define family of **subgames** G_u^V on V and its upstream vertices:
 - ▶ if U is the child of V (if it exists), then G_u^V corresponds to the game induced by fixing the action of player U to mixed strategy u
 - > this is well-defined because of the locality of the payoff matrices
- We can find equilibria by a belief propagation-style algorithm.

Finding Nash equilibria: TreeNash

- 1. start upstream (leaves) and inductively work way downstream (root)
- 2. each vertex can have parents upstream and at most a single child downstream
- **3.** for a vertex *V* and child *U*, define map $T_{V,U}(v, u) \in \{0, 1\}$ so that:

 $T_{V,U}(v, u) = 1 \quad \Leftrightarrow \quad \exists \text{ Nash equilibrium on } G_u^V \text{ where } V \text{ plays } v \text{ and } U \text{ plays } u,$

where $v, u \in [0, 1]$ are mixed strategies.

- ▶ each vertex V receives $T_{P_1,V}, \ldots, T_{P_k,V}$ from its parents
- ▶ the vertex *V* computes $T_{V,U}$ by:

$$T_{V,U}(\nu, u) = \begin{cases} 1 & \exists (p_1, \dots, p_k, \nu, u) \text{ is a local Nash equilibrium} \\ 0 & \text{o.w.} \end{cases}$$

where (p_1, \ldots, p_k, v, u) is a local Nash equilibrium if v is optimal mixed strategy for V given that each parent P_i plays p_i and U plays u, and if $T_{P_i,V}(p_i, v) = 1$ for all i.

Approximation algorithm

For each player, discretize the mixed strategy space $[0, 1]^n$ by a τ -grid:

 $\{0,\tau,2\tau,\ldots,1\}^n.$

Lemma

Let G be a graph with maximal degree d, and let $(g, M_1, ..., M_n)$ be a graphical game. Let **p** be a Nash equilibrium and **q** be the nearest mixed strategy on the τ -grid in L_1 -distance. Then **q** is a $d\tau$ -approximate Nash equilibrium.

A joint strategy **q** is an *ε*-approximate Nash equilibrium if for each player *i*, deviating from strategy *q_i* improves their payoff by at most *ε*.

Complexity of ε -approximation algorithm

- ► To store $T_{V,U}$ we need $(1/\tau)^2$ bits of memory.
- ► To compute $T_{V,U}$, we need to query each entry of $T_{P_i,V}$, using $(1/\tau)^{2k}$ lookups.
- ▶ Running time of algorithm polynomial in $1/\varepsilon$, *n*, 2^d

Exact algorithm

- ▶ It turns out that $T_{V,U} : [0,1]^2 \to \{0,1\}$ can be represented as a finite union of axis-aligned rectangular regions.
 - > The number of regions multiplies with increasing depth.
 - Worst-case bound on number of regions for root is exp(n).
- ▶ There is an exponential time algorithm computing all exact Nash equilibria.

Nash equilibria on general graphs

- ▶ Need to compute $T_{V,U}$ for each edge (V, U)
 - > Even for approximate version, no guarantee to be polynomial time
- ► The algorithm finds a superset of all (approximate) Nash equilibria
 - Even if $T_{V,U}(p_v, p_u) = 1$ for all edges, **p** is not necessarily a Nash equilibria
 - > Paring down superset may be computationally expensive

Representing and computing correlated equilibria

Because a correlated equilibrium P is no longer a joint distribution, even writing it down may take exponentially many bits.

- A mixture of Nash equilibria is always a correlated equilibria; there are simple games with exponentially many NE.
- ▶ It turns out that if *P* is a CE, then there is a Markov random field *Q* on the graph equivalent to *P*. Such *Q*'s can be efficiently represented.

Expected payoff equivalence

Definition

Two distributions *P* and *Q* over joint actions $\mathbf{a} \in \{0, 1\}^n$ are **expected payoff equivalent** $P \equiv_{\text{EP}} Q$ if the expected payoffs for each player is the same:

$$\mathbb{E}_{\mathbf{a}\sim P}\left[M_i(\mathbf{a})\right] = \mathbb{E}_{\mathbf{a}\sim Q}\left[M_i(\mathbf{a})\right].$$

Local network equivalence

Definition

Given graph G, two distributions P and Q over joint actions are **local neighborhood** equivalent $P \equiv_{LN} Q$ with respect to the graph G if for each player i, the marginal distributions of P and Q on its neighborhood N(i) are equal.

▶ Notice that LN equivalence depends only on the graph structure.

LN is stronger than EP equivalence

Lemma

▶ If
$$P \equiv_{\text{LN}} Q$$
, then $P \equiv_{\text{EP}} Q$.

▶ If $P \not\equiv_{LN} Q$, then there exists payoff matrices M_1, \ldots, M_n such that $P \not\equiv_{EP} Q$.

LN preserves CE

Lemma

For any graphical game (G, M_1, \ldots, M_n) , if *P* is a correlated equilibrium and if $P \equiv_{LN} Q$, then *Q* is also a correlated equilibrium.

All CE are LN equivalent to an MRF on G

Theorem

For all graphical games (G, M_1, \ldots, M_n) , and for any correlated equilibrium P, there exists distribution Q such that:

- (i) *Q* is also a correlated equilibrium
- (ii) *Q* is expected payoff equivalent to *P*
- (iii) *Q* can be represented as a Markov random field on *G*

Note: an MRF on *G* has representation complexity linear in the size of G = (V, E).

Markov random fields

Definition

A Markov random field is a pair (G, Ψ) where:

- ► G is an **undirected graph** on n vertices
- Ψ is a set of **potential functions** for each local neighborhood N(i),

$$\psi_i: \{0,1\}^{N(i)} \to [0,\infty).$$

An MRF defines a probability distribution by:

$$P(\mathbf{a}) \equiv \frac{1}{Z} \left(\prod_{i=1}^{n} \psi_i(\mathbf{a}_{N(i)}) \right),$$

where *Z* is a normalization and $\mathbf{a}_{N(i)}$ is the projection of **a** onto coordinates in N(i).

Lemma

Let P be a joint distribution over $\{0, 1\}^G$. There exists a distribution Q representable as a MRF on G such that $P \equiv_{LN} Q$ with respect to G.

Proof idea.

Max entropy distribution with the same marginal distributions is in an exponential family factorizing over the graph.

Computing correlated equilibria on trees

We just need to determine the marginal distributions on each neighborhood N(i). For every player *i* and assignment $\mathbf{a}_{N(i)}$, define the variable $P^{(i)}(\mathbf{a}_{N(i)})$. Consider the LP:

1. *CE constraints:* for all players *i* and action $b \in \{0, 1\}$,

$$\sum_{\mathbf{a}_{N(i)}:a_i=b} P^{(i)}(\mathbf{a}_{N(i)}) M_i(\mathbf{a}_{N(i)}) \ge \sum_{\mathbf{a}_{N(i)}:a_i=b} P^{(i)}(\mathbf{a}_{N(i)}) M_i(\mathbf{a}_{N(i)}[i:\neg b]).$$

2. Marginal constraints: for all players i,

$$\forall \mathbf{a}_{N(i)}, \quad P^{(i)}(\mathbf{a}_{N(i)}) \ge 0 \qquad ext{and} \qquad \sum_{\mathbf{a}_{N(i)}} P^{(i)}(\mathbf{a}_{N(i)}) = 1.$$

3. Intersection consistency constraints: for all players *i* and *j*,

$$P^{(i)}(\mathbf{a}_{N(i)\cap N(j)}) = P^{(j)}(\mathbf{a}_{N(i)\cap N(j)}).$$

Solutions of LP are CE

Theorem

Given a tree graphical game, any solution to the above LP is a correlated equilibrium.

▶ If the tree has degree d, this LP has $O(n2^d)$ variables and $O(n2^d)$ linear inequalities.

References

Michael Kearns. Graphical games. *Algorithmic game theory*, 3:159–180, 2007.