Proximal methods for hierarchical sparse coding Jenatton, Mairal, Obozinski, Bach '11

Geelon So (agso@eng.ucsd.edu)

May 20, 2020

Journal of Machine Learning Research 12 (2011) 2297-2334

Submitted 9/10; Revised 3/11; Published 7/11

Proximal Methods for Hierarchical Sparse Coding

 Rodolphe Jenatton*†
 RODOLPHE.JENATTON@INRIA.FR

 Julien Mairal*[†]
 JULIEN.MAIRAL@INRIA.FR

 Guillaume Obozinski[†]
 GUILLAUME.OBOZINSKi@INRIA.FR

 Francis Bach[†]
 GUILAUME.OBOZINSKI@INRIA.FR

 INRIA - WILLOW Project-Team
 FRANCIS.BACH@INRIA.FR

 Laboratoire d'Informatique de l'Ecole Normale Supérieure (INRIA/ENS/CNRS UMR 8548)
 23, avenue d'Italie

 752/14 Paris CEDEX 13, France
 54

Dictionary learning s-sparse representations

Problem: given data points $y_1, \ldots, y_N \in \mathbb{R}^d$, find dictionary $\mathbf{D} = \begin{bmatrix} d_1 & \cdots & d_k \end{bmatrix}$ such that:

$y_i \approx \mathbf{D} x_i$

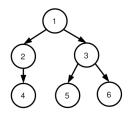
for $x_i \in \mathbb{R}^k$ and $||x_i||_0 \leq s$.

 Each y_i is approximately the linear combination of any s dictionary atoms.

Hierarchical sparse coding

Problem: we have **structured sparsity** assumptions in the form of a directed rooted tree where the nodes are dictionary atoms.

▶ if a representation uses the *i*th atom, then ancestors(*i*) also count toward sparsity budget.



▶ valid 3-sparse representation: $\alpha_1 d_1 + \alpha_3 d_3 + \alpha_5 d_5$

▶ invalid 3-sparse representation: $\alpha_4 d_4 + \alpha_5 d_5 + \alpha_6 d_6$

Example: topic modeling

Let $y \in \mathbb{R}^d$ be a document:

- vocabulary of size d where words have one-hot encoding
- ▶ documents are represented by normalized bag-of-words (the *i*th word appears a y(i) fraction of times in document)
- structured sparsity assumption: topics have subtopics have subtopics—topics correspond to a distribution over words

Example: topic modeling

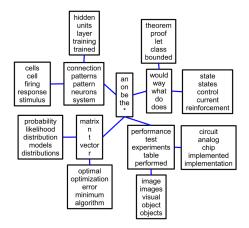


Figure 1: Example topic model generated by hierarchical sparse coding using 1714 NIPS proceedings papers (1988–1999); each node shows the top most common words.

Non-convex optimization problem

Given $y \in \mathbb{R}^d$ and dictionary **D**, minimize:

$$\min_{\substack{x \in \mathbb{R}^k \\ \|x\|_0 \le s}} \|y - \mathbf{D}x\|_2^2,$$

satisfying the constraint:

$$\begin{aligned} x(i) \neq 0 \\ & \downarrow \\ & \bigwedge_{j \in \text{ancestors}(i)} x(j) \neq 0. \end{aligned}$$

Tree-structured groups

Given a directed graph G = ([k], E), its associated **group** is the set \mathcal{G} of subsets of [k]:

$$\mathcal{G} = \{ \text{descendants}(i) : i \in [k] \}.$$

A group is **tree-structured** if $g, h \in \mathcal{G}$ such that $g \cap h \neq \emptyset$, then either $g \subset h$ or $h \subset g$.

- Directed trees and forests yield tree-structured groups.
- ► There exists a (non-unique) total order g ≤ h extending the usual subset ordering on G if it is tree-structured.

Tree-structured groups

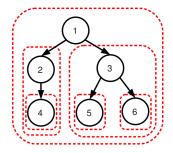


Figure 2: Groups of a tree.

Hierarchical sparsity-inducing norm

Let \mathcal{G} be a group. Define $\Omega: \mathbb{R}^k \to \mathbb{R}$ by:

$$\Omega(x) = \sum_{g \in \mathcal{G}} \omega_g \| \mathbf{\Pi}_g \alpha \|,$$

where $\Pi_g : \mathbb{R}^k \to \mathbb{R}^{|g|}$ projects onto the coordinates in g and $\omega_g \ge 0$ are positive weights.

- $\| \cdot \|$ is generally the ℓ_2 or ℓ_{∞} norm.
- Analysis shows that solution will satisfy $\Pi_g x = 0$ for some $g \in \mathcal{G}$, which means some subtrees are set to zero. [ZRY2009]

Convex optimization problem

The hierarchical sparse coding problem:

$$\min_{\mathbf{X}\in\mathbb{R}^{k\times N}}\sum_{i=1}^{N}\|y_i-\mathbf{D}x_i\|_2^2+\lambda\Omega(x_i).$$

Proximal methods

Let f be convex, continuously differentiable with L-Lipschitz gradient. If the current estimate of the minimzer is x_t , the **proximal problem** is:

$$x_{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^k} f(x_t) + (x - x_t)^\top \nabla f(x_t) + \lambda \Omega(x) + \frac{L}{2} ||x - x_t||_2^2.$$

By strong convexity, minimizer of proximal problem is unique.Achieves optimal first-order convergence rates.

It is equivalent to solve the following problem:

$$x_{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^k} \frac{1}{2} \left\| x - \left(x_t - \frac{1}{L} \nabla f(x_t) \right) \right\|_2^2 + \frac{\lambda}{L} \Omega(x).$$

Definition

The proximal operator associated with the regularization term $\lambda\Omega$ is a function $\operatorname{Proc}_{\lambda\Omega}$ that maps $u \in \mathbb{R}^k$ to the unique solution:

$$\operatorname{Proc}_{\lambda\Omega}(u) = \min_{v \in \mathbb{R}^k} \frac{1}{2} \|u - v\|_2^2 + \lambda\Omega(v).$$

▶ The proximal operator often has closed form.

One-pass convergence

Theorem

Let $\mathcal{G} = \{g_1, \ldots, g_m\}$ be ordered, so that $g_1 \leq \cdots \leq g_m$. If $\|\cdot\|$ is the ℓ_2 or ℓ_{∞} -norm, then:

$$\operatorname{Proc}_{\lambda\Omega} = \operatorname{Proc}_{\lambda\omega_{g_m}\|\cdot\|} \circ \cdots \circ \operatorname{Proc}_{\lambda\omega_{g_1}\|\cdot\|}.$$

- Proof makes use of conic duality, enabling block coordinate ascent algorithm in the dual.
- ▶ This does not hold for other ℓ_p -norms.

References

- [JMOB2011] R. Jenatton, J. Mairal, G. Obozinski, F. Bach. "Proximal methods for hierarchical sparse coding." JMLR, 2011.
- [ZRY2009] P. Zhao, G. Rocha, and B. Yu. "The composite absolute penalties family for grouped and hierarchical variable selection." Annals of Statistics, 2009.