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Dictionary learning s-sparse representations

Problem: given data points y1, . . . , yN ∈ Rd, find dictionary
D =

[
d1 · · · dk

]
such that:

yi ≈ Dxi

for xi ∈ Rk and ‖xi‖0 ≤ s.

I Each yi is approximately the linear combination of any s
dictionary atoms.
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Hierarchical sparse coding

Problem: we have structured sparsity assumptions in the form of
a directed rooted tree where the nodes are dictionary atoms.

I if a representation uses the ith atom, then ancestors(i) also
count toward sparsity budget.

I valid 3-sparse representation: α1d1 + α3d3 + α5d5

I invalid 3-sparse representation: α4d4 + α5d5 + α6d6
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Example: topic modeling

Let y ∈ Rd be a document:

I vocabulary of size d where words have one-hot encoding

I documents are represented by normalized bag-of-words
(the ith word appears a y(i) fraction of times in document)

I structured sparsity assumption: topics have subtopics have
subtopics—topics correspond to a distribution over words
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Example: topic modeling

Figure 1: Example topic model generated by hierarchical sparse
coding using 1714 NIPS proceedings papers (1988–1999); each
node shows the top most common words.
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Non-convex optimization problem

Given y ∈ Rd and dictionary D, minimize:

min
x∈Rk

‖x‖0≤s

‖y −Dx‖22,

satisfying the constraint:

x(i) 6= 0

⇓∧
j∈ancestors(i)

x(j) 6= 0.
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Tree-structured groups

Given a directed graph G = ([k], E), its associated group is the
set G of subsets of [k]:

G = {descendants(i) : i ∈ [k]}.

A group is tree-structured if g, h ∈ G such that g ∩ h 6= ∅, then
either g ⊂ h or h ⊂ g.

I Directed trees and forests yield tree-structured groups.

I There exists a (non-unique) total order g � h extending the
usual subset ordering on G if it is tree-structured.
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Tree-structured groups

Figure 2: Groups of a tree.

9 / 17



Hierarchical sparsity-inducing norm

Let G be a group. Define Ω : Rk → R by:

Ω(x) =
∑
g∈G

ωg‖Πgα‖,

where Πg : Rk → R|g| projects onto the coordinates in g and
ωg ≥ 0 are positive weights.

I ‖ · ‖ is generally the `2 or `∞ norm.

I Analysis shows that solution will satisfy Πgx = 0 for some
g ∈ G, which means some subtrees are set to zero. [ZRY2009]
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Convex optimization problem

The hierarchical sparse coding problem:

min
X∈Rk×N

N∑
i=1

‖yi −Dxi‖22 + λΩ(xi).
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Proximal methods
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Proximal methods

Let f be convex, continuously differentiable with L-Lipschitz
gradient. If the current estimate of the minimzer is xt, the
proximal problem is:

xt+1 = arg min
x∈Rk

f(xt) + (x− xt)>∇f(xt) + λΩ(x) +
L

2
‖x− xt‖22.

I By strong convexity, minimizer of proximal problem is unique.

I Achieves optimal first-order convergence rates.
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Proximal methods

It is equivalent to solve the following problem:

xt+1 = arg min
x∈Rk

1

2

∥∥∥∥x− (xt − 1

L
∇f(xt)

)∥∥∥∥2

2

+
λ

L
Ω(x).
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Proximal methods

Definition
The proximal operator associated with the regularization term
λΩ is a function ProcλΩ that maps u ∈ Rk to the unique solution:

ProcλΩ(u) = min
v∈Rk

1

2
‖u− v‖22 + λΩ(v).

I The proximal operator often has closed form.
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One-pass convergence

Theorem
Let G = {g1, . . . , gm} be ordered, so that g1 � · · · � gm. If ‖ · ‖ is
the `2 or `∞-norm, then:

ProcλΩ = Procλωgm‖ · ‖ ◦ · · · ◦ Procλωg1‖ · ‖.

I Proof makes use of conic duality, enabling block coordinate
ascent algorithm in the dual.

I This does not hold for other `p-norms.
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