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In the following part of the lecture, we will describe how Craig Gentry solved the fully homomorphic
encryption problem. Before that, we will need to introduce some definitions and review some abstract algebra.

Definition 1 (Encryption scheme). An encryption scheme E = (KeyGen,Encrypt,Decrypt,Evaluate) is a
tuple of functions:

1. KeyGen generates a key-pair (sk,pk),

2. Encrypt(pk, π) maps a plaintext message π to a corresponding ciphertext ψ,

3. Decrypt(sk, ψ) decrypts the ciphertext ψ back to π, and

4. Evaluate(pk, C,Ψ) applies a function C ′ on the input ciphertexts Ψ = 〈ψ1, . . . , ψt〉 where C ′ is constructed
based on an input circuit C. We say that E is correct for C if:

C(π1, . . . , πt) = Decrypt(sk,Evaluate(pk, C,Ψ)).

Definition 2 (Homomorphic encryption). An encryption scheme E is homomorphic for circuits in CE if E
is correct for CE . We say that E is fully homomorphic if it is homomorphic for all circuits.

As a roadmap, we will construct a fully homomorphic encryption scheme by boostrapping off of an
encryption scheme that is homomorphic on a smaller set of circuits. This will create a so-called “leveled fully
homomorphic encryption scheme” that we’ll define later.

To motivate the theory, we’ll solve 2 + 2 mod 3 over and over: first to get a preview of what is to come.
Then, to build up intuition about rings and homomorphisms. And finally, to describe the scheme that Gentry
defined in [G2009].

1 Spirit of homomorphic encryption
When we perform computations mod 3, we can equivalently describe our computations in the space Z/3Z.
Visually, we represent Z ⊂ R as a 1-dimensional lattice on the real line (for now, I’ll use the term lattice
informally). Now, consider the sublattice 3Z ⊂ Z of integer multiples of 3. We then construct Z/3Z by
wrapping the real line back on itself.

Of course, 2 + 2 mod 3 ≡ 1 mod 3. And perhaps the easiest way to see this is to unwrap Z/3Z back to
Z. We know that 2 + 2 = 4 in the integers. Then, we just map back down to mod 3; we obtain the answer
since 4 mod 3 ≡ 1 mod 3.

But what if instead of performing the computation in the integers, we temporarily wrapped the integers up
using a different base, say modulo 5? If we used the representatives {0, 1, 2, 3, 4} to perform this computation,
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then we’d obtain 2 + 2 mod 5 ≡ 4, which coincides with the computation that would have occured on Z.
Then, taking 4 mod 3 again yields the correct answer.

The insight for homomorphic encryption is that we don’t need to work with the representatives {0, 1, 2, 3, 4}
to perform this computation. Let’s say instead we chose the representatives {5, 6, 7, 8, 9}. Then, 2 would be
encoded as 7, so the computation would yield 14 mod 5, which is represented by 9. Now, if you tried to
transform 9 back into base 3, you’d obtain 2 + 2 mod 3 ≡ 0, which is incorrect. But, if you knew to map 9
mod 5 to the particular representative 4 (hint: this might be kept secret), then we would arrive at the correct
answer again, even though you performed the computation using other representatives.

Figure 1: Homomorphic encryption in one dimension.

Notice that in this example, it was vital that the computation 2 + 2 in Z output an answer that was
within our representative set {0, 1, 2, 3, 4}. If instead, we computed 2 + 3 = 5, then the 5 would have wrapped
back around, represented by 0. It follows that the relationship between the representatives of Z/3Z and the
representatives of Z/5Z within Z will limit what sort of computations are possible using this technique. This
example illustrates the spirit of the homomorphic encryption scheme that Gentry defined in [G2009].

However, this scheme we defined would not be able to provide any privacy; in particular, there are
essentially only 3 possible secret keys, so an attacker could just try all three. This is the problem of having
defined this scheme on Z, a 1-dimensional space: the space Z/3Z has only 3 points. However, if we look at
Zn, the analogous space “Zn/3Z” has 3n points, exponential in n. In the following section, we’ll define rings,
ideals, and lattices rigorously, which will enable us to give a more concrete construction of [G2009].

2 Review of ring theory
As our goal is ultimately about general computation, we would like a Turing-complete system. One such
system is {⊕,⊗} over the field F2 (i.e. arithmetic modulo 2). In particular, we would like to generalize the
notion of addition/multiplication that we’re familiar with over spaces like Z/2Z, N, Z, Q, R, etc. Informally,
we will call any space R with sensible addition and multiplication operations an ring.
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Definition 3 (Ring). A commutative ring (with unit) R is a set with two binary operations, + and ×, which
we call addition and multiplication, and an element 1 ∈ R, which we call the unit, such that:

(i) addition and multiplication are commutative,

(ii) 1 is a multiplicative unit,

(iii) multiplication distributes over addition.

We can think of a commutative ring as a generalization of a field, except that multiplicative inverses no
longer necessarily exist (e.g. integers). In fact, all fields are rings. On the other hand, one important ring
that is not a field is Z[X], the collection of polynomials with integer coefficients over the indeterminant X:

Z[X] :=
{

n∑
i=0

aiX
i : ai ∈ Z, n ∈ N0

}
.

Exercise 4. Define addition and multiplication over Z[X] through usual polynomial addition and multiplica-
tion. Verify that Z[X] is indeed a ring.

Just as we generalized a field, we can generalize the concept of a vector space. Usually, we think of a
vector space V over the field k as a set such that (i) V is closed under vector addition, (ii) V is closed under
scalar multiplication by all elements of k, and (iii) scalar multiplication distributes over vector addition.

Definition 5 (Ideal). Let R be a ring. A subset I ⊂ R is an ideal if (i) it is closed under addition and (ii)
it is closed under multiplication by all elements of R.

As an example, the set 3Z = {3z : z ∈ Z} is an ideal in Z. In fact, all ideals of Z are of the form nZ.

Exercise 6. Show that the only ideals of a field k are the set {0} and k itself. For concreteness, let k = R.

Outline for rest of talk:

1. define quotient rings

2. define ring homomorphism

3. show how π : Z→ Z/3Z is a ring homomorphism, relate back to above example

4. give example of quotient ring Z[X]/f for monic, irreducible polynomial

5. show how if f is monic, degree n, then Z[X]/f is isomorphic as additive groups to Zn

6. give intuition for how this adjoins to Z the roots of f

7. give concrete example Z[X]/(X2 + 1) ∼= Z[i]

8. give intuition for how to think about the relationship between Z[X]/f as a ring as Z[X]/f as a lattice
(i.e. addition as translations, multiplication as linear transformations)

9. R/I as the construction of a n-torus, relate back to above example

10. give example of R/I where I = 3R

11. define basis, show how they define a natural collection of representatives, define mod BM
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12. example: R = Z[X]/(X2 + 1) ∼= Z[i]. Let’s suppose we want to perform computation over R/3R (i.e.
I = 3R). Let’s use an encryption in J = 5R. Let’s define public and private bases Bsk

J = {5, 5i} and
Bpk

J = {5 + 15i, 5 + 5i}. Let’s compute 2 + 2.

• Encrypt(Bpk
J , 2) computed by letting:

2 = a(5 + 15i) + b(5 + 5i)

to determine their representation in the public key basis. It follows that:

a = −2
10 b = 6

10
However, because our representatives are those vectors within the [0, 1)× [0, 1) square, we need to
map 2 into that square, thus obtaining the representation:(

8
10 ,

6
10

)
• performing 2 + 2 yields:(

8
10 ,

6
10

)
+
(

8
10 ,

6
10

)
=
(

16
10 ,

12
10

)
≡
(

6
10 ,

2
10

)
• this represents the vector:

6
10(5 + 15i) + 2

10(5 + 5i) = 4 + 10i.

• if we naively take 4 + 10i mod BI , we get the answer 1 + i, which is wrong

• if we know the secret key Bsk
J , then we know to look at the representation 4, which upon applying

mod BI , we obtain the correct answer of 1.

13. summarize intuition: want to perform computation over an integer lattice in the n-torus. The technique
is to first unwrap the torus, and wrap it up into a different torus; the original and new tori coincide in
some secret location. This is known only through the secret key. To perform computations, you twist
the torus so that the two no longer coincide, but if you have the secret key, you can always untwist
after the computation.

14. in actual construction: rotation basis, Hermite normal form, and [−1/2, 1/2)n, security related to
hardness to the shortest vector problem (and then the shortest n linearly independent set problem)

15. drawing should show the propagation how the vector will tend toward the edge of the secret key basis
indicating a need for bootstrapping
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