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Abstract
Background and roadmap

Goal: pique your curiosity in trade offs and techniques that may enable faster, less memory-
intensive, and less data-intensive computing. The principal way we investigate this is through 
randomized algorithms.

Outline:
I. Introduction

I. Anatomy of a Computation

II. Space and Time Trade Off: example with nearest neighbor search

II. Randomized Algorithms
I. The Strange Cave of Ali Baba

II. Streaming and Sketching

III. Machine Learning

III. Additional Topics

IV. References
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Anatomy of a Computation
Resources and constraints

SPACE TIME DATA

COMMUNICATIONCORRECTNESSFAILURERANDOMNESS
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Tradeoff Analysis
Autonomous vehicles

Space: how much memory can 
be practically given to a car?  

Time: how quickly must the car 
be able to make decisions?

Data: how much real-world 
training data is required?

Communication: if cars need to 
talk with each other to make 
decisions, how much is needed?

Correctness: what is the error tolerance 
when driving between lane lines?

Failure: how unlikely do we want a car 
to fail to make the correct decision? 

Randomness: how much truly 
independent randomness is
needed to provide guarantees?
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§ Space: amount of physical memory

§ Time: speed of the computation

§ Data: information required from the real world

§ Communication: information shared/revealed to world

§ Correctness: degree of accuracy demanded

§ Failure: probability of arbitrary failure tolerated

§ Randomness: access to random bits in the world

Anatomy of a Computation
Aspects of a viable computation summarized
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Space and Time Tradeoff
A simple example

x1

x2

x3
xn

q

Objective: There are n homes (blue) in the database; given a new home q (yellow), we want to 
query the database to determine which home is the nearest/most comparable.
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Nearest Neighbor Search
Problem statement

x1

x2

x3
xn

q

Formal Statement:
- let X = {x1, … , xn} ⊂ Rd be the database with n homes

- let Q = {q1, … , qm} ⊂ Rd be the set of all possible queries

Objective: Given a query q ∈ Q, compute:

NearestNeighbor(q) ≡ argmin d(xi, q),

where d is some notion of distance between homes, say the 
standard Euclidean distance in Rd. 
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Nearest Neighbor Search
Naïve solution 1: linear search over database

Algorithm (nearest neighbor linear search):
For each of the n homes xi in the database:
- compute the distance d(xi, q)

- return the closest home xi* 

Analysis:
- space complexity: O(dn)
- time complexity: O(dn)

x1

x2

x3

xn-1

xn

q

time
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Nearest Neighbor Search
Naïve solution 2: precomputing answers

Algorithm (nearest neighbor precomputed):
Preprocessing step:
- for each possible query qj, compute the 

nearest home and store result in an array
At query time, given q:
- lookup the precomputed answer 

Analysis:
- space complexity: O(dm)
- time complexity*: O(1)
*the preprocessing time complexity is O(nm)

xi1

q1

time
xi2

q2

Xim-1

qm-1

xim

qm
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Other Tradeoffs
Approximations

x1

x2

x3
xn

q

If we are able to be error tolerant, we can relax our notion of correctness to allow for an 
approximate nearest neighbor.

ε
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Other Tradeoffs
Failure probability

x1

x2

x3
xn

q

If we are failure tolerant, it might not matter if our algorithm returns an arbitrarily incorrect 
answer (e.g. x2 in this case) some small ! fraction of the time.
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Randomized Algorithms
Introduction

Buffon’s needle problem: Pr needle crosses line = ,
-



Confidential – not for copy or distribution 13

Resource Tradeoff
Communication, randomness, and failure
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The Strange Cave of Ali Baba
Warm-up problem

Setup: We need to prove to Ali Baba that we 
can access the Cave of Treasures.
But, we don’t want to tell him the password 
nor show the treasures within.
Can we convince Ali Baba?

CAVE OF TREASURES

N

MOUTH
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The Strange Cave of Ali Baba
Warm-up problem

Solution: we proceed into the depths of the
cave, and tell Ali Baba to stand at its mouth.
Ali Baba flips a coin to choose right or left at 
random. He shouts into the cave, telling us 
to exit from either the right/left branch.

CAVE OF TREASURES

N

MOUTH
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The Strange Cave of Ali Baba
Warm-up problem

Question: if we didn’t actually know the 
password to traverse the cave, what is the 
probability that we get lucky and happen to 
be in the correct branch to begin with?

Answer: the probability that this protocol
fails (i.e. we convince Ali Baba that we know 
the password even when we didn’t) is:

Pr[failure] = 0.5

CAVE OF TREASURES

N

MOUTH
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The Strange Cave of Ali Baba
Warm-up problem

Question: can we boost the success rate?
Answer: if we repeat the protocol k times,

Pr[failure] = 0.5k

which can be made astronomically small.

CAVE OF TREASURES

N

MOUTH
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The Strange Cave of Ali Baba
Moral of the story

Boosting technique: if we have a random algorithm that succeeds 
(1 – !)-fraction of the time, we can construct another random 
algorithm that succeeds (1 – !k)-fraction of the time by performing 
k independent trials.

Tradeoffs: by expending more resources (e.g. in Ali Baba’s cave: 
randomness, communication), we can decrease the rate of failure
of our algorithm.
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The Strange Cave of Ali Baba
Epilogue

Zero-knowledge proofs: a field in cryptography where a party can 
prove to another party that a statement is true without revealing 
the content/witness of the proof.

Applications:
- verify user identity without transmitting password [BM92]

- verify authenticity of nuclear warheads without revealing 
weapons design for arms control agreement [P+16]

Acknowledgments: the example of the Strange Cave of Ali Baba 
was taken from [Q+98].



Confidential – not for copy or distribution 20

Resource Tradeoff
Space, correctness, and failure
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Streaming and Sketching
Computation on massive data

T 3 2 1 0

src_addr:  8.8.8.8
dest_addr: 1.1.1.1
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Streaming and Sketching
Computation on massive data

IP Address Number of Packets
1.2.3.4 42,320,564
10.2.1.78 2,301
53.23.0.0 576

…
100.2.4.127 124,893,381

Frequency table: T packets stream through a router, originating from n IP addresses. 
This table shows the number of packets from each address.
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Streaming and Sketching
Computation on massive data

Number of Packets
42,320,564

2,301

576

…
124,893,381

Frequency vector:    v =

Objective: Compute the second moment of v:

The second moment can be used to compute variance, 
Gini’s index of homogeneity, etc.

!" =$
%&'

(
)%"
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Streaming and Sketching
Naïve solution: store frequency vector

Data structure (dictionary):
For each of the n IP addresses, maintain a 
counter. After streaming T packets, compute F2.

1

2

3

n - 1

n
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Streaming and Sketching
Naïve solution: store frequency vector

Analysis:
- space complexity: O(n log T)

Question: can we use less space?
Answer: yes, we can approximate the true 
second moment with high probability. 
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Streaming and Sketching
Interlude 1: computing the first moment

Question: how much space is required if we want to 
compute the first moment of v, denoted by F1?

Answer: we just need a single counter
- space complexity: O(log T) 

!" =$
%&"

'
(%

Let us now return to estimating F2.
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Streaming and Sketching
Tug-of-war solution: using randomness

Algorithm [AMS96]:

1. Assign each IP address into one of two ‘teams’ 
independently and uniformly at random.

2. Count the number of packets sent by the two 
teams respectively.

3. Square the difference in number of packets 
sent by the two teams.

!"# ≡ − #

"# ≡&
'()

*
+'#
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Streaming and Sketching
Tug-of-war solution: using randomness

Analysis:

For each IP address i, we randomly assign i to one 
of two teams: ri ∈R {+1, -1}.
Then, our estimator is just:

It follows that in expectation:

"#$ ≡ &
'()

*
+','

$

≡&
'()

*
+'$,'$ +&

'./
+'+/,',/

"#$ ≡ #$ +&
'./

+'+/,',/

#$ ≡&
'()

*
,'$

E "#$ ≡ #$ +&
'./

,',/ ⋅ E +'+/
0
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Streaming and Sketching
Tug-of-war solution: using randomness

Stepping back: at this point, we’ve defined a process that yields a random variable !"#
(i.e. our estimator), the mean of whose distribution is F2.

"#0

This curve represents the probability distribution 
function of the random variable !"#.
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Streaming and Sketching
Interlude 2: the law of large numbers

Law of Large Numbers (informal): let ! be a 
random variable with mean E[!]. 
Let %!& be the empirical mean using ' i.i.d. 
samples:

%!& ≔
1
'*+,-

&
!+

As ' gets large, %!& becomes more and more 
concentrated around E[!]. 

E[!]
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Streaming and Sketching
Tug-of-war solution: using randomness

Stepping back: at this point, we’ve defined a process that yields a random variable !"#
(i.e. our estimator), the mean of whose distribution is F2.

Intuition: even though our estimator !"# might not actually give a close approximation 
to "#, if we estimate many times and take the mean, this mean can get very close to "#.
Question: but how many times is “many times”?

"#0

This curve represents the probability distribution 
function of the random variable !"#.
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Streaming and Sketching
Interlude 3: concentration inequalities

Concentration inequality: describes how likely a 
random variable ! will be close to its mean E ! .
A typical form of a concentration inequality:

Pr ! − E ! ≥ ' < ) ' ,
where ) is a function of '.

E[!] E ! + 'E ! − '

tailtail
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Streaming and Sketching
Interlude 3: concentration inequalities

E[#] E # + &E # − &

tailtail

Chebyshev’s inequality: let (#) ≔ +
) #+ + ⋯+ #) be the empirical mean 

of - independent trials of the random variable #. Then:

Pr (#) − E # ≥ & ≤ Var #
-&4 .
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Streaming and Sketching
Completing the analysis

E[#] E # + &E # − &

tailtail

Theorem [AMS’98]. Let ()* be the average of + ,
-. log

,
2 independent 

copies of the estimator 3)*. With probability 1 − 5:

1 − & )* ≤ ()* ≤ 1 + & )*.
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Streaming and Sketching
In summary

Recall our notation:
- " is the number of distinct IP addresses that stream through router
- # is the number of IP packets that stream through

- $ parametrizes our error tolerance
- % parametrizes our failure tolerance

Space Correctness Failure probability

Naïve algorithm & " log # Exact 0

Tug-of-war 
algorithm & 1

$+ log
1
% log #

(1 ± $)-factor 
approximation %
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Streaming and Sketching
Moral of the story

Boosting technique: let ! be an random algorithm that produces 
the correct in expectation. By running multiple independent copies 
and taking their mean, we obtain an estimator that becomes more 
concentrated around the mean.
- we can prove this using various concentration inequalities

Tradeoffs: by relaxing the problem (here: correctness and failure), 
we can significantly reduce the amount of space required.
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Streaming and Sketching
Epilogue

E[#] E # + &E # − &

tailtail

Other important concentration inequalities:
Markov

Chebyshev

Hoeffding-Chernoff
Bernstein

Azuma
Bennett

McDiarmid

Talagrand
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Resource Tradeoff
Data, correctness, and failure
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Machine Learning
Generalization theory

ML

What does the output of a machine 
learning model even mean?
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{ } Model Error

0.00623

0.48399

0.24029

Machine Learning
Statistical learning framework

HYPOTHESIS CLASS

REAL-WORLD 
DISTRIBUTION#

$ =
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Machine Learning
Statistical learning framework

Reduction: learning becomes an optimization problem, of finding 
the model that minimizes the risk:

arg min
'∈)

*(ℎ) ,

where the risk *(ℎ) of the model ℎ is a measure of how bad it 
would perform when tested against real world scenarios 
(distributed according to /).  

risk = 0.00623

risk = 0.48399

risk = 0.24029
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Machine Learning
Statistical learning framework

Estimation: we can’t optimize directly over the real world 
distribution !; we look at training data drawn from !:

"#, "%, … , "'~ !.

Then, we estimate the true risk ) using an empirical risk *).

empirical risk = 0.00018

empirical risk = 0.46206

empirical risk = 0.26100
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Machine Learning
Statistical learning framework

Model True Risk Empirical Risk

0.00623 0.00018

0.48399 0.46206

0.24029 0.26100

Empirical risk minimization: a theoretical algorithm for learning
1. Draw i.i.d. training data, !",… , !%~ '
2. Compute empirical risks, returning model that minimizes estimated risk
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Machine Learning
Statistical learning framework

Trade off: with any estimation problem, we need to balance
- amount of data used to perform estimation: !
- error tolerance of the estimator: "
- failure tolerance of the estimator: #

This framework is called probably approximately correct (PAC) learning, and we say that an 
algorithm (", #)-learns a hypothesis class using ! samples if:

Pr ) *ℎ − ) ℎ∗ ≥ " ≤ # ,
where *ℎ is the model learned by the algorithm, and ℎ∗ is the “true” model.
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Machine Learning
Statistical learning framework

Theorem [Fundamental Theorem of Learning Theory]. Let ! be a hypothesis class of classifiers 
of size ". It is information-theoretically possible to ($, &)-learn ! using ( samples:

( = * 1
$, log

"
& .

- Note: even though it is possible to learn using ( training points, whether a specific algorithm 
can/does achieve this is a separate matter
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Machine Learning
Moral of the story

Statistical learning theory is a field that aims to put machine learning on solid theoretical ground, 
attempting to quantify the following trade offs:

Amount of training data, !

Correctness, "

Failure probability, #
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Machine Learning
Epilogue and ongoing research

We have an upper bound ! on the number training points we need to learn.
- It seems that the upper bounds we show about models like neural networks can’t explain why 

they work so well (i.e. our upper bounds are not tight at all). How can we understand why 
neural networks generalize so well?

- For specific hypothesis classes, what are lower bounds on the amount of data needed (i.e. 
how little data is not enough data)?

- What if the learning algorithm not only learned on the data, but chose the data on which it 
learned? Then, can we reduce the amount of data required?
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Additional Topics
Some teasers

1. Johnson-Lindenstrauss: fix any ! points in Rd. Without looking at those points, I can produce 
a linear map that maps those points down from " to # $%& '

() dimensions such that all 
pairwise distances are preserved up to a 1 ± , -factor.

2. Compressed sensing: reconstruction of a signal using extremely few data points.

Left: image taken by a 64 x 64 pixel camera.

Right: image taken by a one-pixel camera using 1,600 shots.
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Final Question
How many…

texed tech talks could a texed tech-talk talk if a texed tech talk could talk texed-tech-talks?


