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Blind identification: statistical background
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Cocktail party problem

Setting: imagine a party
» there are d tables
there are independent conversations going on at each table
» there are n > d microphones
each microphone picks up a mixture of the conversations

Question: can we unmix the recording to recover the independent conversations?

» This is called the source separation problem.
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Formal problem setting

Consider the linear statistical model:

y = Mx

» x € R?is drawn from p,, which has statistically independent components

» M € R™ s a full column rank matrix and only y € R" is observed
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Statistically independent components
We say that a density p, on R has statistically independent components if:

d
px(x) = H P (xi),

where x = (x1,...,x4) and py, is a density on R.

5/30



Full column rank

y = Mx

Our assumption that M € R™ has full column rank means that n > d.

» In the cocktail party problem, this means that unmixing the audio is possible.
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Blind identification

Question: can we recover M from seeing independent realizations of y from our model:
y = Mx

where x ~ py has independent components and M is full column rank?
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Inherent indeterminations

Given x ~ p, with independent components, define the following:
» P € R¥?a permutation
» A =diag()\,..., \g) is an invertible axis-aligned scaling

Non-identifiability: from y ~ p, alone, we cannot distinguish between:
y = Mx and y =Nz

» N = MA~'PT has full column rank
» z = PAx has independent components

Cocktail party problem: z is a re-numbering of the tables through P, and an
adjustment of the individual volumes of each conversation through A.
However, for non-Gaussian randomness, these are the only issues with identifiability!
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Statistical independence and orthogonal transformations

Informal theorem: a rotation of the space cannot preserve non-Gaussian independent
randomness unless it is a permutation or reflection.

Theorem
Let x € R have independent components that are not Gaussian nor deterministic (i.e. point
masses). Let U € R¥*? pe orthogonal and let z be:

z = Ux.

The following are equivalent:

(i) The components of z; are pairwise independent.
(if) The components of z; are mutually independent.
(iii)y U = PA, P permutation, A diagonal.

9/30



Implication: identifiability

Let P be a family of distributions p, over RY satisfying:
» p, has independent components

» p, has covariance Iy g4

Corollary (ldentifiability)

Let M € R™ be full column rank. Let p, € P, with components that are not Gaussian nor
deterministic. If there exists N € R™ ¢ such that:

Mx = Nz
where z ~ p, and p, € P. Then for P permutation and A diagonal:

M = NPA.
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Proof of corollary

Proof.
» M has full column rank, so it has inverse A.
» Since Mx = Nz, we must have x = ANz.

» Both x and z have covariance I;y 4, so U = (AN)T is orthogonal and:
z = Ux.
» Both x and z have independent components, so by Theorem, U = PA, implying:
Mx = Nz = NUx = NPAx.

» M = NPA.
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Darmois’ theorem

Theorem (Darmois’ theorem)
Let x1, ..., x4 be independent random variables. Let:

X1 = Z a; X and Xz = Z bl-xi.

Then if X, and X; are independent, then whenever a;b; # 0, then x; is Gaussian.
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Operationalizing blind identification
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Simplifying the problem by whitening the data

Remark: without loss of generality, we may assume that the transformation M is
orthogonal,

y = Mx
for otherwise, we could simply whiten the observed data using SVD and work with the

preprocessed data.
» As aresult, the problem becomes one of finding an orthogonal matrix U such that
Uy has independent components.
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Independent component analysis

Let p, be a distribution over y € R" with covariance ¥,

Definition (ICA)

The independent component analysis (ICA) of p,, is a factorization of ¥,
%, =ANA"

where (A, ) satisfies:
(@) A has full column rank d and X is diagonal real positive

(b) when M = AZ}/ 2 an observation y ~ py can be written as:
y = Mx

where x ~ p, for some distribution p, over R? with covariance Iy 4

(c) the components of x are ‘the most independent possible’.
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Constructing an optimization problem

Question: can we specify part (c) of ICA as an optimization problem?

» Can we measure/maximize how independent components of a random vector are?

Idea: given a distance function § on distributions, we can check whether a distribution p
on R¢ has independent components:

(1)

» We can aim to maximize a contrast function V(p) := —§ (p, Hp)

The contrast function ¥ is maximized at zero when p is independent.
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Desiderata for a contrast function
Let Q C {py : px a density on R¢ for random variable x}.

Definition (Contrast function)
A contrast is a mapping ¥ : Q — R if it satisfies:

(i) W does not change if the components x; are permuted:
U (py) = Y(ppy), VP permutation
(i) W is invariant by ‘scale’ change,
U(px) = ¥(pax), VA invertible diagonal
(iii) if x has independent components, then:

U(pax) < ¥Y(py), VA invertible
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Desiderata for a contrast function

Definition (Discriminating)

A contrast is said to be discriminating over Q if equality holds:

U(pax) = V(px)

only when A is of the form PA for some permutation P and diagonal A, when x has
independent components with p, € Q.
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Identifying independent components through optimization

Recall setting: let P be a family of distributions over R? with independent components
and covariance Iy 4. Let M € R%*? be orthogonal and p, € P, with non-Gaussian and
non-deterministic components.

Idea: define a discriminating contrast function ¥ of the form ¥(p) := —§ (p, Hp)
» Let z € ICA,, means that z satisfies properties (a) and (b) of ICA. Then:

U(py) = ZEI%%%}E,;; U (p,).

» If z does not have independent components, then:

U(p,) < U(py).
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Measuring independence

Definition (KL divergence)

The KL-divergence between two distributions p and g on R? is:

KL(pllq) = / p(x) 1og§§j3 dx.

Definition (Average mutual information)

The average mutual information 1(p) of a distribution p on RY is:

I(p) =KL (p‘

)
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Choosing the contrast function

Theorem

Let Q be the set of mean zero densities on R with covariance Iy 4. Then the map ¥ = —I

is a contrast function over Q. Moreover, it is discriminating over random vectors whose
components are non-Gaussian.
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Proof of contrast function

Proof.

Note that we can consider only orthogonal maps U € R%*¢,

» If U is a permutation, then W(pyy) = W(py) since permuting the components does
not change the KL divergence.

» If U is diagonal, then ¥ (pyy) = U(py) is a reflection and does not change the KL
divergence.

» If U is an arbitrary orthogonal map and x has independent components, then:

U (pux) < ¥(px) =0,

since KL divergence is non-negative.
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Proof of discrimination

Proof.

Let x have independent non-Gaussian components. Recall that U(p,) = 0.

(=) Y(pax) = ¥(px) implies A = PA for permutation P and scaling A.
» If U(pax) = ¥(px) = 0, then Ax must have independent components (KL property).

» By earlier theorem, since x has non-Gaussian components, A = PA.

(<) If A= PA, then U (pax) = ¥(px).
» Since Ax still has independent components, W(pay) = 0 (KL property).
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Estimation problem
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Sample access

» We do not have access directly to the densities themselves, but to draws of data.

» We can approximate ICA by estimating the average mutual information.
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Analyzing the mutual information

Definition (Differential entropy)
The differential entropy of p is:

S(p) = / p(x)log p(lx) dx.

» If z has covariance I, then:

1
S(pac) = S(p:) —  logdet AAT.

» The density with largest entropy with matching covariance is Gaussian:

S(paz) < S(N'(0,AAT)).
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Analyzing the mutual information

Definition (Negentropy)
Let p be a density with covariance I, 4. The negentropy of p is defined:

J(p) = SN (0,1)) — S(p)-

» While the differential entropy may be negative, the negentropy is always positive,
is invariant by linear invertible changes of coordinates, and vanishes if and only if p
is Gaussian. Thus, negentropy is a measure of distance from normality.
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Analyzing the average mutual information

Fact (Expansion of average mutual information)

The mutual information may be written:

: 1 IE, var(x)

1(px) = J(px) = 3 J(pw) + 5 log det(Cov(x))
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Approximation to the negentropy

Recall that the nth cumulant is defined by:
kin = KM(0)

the nth derivative of the cumulant-generating function K(¢) = log E[e™].
Fact

Let z be mean zero with standard covariance and is a sum of m independent random
variables. Then:

1 1 7 1 _
Fp) = EF&% + @’@2; + @Fﬂg - g“%m + o(m™?).
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