Independent component analysis

A new concept? Comon (1994)

Geelon So, agso@eng.ucsd.edu Unsupervised learning reading group — February 9, 2022

Blind identification: statistical background

Cocktail party problem

Setting: imagine a party

- ▶ there are *d* tables
 - > there are independent conversations going on at each table
- ▶ there are $n \ge d$ microphones
 - > each microphone picks up a mixture of the conversations

Question: can we unmix the recording to recover the independent conversations?

▶ This is called the *source separation problem*.

Formal problem setting

Consider the **linear statistical model**:

y = Mx

x ∈ ℝ^d is drawn from *p_x*, which has statistically independent components
 M ∈ ℝ^{n×d} is a full column rank matrix and only *y* ∈ ℝⁿ is observed

Statistically independent components

We say that a density p_x on \mathbb{R}^d has **statistically independent components** if:

$$p_x(x) = \prod_{i=1}^d p_{x_i}(x_i),$$

where $x = (x_1, \ldots, x_d)$ and p_{x_i} is a density on \mathbb{R} .

Full column rank

$$y = Mx$$

Our assumption that $M \in \mathbb{R}^{n \times d}$ has full column rank means that $n \ge d$.

▶ In the cocktail party problem, this means that unmixing the audio is possible.

Question: can we recover *M* from seeing independent realizations of *y* from our model:

y = Mx

where $x \sim p_x$ has independent components and *M* is full column rank?

Inherent indeterminations

Given $x \sim p_x$ with independent components, define the following:

- ▶ $P \in \mathbb{R}^{d \times d}$ a permutation
- $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$ is an invertible axis-aligned scaling

Non-identifiability: from $y \sim p_y$ alone, we cannot distinguish between:

$$y = Mx$$
 and $y = Nz$

- ▶ $N = M\Lambda^{-1}P^{\top}$ has full column rank
- ► $z = P\Lambda x$ has independent components
 - Cocktail party problem: z is a re-numbering of the tables through P, and an adjustment of the individual volumes of each conversation through Λ .
 - > However, for non-Gaussian randomness, these are the only issues with identifiability!

Statistical independence and orthogonal transformations

Informal theorem: a rotation of the space cannot preserve non-Gaussian independent randomness unless it is a permutation or reflection.

Theorem

Let $x \in \mathbb{R}^d$ have independent components that are not Gaussian nor deterministic (i.e. point masses). Let $U \in \mathbb{R}^{d \times d}$ be orthogonal and let z be:

$$z = Ux.$$

The following are equivalent:

- (i) The components of z_i are pairwise independent.
- (ii) The components of z_i are mutually independent.
- (iii) $U = P\Lambda$, P permutation, Λ diagonal.

Implication: identifiability

Let \mathcal{P} be a family of distributions p_x over \mathbb{R}^d satisfying:

- \triangleright *p_x* has independent components
- p_x has covariance $I_{d \times d}$

Corollary (Identifiability)

Let $M \in \mathbb{R}^{n \times d}$ be full column rank. Let $p_x \in \mathcal{P}$, with components that are not Gaussian nor deterministic. If there exists $N \in \mathbb{R}^{n \times d}$ such that:

$$Mx = Nz$$

where $z \sim p_z$ and $p_z \in \mathcal{P}$. Then for *P* permutation and Λ diagonal:

$$M = NP\Lambda.$$

Proof of corollary

Proof.

- ▶ *M* has full column rank, so it has inverse *A*.
- Since Mx = Nz, we must have x = ANz.
- ▶ Both *x* and *z* have covariance $I_{d \times d}$, so $U = (AN)^{\top}$ is orthogonal and:

$$z = Ux$$

▶ Both *x* and *z* have independent components, so by Theorem, $U = P\Lambda$, implying:

$$Mx = Nz = NUx = NP\Lambda x.$$

Darmois' theorem

Theorem (Darmois' theorem)

Let x_1, \ldots, x_d be independent random variables. Let:

$$X_1 = \sum a_i x_i$$
 and $X_2 = \sum b_i x_i$.

Then if X_1 and X_2 are independent, then whenever $a_i b_i \neq 0$, then x_i is Gaussian.

Operationalizing blind identification

Simplifying the problem by whitening the data

Remark: without loss of generality, we may assume that the transformation *M* is orthogonal,

y = Mx

for otherwise, we could simply whiten the observed data using SVD and work with the preprocessed data.

► As a result, the problem becomes one of finding an orthogonal matrix *U* such that *Uy* has independent components.

Independent component analysis

Let p_y be a distribution over $y \in \mathbb{R}^n$ with covariance Σ_y .

Definition (ICA)

The **independent component analysis** (ICA) of p_y is a factorization of Σ_y :

$$\Sigma_y = A \Sigma_x A^\top$$

where (A, Σ_x) satisfies:

(a) A has full column rank d and Σ_x is diagonal real positive
(b) when M = AΣ_x^{1/2}, an observation y ~ p_y can be written as:

$$y = Mx$$

where $x \sim p_x$ for some distribution p_x over \mathbb{R}^d with covariance $I_{d \times d}$ (c) the components of x are 'the most independent possible'.

Constructing an optimization problem

Question: can we specify part (c) of ICA as an optimization problem?

Can we measure/maximize how independent components of a random vector are?

Idea: given a distance function δ on distributions, we can check whether a distribution p on \mathbb{R}^d has independent components:

$$\delta\left(p,\prod_{i=1}^d p_i\right).$$

• We can aim to maximize a **contrast function** $\Psi(p) := -\delta\left(p, \prod_{i=1}^{u} p_i\right)$.

> The contrast function Ψ is maximized at zero when *p* is independent.

Desiderata for a contrast function

Let $\mathcal{Q} \subset \{p_x : p_x \text{ a density on } \mathbb{R}^d \text{ for random variable } x\}.$

Definition (Contrast function)

A contrast is a mapping $\Psi : \mathcal{Q} \to \mathbb{R}$ if it satisfies:

(i) Ψ does not change if the components x_i are permuted:

 $\Psi(p_x) = \Psi(p_{Px}), \quad \forall P \text{ permutation}$

(ii) Ψ is invariant by 'scale' change,

 $\Psi(p_x) = \Psi(p_{\Lambda x}), \quad \forall \Lambda \text{ invertible diagonal}$

(iii) *if x has independent components, then:*

 $\Psi(p_{Ax}) \leq \Psi(p_x), \quad \forall A \text{ invertible}$

Desiderata for a contrast function

Definition (Discriminating)

A contrast is said to be **discriminating** over Q if equality holds:

 $\Psi(p_{Ax}) = \Psi(p_x)$

only when A is of the form $P\Lambda$ for some permutation P and diagonal Λ , when x has independent components with $p_x \in Q$.

Identifying independent components through optimization

Recall setting: let \mathcal{P} be a family of distributions over \mathbb{R}^d with independent components and covariance $I_{d \times d}$. Let $M \in \mathbb{R}^{d \times d}$ be orthogonal and $p_x \in \mathcal{P}$, with non-Gaussian and non-deterministic components.

Idea: define a discriminating contrast function Ψ of the form $\Psi(p) := -\delta\left(p, \prod_{i=1}^{d} p_i\right)$

▶ Let $z \in ICA_{a,b}$ means that z satisfies properties (a) and (b) of ICA. Then:

$$\Psi(p_x) = \max_{z \in \mathrm{ICA}_{a,b}} \Psi(p_z).$$

► If *z* does not have independent components, then:

 $\Psi(p_z) \le \Psi(p_x).$

Measuring independence

Definition (KL divergence)

The **KL-divergence** between two distributions p and q on \mathbb{R}^d is:

$$\mathrm{KL}(p\|q) = \int p(x) \log \frac{p(x)}{q(x)} \, dx.$$

Definition (Average mutual information)

The **average mutual information** I(p) of a distribution p on \mathbb{R}^d is:

$$I(p) = \operatorname{KL}\left(p \parallel \prod_{i=1}^{d} p_i\right).$$

Choosing the contrast function

Theorem

Let Q be the set of mean zero densities on \mathbb{R}^d with covariance $I_{d \times d}$. Then the map $\Psi = -I$ is a contrast function over Q. Moreover, it is discriminating over random vectors whose components are non-Gaussian.

Proof of contrast function

Proof.

Note that we can consider only orthogonal maps $U \in \mathbb{R}^{d \times d}$.

- ▶ If *U* is a permutation, then $\Psi(p_{Ux}) = \Psi(p_x)$ since permuting the components does not change the KL divergence.
- ► If *U* is diagonal, then $\Psi(p_{Ux}) = \Psi(p_x)$ is a reflection and does not change the KL divergence.
- ▶ If *U* is an arbitrary orthogonal map and *x* has independent components, then:

$$\Psi(p_{Ux}) \le \Psi(p_x) = 0,$$

since KL divergence is non-negative.

Proof of discrimination

Proof.

Let *x* have independent non-Gaussian components. Recall that $\Psi(p_x) = 0$.

 $(\Longrightarrow) \Psi(p_{Ax}) = \Psi(p_x)$ implies $A = P\Lambda$ for permutation P and scaling Λ .

▶ If $\Psi(p_{Ax}) = \Psi(p_x) = 0$, then Ax must have independent components (KL property).

▶ By earlier theorem, since *x* has non-Gaussian components, $A = P\Lambda$.

(\Leftarrow) If $A = P\Lambda$, then $\Psi(p_{Ax}) = \Psi(p_x)$.

Since Ax still has independent components, $\Psi(p_{Ax}) = 0$ (KL property).

Estimation problem

Sample access

- ▶ We do not have access directly to the densities themselves, but to draws of data.
- ▶ We can approximate ICA by estimating the average mutual information.

Analyzing the mutual information

Definition (Differential entropy) *The differential entropy of p is:*

$$S(p) = \int p(x) \log \frac{1}{p(x)} \, dx.$$

▶ If *z* has covariance *I*, then:

$$S(p_{Az}) = S(p_z) - \frac{1}{2} \log \det A A^{\top}.$$

▶ The density with largest entropy with matching covariance is Gaussian:

$$S(p_{Az}) \leq S(\mathcal{N}(0, AA^{\top})).$$

Analyzing the mutual information

Definition (Negentropy)

Let *p* be a density with covariance $I_{d \times d}$. The **negentropy** of *p* is defined:

 $\mathcal{J}(p) = S(\mathcal{N}(0, I)) - S(p).$

▶ While the differential entropy may be negative, the negentropy is always positive, is invariant by linear invertible changes of coordinates, and vanishes if and only if *p* is Gaussian. Thus, negentropy is a measure of distance from normality.

Analyzing the average mutual information

Fact (Expansion of average mutual information)

The mutual information may be written:

$$I(p_x) = \mathcal{J}(p_x) - \sum_{i=1}^d \mathcal{J}(p_{x_i}) + \frac{1}{2} \log \frac{\prod_{i=1}^d \operatorname{Var}(x_i)}{\det(\operatorname{Cov}(x))}$$

Approximation to the negentropy

Recall that the *n*th cumulant is defined by:

$$\kappa_n = K^{(n)}(0)$$

the *n*th derivative of the cumulant-generating function $K(t) = \log \mathbb{E}[e^{tx}]$.

Fact

Let *z* be mean zero with standard covariance and is a sum of *m* independent random variables. Then:

$$\mathcal{J}(p_z) = \frac{1}{12}\kappa_3^2 + \frac{1}{48}\kappa_4^2 + \frac{7}{48}\kappa_3^4 - \frac{1}{8}\kappa_3^2\kappa_4 + o(m^{-2}).$$

References

Pierre Comon. Independent component analysis, a new concept? Signal processing, 36(3):287-314, 1994.