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Blind identification: statistical background
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Cocktail party problem

Setting: imagine a party
▶ there are d tables

▶ there are independent conversations going on at each table

▶ there are n ≥ d microphones
▶ each microphone picks up a mixture of the conversations

Question: can we unmix the recording to recover the independent conversations?

▶ This is called the source separation problem.
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Formal problem setting

Consider the linear statistical model:

y = Mx

▶ x ∈ Rd is drawn from px , which has statistically independent components

▶ M ∈ Rn×d is a full column rank matrix and only y ∈ Rn is observed
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Statistically independent components

We say that a density px on Rd has statistically independent components if:

px(x) =
d∏

i=1
pxi(xi),

where x = (x1, . . . , xd) and pxi is a density on R.
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Full column rank

y = Mx

Our assumption that M ∈ Rn×d has full column rank means that n ≥ d.

▶ In the cocktail party problem, this means that unmixing the audio is possible.
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Blind identification

Question: can we recover M from seeing independent realizations of y from our model:

y = Mx

where x ∼ px has independent components and M is full column rank?
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Inherent indeterminations

Given x ∼ px with independent components, define the following:

▶ P ∈ Rd×d a permutation

▶ Λ = diag(λ1, . . . , λd) is an invertible axis-aligned scaling

Non-identifiability: from y ∼ py alone, we cannot distinguish between:

y = Mx and y = Nz

▶ N = MΛ−1P⊤ has full column rank
▶ z = PΛx has independent components

▶ Cocktail party problem: z is a re-numbering of the tables through P , and an
adjustment of the individual volumes of each conversation through Λ.

▶ However, for non-Gaussian randomness, these are the only issues with identifiability!
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Statistical independence and orthogonal transformations

Informal theorem: a rotation of the space cannot preserve non-Gaussian independent
randomness unless it is a permutation or reflection.

Theorem
Let x ∈ Rd have independent components that are not Gaussian nor deterministic (i.e. point
masses). Let U ∈ Rd×d be orthogonal and let z be:

z = Ux.

The following are equivalent:

(i) The components of zi are pairwise independent.

(ii) The components of zi are mutually independent.

(iii) U = PΛ, P permutation, Λ diagonal.

9 / 30



Implication: identifiability

Let P be a family of distributions px over Rd satisfying:

▶ px has independent components

▶ px has covariance Id×d

Corollary (Identifiability)
Let M ∈ Rn×d be full column rank. Let px ∈ P , with components that are not Gaussian nor
deterministic. If there exists N ∈ Rn×d such that:

Mx = Nz

where z ∼ pz and pz ∈ P . Then for P permutation and Λ diagonal:

M = NPΛ.
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Proof of corollary

Proof.
▶ M has full column rank, so it has inverse A.

▶ Since Mx = Nz, we must have x = ANz.

▶ Both x and z have covariance Id×d , so U = (AN )⊤ is orthogonal and:

z = Ux.

▶ Both x and z have independent components, so by Theorem, U = PΛ, implying:

Mx = Nz = NUx = NPΛx.

▶ M = NPΛ.
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Darmois’ theorem

Theorem (Darmois’ theorem)
Let x1, . . . , xd be independent random variables. Let:

X1 =
∑

aixi and X2 =
∑

bixi.

Then if X1 and X2 are independent, then whenever aibi ̸= 0, then xi is Gaussian.
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Operationalizing blind identification
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Simplifying the problem by whitening the data

Remark: without loss of generality, we may assume that the transformation M is
orthogonal,

y = Mx

for otherwise, we could simply whiten the observed data using SVD and work with the
preprocessed data.

▶ As a result, the problem becomes one of finding an orthogonal matrix U such that
Uy has independent components.
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Independent component analysis
Let py be a distribution over y ∈ Rn with covariance Σy .

Definition (ICA)
The independent component analysis (ICA) of py is a factorization of Σy :

Σy = AΣxA⊤

where (A,Σx) satisfies:

(a) A has full column rank d and Σx is diagonal real positive

(b) when M = AΣ1/2
x , an observation y ∼ py can be written as:

y = Mx

where x ∼ px for some distribution px over Rd with covariance Id×d

(c) the components of x are ‘the most independent possible’.

15 / 30



Constructing an optimization problem

Question: can we specify part (c) of ICA as an optimization problem?

▶ Can we measure/maximize how independent components of a random vector are?

Idea: given a distance function δ on distributions, we can check whether a distribution p
on Rd has independent components:

δ

(
p,

d∏
i=1

pi

)
.

▶ We can aim to maximize a contrast function Ψ(p) := −δ

(
p,

d∏
i=1

pi

)
.

▶ The contrast function Ψ is maximized at zero when p is independent.
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Desiderata for a contrast function
Let Q ⊂ {px : px a density on Rd for random variable x}.

Definition (Contrast function)
A contrast is a mapping Ψ : Q → R if it satisfies:

(i) Ψ does not change if the components xi are permuted:

Ψ(px) = Ψ(pPx), ∀P permutation

(ii) Ψ is invariant by ‘scale’ change,

Ψ(px) = Ψ(pΛx), ∀Λ invertible diagonal

(iii) if x has independent components, then:

Ψ(pAx) ≤ Ψ(px), ∀A invertible
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Desiderata for a contrast function

Definition (Discriminating)
A contrast is said to be discriminating over Q if equality holds:

Ψ(pAx) = Ψ(px)

only when A is of the form PΛ for some permutation P and diagonal Λ, when x has
independent components with px ∈ Q.
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Identifying independent components through optimization

Recall setting: let P be a family of distributions over Rd with independent components
and covariance Id×d . Let M ∈ Rd×d be orthogonal and px ∈ P , with non-Gaussian and
non-deterministic components.

Idea: define a discriminating contrast function Ψ of the form Ψ(p) := −δ

(
p,

d∏
i=1

pi

)
▶ Let z ∈ ICAa,b means that z satisfies properties (a) and (b) of ICA. Then:

Ψ(px) = max
z∈ICAa,b

Ψ(pz).

▶ If z does not have independent components, then:

Ψ(pz) ≤ Ψ(px).
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Measuring independence

Definition (KL divergence)
The KL-divergence between two distributions p and q on Rd is:

KL(p∥q) =
∫

p(x) log
p(x)
q(x)

dx.

Definition (Average mutual information)
The average mutual information I(p) of a distribution p on Rd is:

I(p) = KL

(
p
∥∥∥∥ d∏

i=1
pi

)
.
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Choosing the contrast function

Theorem
Let Q be the set of mean zero densities on Rd with covariance Id×d . Then the map Ψ = −I
is a contrast function over Q. Moreover, it is discriminating over random vectors whose
components are non-Gaussian.
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Proof of contrast function

Proof.
Note that we can consider only orthogonal maps U ∈ Rd×d .

▶ If U is a permutation, then Ψ(pUx) = Ψ(px) since permuting the components does
not change the KL divergence.

▶ If U is diagonal, then Ψ(pUx) = Ψ(px) is a reflection and does not change the KL
divergence.

▶ If U is an arbitrary orthogonal map and x has independent components, then:

Ψ(pUx) ≤ Ψ(px) = 0,

since KL divergence is non-negative.
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Proof of discrimination

Proof.
Let x have independent non-Gaussian components. Recall that Ψ(px) = 0.

(=⇒) Ψ(pAx) = Ψ(px) implies A = PΛ for permutation P and scaling Λ.

▶ If Ψ(pAx) = Ψ(px) = 0, then Ax must have independent components (KL property).

▶ By earlier theorem, since x has non-Gaussian components, A = PΛ.

(⇐=) If A = PΛ, then Ψ(pAx) = Ψ(px).

▶ Since Ax still has independent components, Ψ(pAx) = 0 (KL property).
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Estimation problem
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Sample access

▶ We do not have access directly to the densities themselves, but to draws of data.

▶ We can approximate ICA by estimating the average mutual information.
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Analyzing the mutual information

Definition (Differential entropy)
The differential entropy of p is:

S(p) =
∫

p(x) log
1

p(x)
dx.

▶ If z has covariance I , then:

S(pAz) = S(pz)−
1
2
log detAA⊤.

▶ The density with largest entropy with matching covariance is Gaussian:

S(pAz) ≤ S(N (0,AA⊤)).
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Analyzing the mutual information

Definition (Negentropy)
Let p be a density with covariance Id×d . The negentropy of p is defined:

J(p) = S(N (0, I))− S(p).

▶ While the differential entropy may be negative, the negentropy is always positive,
is invariant by linear invertible changes of coordinates, and vanishes if and only if p
is Gaussian. Thus, negentropy is a measure of distance from normality.
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Analyzing the average mutual information

Fact (Expansion of average mutual information)
The mutual information may be written:

I(px) = J(px)−
d∑

i=1
J(pxi) +

1
2
log

∏d
i=1 Var(xi)

det(Cov(x))
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Approximation to the negentropy

Recall that the nth cumulant is defined by:

κn = K(n)(0)

the nth derivative of the cumulant-generating function K(t) = logE[etx ].

Fact
Let z be mean zero with standard covariance and is a sum of m independent random
variables. Then:

J(pz) =
1
12

κ23 +
1
48

κ24 +
7
48

κ43 −
1
8
κ23κ4 + o(m−2).
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