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A learning paradigm to estimate invariant predictors
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Sheep or camel?

Imagine training a learner to distinguish between sheep and camels:
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Sheep or camel?

What will the learner predict for this instance?
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Sheep or camel?

Green meadow or hump?
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Motivating problem

I Question: while we can train on data collected from a variety
of environments, we want to generalize to all environments

I how to distinguish causation from correlation?

I how to avoid spurious correlations?
I how to obtain out-of-distribution generalization?
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Learning from one environment

In the standard learning problem, given a function class F(X ;Y)
and risk functional R : F(X ;Y)→ R, find an optimizer:

arg min
f∈F(X ;Y)

R(f).

For short, define L =
(
F(X ;Y), R

)
to be the learning problem.
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Representation of data

Given a data representation φ : X → X̃ ,

I we obtain a new learning problem over (X̃, Y )

I we obtain a new risk functional that evaluates f̃ : X̃ → Y
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Representation of data, formal

Given a data representation φ : X → X̃ ,

I define Φ : F(X̃ ;Y)→ F(X ;Y) by:

Φ(f̃) := f̃ ◦ φ

I define Φ∗ : F(X ;Y)∗ → F(X̃ ;Y)∗ by:

(Φ∗R)(f̃) := R(Φ(f̃))
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Representation of data

{sheep, camel}

φ

f̃
f = f ◦ φ

Figure 1: A representation φ : X → X̃ induces a new risk
functional Φ∗R where (Φ∗R)(f̃) := R(f).
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Representation of data

Thus, φ induces the learning problem L̃ =
(
Φ(F(X ;Y)),Φ∗R

)
:

arg min
f∈F(X ;Y)

R(f) // arg min
f̃∈F(X̃ ;Y)

(Φ∗R)(f̃).

We hope that:

I we didn’t lose too much information:

f̃ solves L̃ =⇒ Φ(f̃) approximately solves L

I the new problem is less complex: the function class Φ(F) is
easier to optimize or generalize on
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Learning from multiple environments

{
camel
sheep

}
φ f̃
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Learning setting

I Task: learn a function f from a function class F(X ;Y)

I P is a data distribution over X × Y
I RP (f) is the risk associated with f

I Setting: data can be collected from different environments
e ∈ E with different data distribution Pe and risk Re ≡ RPe

I train on datasets De ∼ Pne
e drawn from distributions from

training environments e ∈ Etr ⊂ E
I test on all environments e ∈ E (i.e. want to generalize to all

environments), minimizing the out-of-distribution risk ROOD:

ROOD(f) := max
e∈E

Re(f).

12 / 51



Learning setting

I Task: learn a function f from a function class F(X ;Y)

I P is a data distribution over X × Y

I RP (f) is the risk associated with f

I Setting: data can be collected from different environments
e ∈ E with different data distribution Pe and risk Re ≡ RPe

I train on datasets De ∼ Pne
e drawn from distributions from

training environments e ∈ Etr ⊂ E
I test on all environments e ∈ E (i.e. want to generalize to all

environments), minimizing the out-of-distribution risk ROOD:

ROOD(f) := max
e∈E

Re(f).

12 / 51



Learning setting

I Task: learn a function f from a function class F(X ;Y)

I P is a data distribution over X × Y
I RP (f) is the risk associated with f

I Setting: data can be collected from different environments
e ∈ E with different data distribution Pe and risk Re ≡ RPe

I train on datasets De ∼ Pne
e drawn from distributions from

training environments e ∈ Etr ⊂ E
I test on all environments e ∈ E (i.e. want to generalize to all

environments), minimizing the out-of-distribution risk ROOD:

ROOD(f) := max
e∈E

Re(f).

12 / 51



Learning setting

I Task: learn a function f from a function class F(X ;Y)

I P is a data distribution over X × Y
I RP (f) is the risk associated with f

I Setting: data can be collected from different environments
e ∈ E with different data distribution Pe and risk Re ≡ RPe

I train on datasets De ∼ Pne
e drawn from distributions from

training environments e ∈ Etr ⊂ E
I test on all environments e ∈ E (i.e. want to generalize to all

environments), minimizing the out-of-distribution risk ROOD:

ROOD(f) := max
e∈E

Re(f).

12 / 51



Learning setting

I Task: learn a function f from a function class F(X ;Y)

I P is a data distribution over X × Y
I RP (f) is the risk associated with f

I Setting: data can be collected from different environments
e ∈ E with different data distribution Pe and risk Re ≡ RPe
I train on datasets De ∼ Pne

e drawn from distributions from
training environments e ∈ Etr ⊂ E

I test on all environments e ∈ E (i.e. want to generalize to all
environments), minimizing the out-of-distribution risk ROOD:

ROOD(f) := max
e∈E

Re(f).

12 / 51



Learning setting

I Task: learn a function f from a function class F(X ;Y)

I P is a data distribution over X × Y
I RP (f) is the risk associated with f

I Setting: data can be collected from different environments
e ∈ E with different data distribution Pe and risk Re ≡ RPe
I train on datasets De ∼ Pne

e drawn from distributions from
training environments e ∈ Etr ⊂ E

I test on all environments e ∈ E (i.e. want to generalize to all
environments), minimizing the out-of-distribution risk ROOD:

ROOD(f) := max
e∈E

Re(f).

12 / 51



Invariants

Idea. We can recognize a camel anywhere because we can identify
invariant features that do not depend on the environment.

I A representation of data φ admits an invariant predictor f̃ if f̃
solves the new learning problem Φ∗Re simultaneously for all
environments e ∈ E .

I Warning: f̃ optimizes Φ∗Re does not imply that Φ(f̃)
optimizes Re
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Invariant risk minimization

Intuition. In invariant risk minimization (IRM), we’ll aim to
minimize the risk subject to the constraint that the minimizer is an
invariant predictor on all the training environments.

I If we train on sufficiently distinct environments, then we can
generalize to previously unseen environments.

I e.g. camel photos to cartoon camels
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Roadmap

1. Existing techniques

2. Invariant risk minimization (IRM)

3. Relaxation of optimization problem

4. Open questions
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Problem statement

I Given: data De from training environments e ∈ Etr
I Goal: minimize the out-of-distribution risk,

ROOD(f) = min
e∈E

Re(f).
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Existing techniques

1. Perform ERM on merged data

2. Minimize robust learning objective

3. Domain adaptation

4. Invariant causal prediction (ICP)
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ERM on merged data

Idea. Merge training data drawn from all training distributions Etr
and perform empirical risk minimization (ERM):

Rerm(f) :=
1

|Etr|
∑
e∈Etr

Re(f).

I Problem: training distributions Etr ⊂ E may not be
representative of all distributions, leading to poor
out-of-distribution generalization.
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Robust learning objective

Idea. Minimize a robust learning objective:

Rrob(f) := max
e∈Etr

Re(f)− re,

where re is an environment’s baseline, which can help prevent
noisy environments from dominating the objective.

I Problem: under most conditions, this is just a slight
generalization of ERM to weighted average risk,

min
f

∑
e∈Etr

λeRe(f).
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Domain adaptation (slide under construction)

Idea. Estimate a data representation Φ(X) that has the same
distribution (Φ(X), Y ) for all environments.

I Problem: the distribution of ???
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Invariant causal prediction (slide under construction)

Idea. Search for a subset of features...
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Roadmap

1. Existing techniques

2. Invariant risk minimization (IRM)

3. Relaxation of optimization problem

4. Open questions
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Problem recap

I Given: data De from training environments e ∈ Etr
I Goal: minimize the out-of-distribution risk,

ROOD(f) = min
e∈E

Re(f).
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Invariant predictor

Definition
A data representation φ : X → X̃ admits an invariant predictor f
across environments E if there exists some f̃ that simultaneously
minimizes Φ∗Re for all environments e ∈ E :

f̃ ∈
⋂
e∈E

arg min
g∈F(X̃ ;Y)

(Φ∗Re)(g),

and f = Φ(f̃). That is, f = f̃ ◦ φ.
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Trivial example

Let X × Y = Rd × R, and let F(X ;Y) be all linear functions.

I Let φ : Rd → 0 represent all data as 0.

I F(0;R) linear contains only the map 0 7→ 0, so for all e ∈ Re,

0 ∈ arg min
g∈F(0;R)

(Φ∗Re)(g).

I For linear models, the trivial representation admits an
invariant predictor.

I Though invariant, this representation likely does not admit
predictors with low risk.
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Invariant risk minimization

Problem. Let E be a collection of environments. Invariant risk
minimization is the optimization problem:

min
φ:X→X̃
f̃ :X̃→Y

∑
e∈E

Re(f̃ ◦ φ)

subject to the constraint that f̃ ∈ arg minRe(g̃ ◦ φ) for all e ∈ E .
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Invariant features and stable correlation

Intuition. We’ll show that for certain problems, φ admits an
invariant predictor if and only if the correlation between the
representation and target variable is stable across all environments.
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Invariant features and stable correlation

Definition
Let φ : X → X̃ be fixed. A Bayes’ predictor on the environment
e ∈ E is a function f̃e that satisfies:

f̃e(x̃) := E
(X,Y )∼Pe

[Y |φ(X) = x̃] ,

for x̃ ∈ suppPe(φ(X)).

I We’ll assume that f̃e is measurable.
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Invariant features and stable correlation

Definition
We say that an objective function R has an essentially unique
solution if any optimizer is unique up to a measure zero set.

I That is, f1, f2 ∈ arg minR(f) implies that f1 = f2 a.e.
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Invariant features and stable correlation

Proposition

Suppose that φ is a representation such that the Bayes’ predictor
on e is an essentially unique solution for Φ∗Re, for all e ∈ E . The
following are equivalent:

I φ admits an invariant predictor across E
I for all e, e′ ∈ E ,

E
(X,Y )∼Pe

[Y |φ(X) = x̃] = E
(X,Y )∼Pe′

[Y |φ(X) = x̃] ,

for x̃ ∈ suppPe(φ(X)) ∩ suppPe′ (φ(X)).
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Invariant features and stable correlation

Proof (forward).

I If f̃ is an invariant predictor, then f̃ is a solution to Φ∗Re.

I The Bayes’ predictor f̃e is also a solution, so f̃ = f̃e a.e.

I Thus, f̃e = f̃e′ on the intersection of their supports.

Reverse direction: stitch f̃e’s together and read proof backwards.
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Least squares regression

Let Pe be a collection of distributions over (X,Y ) ∈ Rd × R,

X ← N (µe,Σe) Y ← AeX +N (0, σ2e),

where Ae ∈ R1×d.

The least squares objective is:

Re(f) := E
(x,y)∼Pe

[
|f(x)− y|2

]
.

Define Fk = {f̃ : Rk → R linear} to the class of k-dimensional
linear functionals.

I Let φ : Rd → Rk be linear. Then, Fk contains the Bayes’
predictor for Φ∗Re, and it is essentially unique.
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Out-of-distribution generalization through causality

I So far, we’ve shown that finding an invariant predictor (φ, f̃)
can be thought of finding stable correlations between X and
Y across all environments in certain classes of problems.

I We can use this technique to recover causal features in
situations where the only stable correlations arise from an
assumed causal structure.

I This would allow us to generalize to unseen distributions that
satisfy the same causal structure.
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Structural equation model

Let X = (X1, . . . , Xd) be a random vector.

Definition
A structural equation model C := (S, N) governing X is a set of
structural equations such that:

Si : Xi ← fi(Pa(Xi), Ni),

where Pa(Xi) are the parents of Xi and Ni are independent noise.

I We say that Xi causes Xj if Xi ∈ Pa(Xj).

I A causal graph is the graph G = (V,E) where V = [d] and
(i, j) ∈ E if and only if Xi causes Xj .

I We assume acyclic causal graphs.
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Interventions

Definition
Let C = (S, N) be a SEM. An intervention e on C consists of
replacing one or several of its structural equations to obtain an
intervened SEM Ce = (Se, N e),

Sei : Xe
i ← fei (Pae(Xe

i ), N e
i ).

The variable Xe
i is intervened if Si 6= Sei or Ni 6= N e

i .
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Valid interventions

Definition
Let C be a SEM that governs (X1, . . . , Xd, Y ) for the learning task
of predicting Y from X. An intervention e is valid as long as:

(i) the causal graph remains acyclic

(ii) E[Y e|Pa(Y )] = E[Y |Pa(Y )],

(iii) Var[Y e|Pa(Y )] <∞.

I Let Eall(C) be the set of all environments containing the
interventional distribution P (Xe, Y e) indexed by valid
interventions e.
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Least squares regression

Example. Consider the structural equation model:

X1 ← N (0, σ2) Y ← X1 +N (0, σ2) X2 ← Y + c.

I environments e ∈ E

E =
{

(σ2, c) : σ2 ∈
[
0, σ2max

]
, c ∈ R

}
I predictor parametrized by w ∈ R2, where

Ŷ = X1w1 +X2w2

I risk Rσ2 is the mean squared error:

Rσ2(w) = E
(X,Y )∼Pσ2

[(
XTw − Y

)2]
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Least squares regression

Observations.

I If w2 6= 0 (i.e. the predictor uses X2), then:

ROOD(w) =∞,

since c2 · w2
2 ≤ R(σ2,c)(w) and c ∈ R.

I In particular, the best-in-class predictor is:

w =

[
1
0

]
,

and corresponds to the causal predictor.

X1

Y

X2
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Preview of Linear IRM

Let C be the causal graph for (X1, . . . , Xd, Y ) and E(C) be the set
of valid environments given C. In the linear setting:

Theorem (Informal)

A predictor is invariant across E(C)

I if and only if attains optimal ROOD, and

I if and only if it is the Bayes’ predictor using only the direct
causal parents of Y to predict.
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Example generalization result

Return to our least squares problem. Making the following
assumption:
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Example generalization result

We obtain an upper bound on the number of ‘linearly independent’
training environments we need to see before we can generalize to
all environments:
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Roadmap

1. Existing techniques

2. Invariant risk minimization (IRM)

3. Relaxation of optimization problem

4. Open questions
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IRM objective

Recall the IRM objective:

min
φ:X→X̃
f̃ :X̃→Y

∑
e∈Etr

Re(f̃ ◦ φ)

subject to the constraint that f̃ ∈ arg min Re(g̃ ◦ φ) for all e ∈ Etr.
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Relaxation of objective

To enable a practical algorithm, define the relaxation:

min
φ:X→Y

∑
e∈Etr

Re(w · φ) + λ ·
∥∥∇w|w=1Re(w · φ)

∥∥2 ,
where w ∈ R is set to 1.
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Generating practice tasks from SEMs

Question: given knowledge of SEMs, can a learner construct tasks
for themselves to perform to learn?

I For example, say you want to learn how to drive a car. You
could set up an imaginary environment (imagine lane lines)
that you task yourself with, to learn the physics of navigation.
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Communicating knowledge through SEMs

Question: it seems that a lot of hard work is done by humans to
learn causal relations. Would knowledge of this speed up learning?

I Perhaps this is how multiple learners could communicate
knowledge.
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Noise model

What about cases where there does not exist a representation that
admits an invariant predictor? Or, in other words, here it is
assumed that there is zero-mean noise, so that the model is correct.
But what about an adversarial noise model/agnostic setting?
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Active IRM

Actively work to figure out the underlying SEM through statistical
tests?
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IRM fundamental question

If the goal is to find a representation that admits an invariant
predictor for all environment, how can one prove that this is
possible through an estimation procedure? That is, drawing some
number of points, from the training environments, how many
point/how well do you need to perform ERM to find φ that is close
to the true φ?
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