k-SVD for dictionary learning

Aharon, Elad, Bruckstein '06

Geelon So (agso@eng.ucsd.edu)

May 20, 2020

K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation

Michal Aharon, Michael Elad, and Alfred Bruckstein

Introduction

k-means problem, or vector quantization

Figure 1: Given data points $y_1, \ldots, y_N \in \mathbb{R}^d$, find atoms $d_1, \ldots, d_k \in \mathbb{R}^d$.

k-means problem, or vector quantization

Find signal-atoms d_1, \ldots, d_k and representations x_1, \ldots, x_N such that $x_i \in \{0, 1\}^k$ and $||x_i||_0 = 1$ where:

$$\begin{bmatrix} | & & | \\ y_1 & \cdots & y_N \\ | & & | \end{bmatrix} \approx \begin{bmatrix} | & | & & | \\ d_1 & d_2 & \cdots & d_k \\ | & | & & | \end{bmatrix} \begin{bmatrix} | & & | \\ x_1 & \cdots & x_N \\ | & & | \end{bmatrix}.$$

The objective is to minimize the **reconstruction error** subject to the constraints on X:

$$\min_{\mathbf{D}, \mathbf{X}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_2^2.$$

Review of k-means clustering

- ▶ Initialize cluster means $d_1, \ldots, d_k \in \mathbb{R}^d$
- ▶ Repeat until convergence criterion:
 - **Sparse coding:** set $x_i \leftarrow e_{\kappa^*}$ (standard basis element) where

$$\kappa^* = \arg\min_{j \in [k]} ||y_i - d_j||_2^2.$$

Dictionary update: set d_i to be the mean:

$$d_j \leftarrow \frac{1}{|C_j|} \sum_{y \in C_j} y,$$

where
$$C_j = \{y_i : x_i = e_j\}.$$

Relax: gain-shape vector quantization

Find signal-atoms d_1, \ldots, d_k and representations x_1, \ldots, x_N such that $x_i \in \mathbb{R}^k$ and $\|x_i\|_0 = 1$ where:

$$\begin{bmatrix} | & & | \\ y_1 & \cdots & y_N \\ | & & | \end{bmatrix} \approx \begin{bmatrix} | & | & & | \\ d_1 & d_2 & \cdots & d_k \\ | & | & & | \end{bmatrix} \begin{bmatrix} | & & | \\ x_1 & \cdots & x_N \\ | & & | \end{bmatrix}.$$

The objective is to minimize the **reconstruction error** subject to the constraints on X:

$$\min_{\mathbf{D}, \mathbf{X}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_2^2.$$

Relax: gain-shape vector quantization

Figure 2: Each y_i is to the closest point on the candidate lines.

Generalize: dictionary learning s-sparse representations

Find signal-atoms d_1,\ldots,d_k and representations x_1,\ldots,x_N such that $x_i\in\mathbb{R}^k$ and $\|x_i\|_0\leq s$ where:

$$\begin{bmatrix} | & & | \\ y_1 & \cdots & y_N \\ | & & | \end{bmatrix} \approx \begin{bmatrix} | & | & & | \\ d_1 & d_2 & \cdots & d_k \\ | & | & & | \end{bmatrix} \begin{bmatrix} | & & | \\ x_1 & \cdots & x_N \\ | & & | \end{bmatrix}.$$

The objective is to minimize the **reconstruction error** subject to the constraints on X:

$$\min_{\mathbf{D}, \mathbf{X}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_2^2.$$

Summary of problems

- **Dictionary:** find k signal-atoms/dictionary elements.
- **Sparse-coding:** approximate data from points within T-dimensional objects generated by the k atoms.
 - ightharpoonup T = 0 (k-means). Individual points d_1, \ldots, d_k .
 - ▶ T = 1 (gain-shape VQ). Lines through d_1, \ldots, d_k .
 - $ightharpoonup T \in \mathbb{N}$ (dictionary learning). T-dimensional spaces:

$$\mathrm{span}(d_{i_1},\ldots,d_{i_T}).$$

Geometric picture

Figure 3: The set of k atoms generate a space $X \subset \mathbb{R}^d$ that is a union of T-manifolds. Each data point y is projected onto X. Which set of atoms minimizes reconstruction error? [image]

Goal of paper

Can we **generalize the** k**-means algorithm** to the more general problem of dictionary learning s-sparse representations?

Dictionary learning s-sparse representations

Figure 4: The signal y is a sparse linear combination of atoms d_1, \ldots, d_k .

k-SVD

Sparse coding and dictionary update

► **Sparse coding:** given a dictionary **D**, find sparse representations **X** such that

$$Y \approx DX$$
.

- ightharpoonup e.g. in k-means, $y \mapsto \arg\min \|d_i y\|_2^2$.
- ▶ Dictionary update: let $C_j \subset \{y_1, \ldots, y_N\}$ be the set of data points whose representation makes use of d_j ,

$$C_j = \{y_i : x_i(j) \neq 0\}.$$

Can we update d_i and x_i to obtain better fit?

ightharpoonup e.g. in k-means, $d_j \leftarrow \operatorname{mean}(C_j)$.

Geometric picture of k-SVD

Figure 5: Sparse coding: data points are associated to s dictionary atoms. If d_j is the white arrow, then the circled data points are contained in C_j . Dictionary update: Jiggling d_j around also jiggles the planes: move to minimize average distance to C_j .

Sparse coding: pursuit algorithms

Many algorithms exist to perform sparse coding:

- ► Matching pursuit (MP)
- ► Orthogonal matching pursuit (OMP)
- ► Basis pursuit (BP)
- ► Focal underdetermined system solver (FOCUSS)

Techniques can be greedy, convex/non-convex relaxations, etc.

Dictionary update prelude: rank of matrix

Let $\mathbf{M} \in \mathbb{R}^{n \times m}$. The **rank** of \mathbf{M} is the minimal r such that there exists $u_1, \dots, u_r \in \mathbb{R}^n$ and $v_1, \dots, v_r \in \mathbb{R}^m$ such that:

$$\mathbf{M} = \sum_{i=1}^{r} u_i v_i^{\top}.$$

Dictionary update prelude: low-rank approximation

The following says that the best rank-k approximation of a matrix correspond to its top-k singular value decomposition:

Theorem (Eckart-Young)

Let $\mathbf{M} \in \mathbb{R}^{n \times m}$ with singular value decomposition $\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$.

- ▶ Let Σ_k be the submatrix with the top-k singular values.
- ▶ Let U_k and V_k be the corresponding singular vectors.

Then, for any matrix N where $rank(N) \leq k$,

$$\|\mathbf{M} - \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^{\top}\|_F \leq \|\mathbf{M} - \mathbf{N}\|_F.$$

Notice that $\mathbf{D}\mathbf{X}$ is a rank-k approximation of \mathbf{Y} ,

$$\mathbf{DX} = \sum_{j=1}^{k} d_j x^j,$$

where x^j is the jth row of \mathbf{X} .

- lackbox Without sparsity constraint, set $\mathbf{D} = \mathbf{U}_k$ and $\mathbf{X} = \mathbf{\Sigma}_k \mathbf{V}_k^{ op}$.
 - ▶ **Idea:** when there is a sparsity constraint, let's fix all of D except the jth column and all of X except for the jth row. Now, apply SVD.

Let \mathbf{E}_j be the reconstruction error without the jth dictionary:

$$\mathbf{E}_j = \mathbf{Y} - \sum_{\kappa \neq j} d_{\kappa} x^{\kappa}.$$

- lackbox We want to reduce the reconstruction error for those $y_i \in C_j$.
 - ▶ Let $\Pi_j \in \{0,1\}^{N \times |C_j|}$ select the data points in C_j .
 - lacksquare Obtain SVD of $\mathbf{E}_j \mathbf{\Pi}_j = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op}$.
 - ▶ Update $d_j \leftarrow \mathbf{U}_1$ and $x^j \mathbf{\Pi}_j \leftarrow \mathbf{V}_1^\top$

Figure 6: Updates to d_j and the nonzero coordinates of x^j .

k-SVD algorithm

- ▶ Initialize dictionary $d_1, \ldots, d_k \in \mathbb{R}^d$
- ▶ Repeat until convergence criterion:
 - **Sparse coding:** using any pursuit algorithm for the problem:

$$\min_{\mathbf{X}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_2^2,$$

in order to set representations x_i .

- **Dictionary update:** for each atom d_i :
 - ▶ Apply SVD decomposition to $\mathbf{E}_{j}\mathbf{\Pi}_{j} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}$
 - ► Set $d_j \leftarrow \mathbf{U}_1$ and $x^j \mathbf{\Pi}_j \leftarrow \mathbf{\Sigma}_1 \mathbf{V}_1^\top$.

Convergence of *k*-SVD

Suppose we have pursuit algorithm that solves sparse coding $perfectly.^1$

▶ During dictionary update, the MSE decreases monotonically:

$$\|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{2}^{2} = \left\| \left(\mathbf{Y} - \sum_{\kappa \neq j} d_{\kappa} x^{\kappa} \right) - d_{j} x^{j} \right\|_{2}^{2}$$
$$= \|\mathbf{E}_{j} - d_{j} x^{j}\|_{2}^{2}.$$

Thus, convergence to local minimum is guaranteed.

 $^{^1 \}rm{When}$ sparsity $s \ll n,$ then pursuit algorithms like OMP, FOCUSS, BP are known to perform well.

A final remark on k-SVD

The dictionary update step does not change which coordinates of x_j are nonzero—only the sparse coding step does this.

▶ Without sparse coding, we get trapped in a local minimum.

References

[AEB2006] M. Aharon, M. Elad, and A. Bruckstein. "K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation." *IEE Transactions on Signal Processing*, 2006.