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Introduction
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k-means problem, or vector quantization
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Figure 1: Given data points y1,...,yn € R? find atoms dy, ..., d; € R
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k-means problem, or vector quantization

Find signal-atoms d, ..., d; and representations z1,...,zN
such that x; € {0,1}* and ||z;|jo = 1 where:
| | . | ‘

Y1 0 yn| & |di dy - dg| fz1 o TN

The objective is to minimize the reconstruction error subject to
the constraints on X:

min |[Y — DX||3.
D.X
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Review of k-means clustering

» Initialize cluster means dy, ..., d; € R?
» Repeat until convergence criterion:
Sparse coding: set x; < e, (standard basis element) where

K" = argmin [|y; — d;f3-
JEk

Dictionary update: set d; to be the mean:

|C‘Zy,

yeCy

where Cj = {y; : z; = €;}.
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Relax: gain-shape vector quantization
Find signal-atoms d, ..., d; and representations zy,...,xN

such that ‘@; € R® and ||z;]lo = 1 where:
| | | | ‘

y1 o yn| = |d dy - dg| |21 - N

The objective is to minimize the reconstruction error subject to
the constraints on X:

min || Y — DX||3.
D,X
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Relax: gain-shape vector quantization

Figure 2: Each y; is to the closest point on the candidate lines.
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Generalize: dictionary learning s-sparse representations
Find signal-atoms d, ..., d; and representations z1,...,zn

such that z; € R¥ and [||aillo < 5 where:
| | | | ‘

y1 o yn| = |d dy - di| |z1 - N

The objective is to minimize the reconstruction error subject to
the constraints on X:

min || Y — DX]|3.
DX
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Summary of problems

» Dictionary: find k signal-atoms/dictionary elements.

» Sparse-coding: approximate data from points within
T-dimensional objects generated by the k atoms.
T =0 (k-means). Individual points dy, ..., d.
T =1 (gain-shape VQ). Lines through di, ..., dx.
T € N (dictionary learning). T-dimensional spaces:

span(d;,, ..., d;.).
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Geometric picture
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Figure 3: The set of k atoms generate a space X C R¢ that is a
union of T-manifolds. Each data point y is projected onto X.
Which set of atoms minimizes reconstruction error? [image]
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https://ximera.osu.edu/laode/linearAlgebra/solvingLinearEquations/theGeometryOfLowDimensionalSolutions4x.png

Goal of paper

Can we generalize the k-means algorithm to the more general
problem of dictionary learning s-sparse representations?
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Dictionary learning s-sparse representations
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Figure 4: The signal y is a sparse linear combination of atoms d;

- dy.

13/27



k-SVD
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Sparse coding and dictionary update

» Sparse coding: given a dictionary D, find sparse
representations X such that

Y ~ DX.

e.g. in k-means, y — arg min ||d; — y||3.

» Dictionary update: let C; C {y1,...,yn} be the set of data
points whose representation makes use of d;,

C; = {yi: z:(j) # 0}.

Can we update d; and z; to obtain better fit?
e.g. in k-means, d; < mean(C}).
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Geometric picture of k-SVD
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Figure 5: Sparse coding: data points are associated to s dictionary
atoms. If d; is the white arrow, then the circled data points are
contained in C;. Dictionary update: Jiggling d; around also jiggles the
planes: move to minimize average distance to C;.
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Sparse coding: pursuit algorithms

Many algorithms exist to perform sparse coding:
» Matching pursuit (MP)
» Orthogonal matching pursuit (OMP)
» Basis pursuit (BP)
» Focal underdetermined system solver (FOCUSS)

Techniques can be greedy, convex/non-convex relaxations, etc.
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Dictionary update prelude: rank of matrix

Let M € R™* "™ The rank of M is the minimal r such that there
exists uy,...,u, € R™ and vy, ...,v,. € R™ such that:

,
M = E uiv;r.
i=1
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Dictionary update prelude: low-rank approximation

The following says that the best rank-k approximation of a matrix
correspond to its top-k singular value decomposition:

Theorem (Eckart-Young)
Let M € R™™ with singular value decomposition M = UXV T,
» Let 3 be the submatrix with the top-k singular values.
» Let Uy and Vy, be the corresponding singular vectors.
Then, for any matrix N where rank(N) < k,

IM - U,V ||p < M —N|.
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Dictionary update

Notice that DX is a rank-k approximation of Y,
k: .
DX = dja?,
j=1

where 27 is the jth row of X.

| <

"
P Sy M
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Dictionary update

» Without sparsity constraint, set D = Uy and X = EkV,;r.
Idea: when there is a sparsity constraint, let’s fix all of D

except the jth column and all of X except for the jth row.
Now, apply SVD.
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Dictionary update

Let E; be the reconstruction error without the jth dictionary:

E;=Y ) deu".
K]

» We want to reduce the reconstruction error for those y; € Cj.

Let IT; € {0,1}V*I%! select the data points in C;.
Obtain SVD of E,;II; = UXV .
Update d; « U and 2/I1; < V|
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Dictionary update
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Figure 6: Updates to d; and the nonzero coordinates of 7.
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k-SVD algorithm

» Initialize dictionary di,...,d; € R?
» Repeat until convergence criterion:
Sparse coding: using any pursuit algorithm for the problem:

min ||[Y — DX]|3,
X

in order to set representations x;.

Dictionary update: for each atom d;:
> Apply SVD decomposition to E,;II; = ULV "
> Set d; + U; and 2711 + =, V{.
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Convergence of k-SVD

Suppose we have pursuit algorithm that solves sparse coding
perfectly.!

» During dictionary update, the MSE decreases monotonically:
2
Y —DX[f5 = || Y =) dua” | —dja?
K] 9
= |E; — d;a’||3.

Thus, convergence to local minimum is guaranteed.

"When sparsity s < n, then pursuit algorithms like OMP, FOCUSS, BP are

known to perform well.
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A final remark on £-SVD

The dictionary update step does not change which coordinates of
x; are nonzero—only the sparse coding step does this.

» Without sparse coding, we get trapped in a local minimum.
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