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Optimization goal

Consider the unconstrained (non-convex) optimization problem:

min
x∈Rd

f (x).

I Sampling approach: sample from a distribution maximized at the minima of f .
I e.g. the Gibbs measure with inverse temperature γ > 0

pγ(x) ∝ exp
(
− γf (x)

)
.
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The Langevin algorithm
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Gradient descent with noise

The Langevin algorithm is gradient descent on f with Gaussian noise:

Xm+1 = Xm − η∇f (Xm) +

√
2σ
η
Wm+1,

where Wm+1 ∼ N (0, Id×d).

I Output: at time M , return min
m∈[M]

f (Xm).
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Analysis: Langevin algorithm as discretized di�usion

The Langevin update can be viewed as a discretization of the (overdamped) Langevin
di�usion for pγ , which is the solution to this stochastic di�erential equation (SDE):

dZt = −∇f (Zt) dt +

√
2
γ
dBt with Z0 = X0.

I This SDE has a limiting invariant distribution pγ .
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Analysis: optimization error

If p is a distribution, denote p(f ) = E
Z∼p

[f (Z)]. The optimization error a�er M steps is:

min
m∈[M]

E[f (Xm)]−min
x

f (x) ≤ 1
M

M∑
m=1

E[f (Xm)− p(f )]︸ ︷︷ ︸
integration error

+ p(f )−min
x

f (x)︸ ︷︷ ︸
expected suboptimality

.

I The integration error bounds the short-term non-stationarity and long-term
discretization bias.

I For the Gibbs measure p = pγ , the suboptimality gap is controlled by the inverse
temperature γ > 0.
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This paper: beyond the overdamped Langevin di�usion

�estion: what about other distributions p besides the Gibbs measure such that

p(f ) ≈ min
x

f (x)?

I This paper considers p that are the limiting invariant distributions of more general
di�usion processes:

dZt = b(Zt) dt + σ(Zt) dBt .

I Here, the covariance coe�icient σ(x)σ(x)> can be nonconstant over Rd

(this is constant for the overdamped Langevin di�usion; c.f. preconditioning).
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This paper: techniques

min
m∈[M]

E[f (Xm)]−min
x

f (x) ≤ 1
M

M∑
m=1

E[f (Xm)− p(f )]︸ ︷︷ ︸
integration error

+ p(f )−min
x

f (x)︸ ︷︷ ︸
expected suboptimality

.

I Bounds the integration error via Stein’s method.

I Bounds expected suboptimality for generalized Gibbs measures of the form:

pγ,θ(x) ∝ exp
(
−γ
(
f (x)− f (x∗)

)θ)
,

where x∗ is a global maximizer with∇f (x∗) = 0.
I Note: this assumes knowledge of f (x∗), which is o�en 0 in many se�ings. If f (x∗) is

unknown, can carry out analysis just using an estimate.
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Motivation: techniques to bound integration error
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Goal: bounding the integration error

I Invariant measure: let p be the stationary distribution of a di�usion (Zt)t≥0

I Discretization: let (Xm)∞m=0 be an appropriate discretization with step size η

I Integration error:
1
M

∑
m∈[M]

E[f (Xm)− p(f )]

Theorem (Integration error, informal)

The integration error at time M is O
(

1
ηM

+ η

)
.
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Broad strokes
I Let (Zt)t≥0 be the continuous-time di�usion.

I The distribution of Zt converges to the stationary distribution p, so that:

lim
t→∞

E[f (Zt)− p(f )] = 0.

I In fact, a quantitative mean ergodic theorem states:

E
[(

1
T

∫ T

0
f (Zt) dt − p(f )

)2 ]
= O

(
1
T

)
,

which can be read as: ‘the time average converges to the space average.’

I The discretization using step size η leads to some additional bias:∣∣∣∣∣∣ 1M
∑
m∈[M]

E[f (Xm)− p(f )]

∣∣∣∣∣∣ ≤ O
(

1
ηM

+ η

)
.
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Roadmap

1. Interlude I: Markov semigroups

2. Interlude II: the Poisson equation and mean ergodic theorem

3. Interlude III: Connection to Stein’s method

4. Optimization using discretized di�usion
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Interlude I: Markov semigroups and generators1

1This section closely follows (Bakry et al., 2013).
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Markov process

Definition (Markov process)
Let (Xt)t≥0 be a stochastic process. Then, it is a (time-homogeneous) Markov process if
for all t > s, the law of Xt given (Xu)0≤u≤s is equal to:

I the law of Xt given Xs

I the law of Xt−s given X0.

Notation: we o�en write (X x
t )t≥0 to denote that the process is initially X0 = x.

I Example: the solution (X x
t )t≥0 to the Itô SDE is Markov:

dXt = b(Xt) dt + σ(Xt) dBt and X0 = x.
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Example: Brownian motion

Let (Bxt )t≥0 be d-dimensional Brownian motion with B0 = x.

I Define the probability kernels for t > 0,

pt(x, y) =
1

(2πt)d/2
exp

(
−‖x − y‖2

2t

)
,

and let p0(x, · ) be the Dirac distribution at x, so that Bxt has density pt(x, · ).

I We can characterize the evolution of pt(x, · ) by defining the operator Pt for t ≥ 0,

Ptf (x) =

∫
Rd

f (y) pt(x, dy),

for f bounded measurable map.
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The associated semigroup

Let (Xt)t≥0 be Markov. Define the operator Pt on bounded measurable functions f by:

Ptf (x) = E[f (Xt)|X0 = x].

Read: Pt maps f to the function describing the expected value of f a�er time t.

I The Markov property implies that P = (Pt)t≥0 is a semigroup:

Pt+sf (x) = Pt
(
Psf
)
(x).

That is, Pt+s = Pt ◦ Ps and P0 = Id.
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Properties of the semigroup

Let P = (Pt)t≥0 be the semigroup for a Markov process (Xt)t≥0 on Rd . LetM be the set
of bounded measurable f : Rd → R.

(i) Linearity: Pt is a linear operator onM for all t ≥ 0.

(ii) Initial condition: P0 = Id.

(iii) Mass conservation: Pt(1) = 1.

(iv) Positivity: if f ≥ 0, then Ptf ≥ 0.

(v) Semigroup (Markov) property: Pt+s = Pt ◦ Ps for all t, s ≥ 0.

�estion: can we define the derivative of the map t 7→ Pt?
I Knowing evolution of Pt implies a lot about the Markov process.

I However, Markov processes are too general to define derivative—let’s impose a
continuity condition, which we can get at through P.
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Invariant measure

Definition (Invariant measure, Bakry et al. (2013))
Let P = (Pt)t≥0 be the semigroup for a Markov process on Rd . The Markov process has
invariant measure µ on Rd if for all t ≥ 0,∫

Rd
Ptf dµ =

∫
Rd

f dµ.
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Markov semigroup

Definition (Markov semigroup, Bakry et al. (2013))
Let P = (Pt)t≥0 be a family of operators satisfying conditions (i–v) on Slide 17. Suppose it
has an invariant measure µ. Then P is a Markov semigroup if it further satisfies:

(vi) Continuity: for every f ∈ L2(µ), we have convergence in L2(µ),

lim
t↓0

Ptf = f .

I If (Xt)t≥0 has a Markov semigroup, then X is called a Feller process.
I X has additional regularity properties (e.g. it has a cádlág modification).
I If t 7→ Xt is continuous and Feller, then (Xt)t≥0 is a di�usion process.
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Defining the derivative

Let C0 be the set of continuous f : Rd → R vanishing at infinity.

Definition (Infinitesimal generator, Revuz and Yor (2013))
Let (Xt)t≥0 be a Feller process. Let P = (Pt)t≥0 be its Markov semigroup. A function f ∈ C0
belongs to the domain DA of the infinitesimal generator A if the limit exists in C0,

Af = lim
t↓0

Ptf − P0f
t

.

I It turns out that A and DA completely characterizes P.
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Interpretation of generator

Let (Xt)t≥0 be a Markov process with generator A and f ∈ DA. Taylor’s formula shows:

E
[
f (Xt+h)− f (Xt)

∣∣Xt
]

= Phf (Xt)− P0f (Xt) ≈ hAf (Xt).

I Therefore, Af (Xt) describes the infinitesimal expected evolution from f (Xt).

I If f is a test function, the evolution of the statistic E[f (Xt)] is described by A.

21 / 61



Properties of the generator

Proposition

∂tPt = APt = PtA.

Proof.
Fix t and consider the map s 7→ Ps. The semigroup property implies:

Pt+h − Pt
h

= Pt

(
Ph − P0

h

)
=

(
Ph − P0

h

)
Pt ,

where taking the limit h ↓ 0 shows ∂tPt = APt = PtA.

I Earlier: A characterizes P. Indeed, since ∂tPt = APt , we formally have Pt = etA.
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Properties of the generator (cont.)

Proposition
Let P be a Markov semigroup with invariant distribution µ. Let A be its generator. Then for
all f ∈ L1(µ),

E
X∼µ

[Af (X)] =

∫
Rd
Af (x)µ(dx) = 0.

Proof.
Since Af = ∂tPtf

∣∣
t=0, by interchanging limits and applying invariance, we have:

E
X∼µ

[Af (X)] =
∂

∂t

∫
Rd

Ptf (x)µ(dy)

∣∣∣∣
t=0

=
∂

∂t

∫
Rd

f (x)µ(dy) = 0.

I Indeed, if X0 ∼ µ is invariant, then E[f (Xt)] is a constant over all time.
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Kolmogorov backward equation

Theorem (Hille-Yosida, Brezis (2010))
Let f ∈ DA. Define the statistic u(t, x) = E[f (Xt) |X0 = x]. For all times, u(t, · ) ∈ DA.
Further, u is uniquely defined the partial di�erential equation:

∂u
∂t

= Au, t > 0, x ∈ Rd

u(0, x) = f (x); x ∈ Rd ,

where A is applied to the function x 7→ u(t, x).

I This PDE (Kolmogorov backward equation) describes the evolution of statistics u.

I C.f. Picard’s theorem for existence and uniqueness for the ODE: if F : Rd → Rd is
Lipschitz, then for all initial point x0 ∈ Rd , there exists unique x(t) satisfying:

dx(t)
dt

= F(x(t)) and x(0) = x0
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Dynkin’s formula

Corollary (Dynkin’s formula)

If f ∈ DA, then: Ptf (x) = f (x) + E
[∫ t

0
Af (Xx

s ) ds
]

.

Proof.
Integrating the Kolmogorov backward equation, we obtain:

Ptf (x) = f (x) +

∫ t

0
APsf (x) ds

= f (x) +

∫ t

0
PsAf (x) ds (Ps and A commute)

= f (x) +

∫ t

0
E[Af (Xx

s )] ds (definition of Ps)

Applying Fubini’s to interchange limits proves the result.
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Duality and the Kolmogorov forward equation

Let (X x
t )t≥0 be a Feller process where pt(x, · ) describes distribution of Xx

t .

(i) Let f ∈ DA. Then E[f (Xx
t )] = Ptf (x) =

∫
Rd

f (y) pt(x, dy).

(ii) Therefore, the Kolmogorov backward equation states:

∂tPtf (x) = APtf (x) = PtAf (x) =

∫
Rd
Af (y) pt(x, y) dy.

(iii) Apply duality to RHS to obtain ∂tPtf (x) =

∫
Rd

f (y)A∗pt(x, dy).

(iv) Combine (ii) and (iv), and interchange limits to obtain Fokker-Planck:

∂tpt(x, · ) = A∗pt(x, · ) (Kolmogorov forward equation)

which describes the evolution of the distribution of Xt .
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Focus: Itô di�usion

Let’s reduce the level of generality and apply our results to Itô di�usion:

Definition (Itô di�usion, Øksendal (2003))
Let (Bt)t≥0 be an m-dimensional Brownian motion. A (time-homogeneous) Itô di�usion
(Xt)t≥0 is a solution to the Itô stochastic di�erential equation

dXt = b(Xt)dt + σ(Xt)dBt ,

where b(x) ∈ Rn is the dri� coe�icient and σ(x) ∈ Rn×m (or sometimes 1
2σσ

>) is the
di�usion coe�icient. Furthermore, b( · ) and σ( · ) are Lipschitz continuous,2

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ K |x − y|; x, y ∈ Rn.

2Recall the Lipschitz condition ensures existence and uniqueness of solution.
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Example: deterministic flow

Let (xt)t≥0 be the solution to dxt = b(xt) dt and x0 = x.

I If f : Rn → R is di�erentiable, then by chain rule:

Af (x) = lim
t↓0

f (xt)− f (x)

t

=

(
dxt
dt

)>
∇f (x)

For deterministic flows, A is a first-order partial di�erential operator on C1(Rn;R),

Af (x) =

n∑
i=1

bi(x) · ∂if (x).
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Review: one-dimensional Itô’s formula

Recall that dBt can be thought of as an infinitesimal of order 1/2, with dB2t = dt.

I Taylor expansion of df (Xt) looks like:

df (Xt) = f (Xt + dXt)− f (Xt)

= f (Xt)dXt +
1
2
f ′′(Xt)dX 2

t + · · ·

= f ′(Xt)
{
b dt + σ dBt

}
+

1
2
σ2 f ′′(Xt) dB2t ,

where all higher-order terms have been discarded. Apply dB2t = dt to obtain:

df (Xt) =

{
b f ′ +

1
2
σ2 f ′′

}
dt + σf ′ dBt .
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One-dimensional generator

Let (X x
t )t≥0 be a one-dimensional Itô di�usion. Let f ∈ C2

0(R) (i.e. twice di�erentiable
with compact support). Apply Itô’s formula:

Ex [f (Xx
t )] = f (x) +

∫ t

0

{
b f ′ +

1
2
σ2 f ′′

}
ds + E

[∫ t

0
σ f ′ dBs

]
.

I Condition on f implies E
[∫ t

0
σ f ′ dBs

]
= 0.

I Fundamental theorem of calculus implies:

Af (x) = b(x) · ∂f (x) +
1
2
σ(x)2 ∂2f (x).

Thus, A is a second-order di�erential operator on C2
0(R;R).
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Generator of Itô di�usion

Theorem (Form of generator, Øksendal (2003))
Let Xt be the Itô di�usion dXt = b(Xt) dt + σ(Xt) dBt . If f ∈ C2

0(Rn), define the
second-order partial di�erential operator L:

Lf (x) =

n∑
i=1

bi(x) ∂if (x) +
1
2
∑
i,j

(
σσ>

)
ij(x) ∂ijf (x).

Then, C2
0(Rn) ⊂ DA and if for all f ∈ C2

0(Rn):

Af = Lf .

I We sometimes call L the Markov generator of (Xt)t≥0.

I Itô’s formula shows: f (X x
t ) = f (x) +

∫ t

0
Lf (X x

s ) ds +

∫ t

0
σ(Xx

s )>∇f (X x
s ) dBs.
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Example: Brownian motion

Let Xt solve dXt =
√
2dBt . Then the generator of Bt is:

Lf =

n∑
i=1

∂2f
∂x2i

,

when f ∈ C2
0(Rn). That is, L = ∆, where ∆ is the Laplace operator.

I If u(t, x) = Ptf (x), then u solves the heat equation:

∂tu = ∆u and u(0, x) = f (x).
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Adjoints

I Let 〈 · , · 〉 be the inner product in L2(dy), so that 〈φ, ψ〉 =

∫
Rn
φ(y)ψ(y) dy.

I Given a bounded linear operator T , the adjoint T∗ is defined:

〈Tφ, ψ〉 = 〈φ, T∗ψ〉.

I Let D be the di�erential operator. If Tφ(x) =

n∑
k=0

ak(x)Dkφ(x), then:

T∗ψ =
n∑

k=0

(−1)kDk (akψ) .
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Kolmogorov’s forward equation (or, the Fokker-Planck equation)
The evolution of a statistic u(t, x) = E[f (Xx

t )] from Kolmogorov backward equation:

Ptf (x) = f (x) +

∫ t

0
Au(s, x) ds = f (x) +

∫ t

0

∫
Rd

Lf (y) ps(x, dy) ds,

where ps(x, · ) describe the distribution of Xx
s . For short, let pxs = ps(x, · ).

I The Kolmogorov forward equation describes the dual—how does the probability
density evolve over time. Taking the time derivative:〈

f , ∂t pxt
〉

=
〈
Lf , pxt

〉
=
〈
f , L∗pxt

〉
; f ∈ C2

0 .

I Let D = 1
2σσ

> be the di�usion matrix. This implies:

∂pxt
∂t

=
∑
i,j

∂2

∂i∂j

(
Dijpxt

)
−

n∑
i=1

∂i
(
bi · pxt

)
(Fokker-Planck equation)
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Markov semigroups and generators: summary
I If (Xt)t≥0 is a di�usion process, it is characterized by its Markov semigroup (Pt)t≥0,

Ptf (x) = E[f (Xx
t )] =

∫
Rd

f (y) pt(x, dy).

I The generator A, seen as the derivative of t 7→ Pt , also characterizes (Pt)t≥0,

Af = lim
t↓0

Ptf − P0f
t

,

which computes E[f (X x
t )] via the Kolmogorov backward equation.

I If (Xt)t≥0 is Itô di�usion, then A has the form of the Markov generator L.

I If (Xt)t≥0 has an invariant distribution µ, then for all f ∈ DA:

E
X∼µ

[Af (X)] =

∫
Rd
Af (x)µ(dx) = 0.
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Interlude II: the Poisson equation and mean ergodic theorem3

3This is an informal version of Ma�ingly et al. (2010) mainly for intuition; see paper for rigor.
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Estimating the invariant measure

Consider the following Itô di�usion:

dXt = b(Xt) dt + σ(Xt) dBt ,

and assume that it has a unique stationary measure µ.

I Goal: estimate E
X∼µ

[f (X)] for wide array of test functions f .
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The Poisson equation

I Let A be the infinitesimal generator of the SDE.

I Let f : Rd → R be su�iciently smooth.

I Define f as the space average w.r.t. the invariant distribution µ,

f =

∫
Rd

f (x)µ(dx) = E
X∼µ

[f (X)].

I The Poisson equation is the following PDE:

Auf = f − f .

I Under certain conditions, a unique (up to a constant term) and smooth uf exists.
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Solution to the Poisson equation
The formal solution to the Poisson equation is uf (x) = −

∫ ∞
0

Pt(f − f )(x) dt.

Proof (informal).
Since µ is the stationary distribution, define the operator:

P∞g(x) =

∫
Rd

g(y)µ(dy) = E
X∼µ

[g(X)],

so that Pt converges to P∞ as t →∞. In particular, P∞(f − f ) = 0.

I By Dynkin’s formula, P∞(f − f ) = (f − f ) +

∫ ∞
0
APt(f − f ) dt.

I Substitute P∞(f − f ) = 0 and (f − f ) = Auf to obtain

0 = A
[
uf +

∫ ∞
0

Pt(f − f ) dt
]
.
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Solution to the Poisson equation (cont.)

uf (x) = −
∫ ∞
0

Pt(f − f )(x) dt

I Interpretation: uf (x) measures the net fluctuation over all time of Ptf from f .
I Note: Ptf converges to P∞f = f .
I Under certain assumptions, uf is bounded (essentially, the di�usion Xt remains in a

bounded region of the space).
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Mean ergodic theorem

Recall Itô’s formula:

uf (Xx
t ) = uf (x) +

∫ t

0
Auf (X x

s ) ds +

∫ t

0
σ(X x

s )>∇uf (Xs) dBs.

I Replace Auf = f − f and rearrange:

1
t

∫ t

0
f (Xx

s ) ds − f =
uf (Xx

t )− uf (x)

t
− 1

t

∫ t

0
σ>∇uf dBs.

I Assuming that uf , ‖σ‖, ‖∇uf ‖ are bounded, then Itô isometry implies:

E
[(

1
T

∫ T

0
f (Xt) dt − f

)2]
≤ K

T
.
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Mean ergodic theorem (cont.)

It follows that we can view
1
T

∫ T

0
f (Xt) dt as an estimator for µ(f ) = E

X∼µ
[f (X)].

I The time average of f (Xt) converges in L2 to the space average µ(f ) with respect to
the stationary distribution µ.

I The rate of convergence depends on the bounds on ‖∇uf ‖ where uf is solution to
the Poisson equation,

Auf = f − µ(f ).

The bounds on ‖∇uf ‖ are called Stein factors, hidden in the constant K .
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Interlude: connection to Stein’s method4

4This section follows Gorham et al. (2019).
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Stein’s method

Goal: bound distance between two distributions νt and µ, e.g. give non-asymptotic rates
of convergence. In particular, quantify how well Eνt approximates Eµ.

I Developed by Charles Stein to provide alternate proof of the central limit theorem.
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General framework

Let νt and µ be distributions on Rd . Let F be a family of test functions f : Rd → R.
Define the measure dF (νt , µ) by:

dF (νt , µ) = sup
f∈F

∣∣µ(f )− νt(f )
∣∣.

I dF is convergence determining if it is an integral probability metric (IPM) and
dF (νt , µ) converges to zero only if νt converges in distribution to µ.

I In general, it may be intractable to evaluate Eµ[f (Z)].
I Idea: it su�ices to replace each f with f − µ(f ), so µ(f ) = 0 for all f ∈ F .
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Stein’s method

1. Identify an operator T acting on functions g : Rd → Rd in G to mean-zero
functions under µ,

µ(T g) = 0 ∀g ∈ G.

2. Define the Stein discrepancy,

S(νt , T ,G) = sup
g∈G

∣∣νt(T g)
∣∣ = dT G(Qn, P),

where T G = {T g : g ∈ G}.
3. Prove that for each f ∈ F there exists some uf ∈ G solving the Stein equation,

T uf = f − µ(f ).

Thus, F ⊂ T G so that dF (νt , µ) ≤ dT G(νt , µ).

4. Prove upper bounds the Stein discrepancy so that S(νt , T ,G)→ 0.
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Stein’s method (cont.)

Summary: in order to show νt converges in distribution to µ,

I If F is convergence determining, we need to show dF (νt , µ)→ 0.

I Show (step 3) that if dT G(νt , µ) converges to zero, then so does dF (νt , µ).

I Show (step 4) that dT G(νt , µ) converges to zero.
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Stein’s method for di�usion processes
Recall: if (Xt)t≥0 is a Feller process with generator A and invariant measure µ, then:

µ(Au) = 0 ∀u ∈ DA.

It follows that we just need to be able to solve the Stein equation,

Auf = f − µ(f ),

which is the familiar Poisson equation. In our discussion of the mean ergodic theorem,

I νt is the distribution of X x
t ,

I we used Itô’s formula to bound E[f (Xt)]− µ(f ) using E[uf (Xt)] and ‖∇uf ‖,
I νt converges to µ, so we were able to show a rate:

1
T

∫ T

0
f (Xt) dt → µ(f ).
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Optimization using discretized di�usion5

5We now return to the main paper, Erdogdu et al. (2018).
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Recap: goal

Solve the unconstrained optimization problem: min
x∈Rd

f (x).

I Idea:
I Construct a di�usion process (Zt)t≥0 with stationary distribution p concentrated

around the minima of f , so that p(f ) ≈ min
x∈Rd

f (x).

I Show that the time-average quickly converges:

1
T

∫ T

0
f (Zt) dt → p(f ),

where the rate depends on the regularity (Stein factors) of uf solving Poisson equation:

Auf = f − p(f ).

I Show that discretized dynamics (Xn)
∞
n=0 behaves similarly to (Zt)t≥0.
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This paper: results

min
m∈[M]

E[f (Xm)]−min
x

f (x) ≤ 1
M

M∑
m=1

E[f (Xm)− p(f )]︸ ︷︷ ︸
integration error

+ p(f )−min
x

f (x)︸ ︷︷ ︸
expected suboptimality

.

I Provides bounds on integration error
I Rate controlled by Stein factors; they provide general bounds for Stein factors

I Provides bounds on suboptimality gap
I Gives examples of optimizing ‘heavy-tailed’ objectives with general di�usion

I Cases that fail with standard Langevin dynamics with constant di�usion coe�icients
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Constructing an invariant distribution

Let (Zt)t≥0 be Itô di�usion for the SDE: dZt = b(Zt) dt + σ(Zt) dBt .

Theorem (Invariant measure, Gorham et al. (2019))
A density p is an invariant measure of the di�usion (Zt)t≥0 if and only if:

b(x) =
1

2p(x)

〈
∇, p(x)

(
D(x) + C(x)

)〉
,

where D(x) = σ(x)σ(x)> is the covariance coe�icient, C(x) ∈ Rd×d is a di�erentiable
skew-symmetric stream coe�icient, and 〈∇,M〉 is a row-wise divergence operator.
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Example: Gibbs measure

Recall the Gibbs measure: pγ(x) ∝ exp
(
− γf (x)

)
.

I Set σ(x) =

√
2
γ
I and c(x) = 0.

I Solve for b(x). Note that D + C is diagonal. So,

b(x)i =
1

2p(x)
div
(
p(x)

(
D(x) + C(x)

)
i

)
=

1
2pγ(x)

·
(
2
γ

∂pγ(x)

∂xj

)
=

1
γpγ(x)

∂pγ(x)

∂xj
.

I This implies b(x) = −∇f (x) and dZt = −∇f (x) +

√
2
γ
dBt .
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Assumption I: existence and uniqueness of SDE

Again, we consider the SDE: dZt = b(Zt) dt + σ(Zt) dBt .

Assumption (Polynomial growth of coe�icients)
The dri� and di�usion coe�icients have growth bounded above:

‖b(x)‖2 + ‖σ(x)‖2 ≤ C(1 + ‖x‖2) and ‖D(x)‖op ≤ C′(1 + ‖x‖22).

I This ensures existence and uniqueness of the SDE.
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Assumption II: di�usion does not diverge

Assumption (Dissipativity)
There exists α, β > 0 such that:

A‖x‖22 ≤ −α‖x‖22 + β.

I This ensures the di�usion travels inward when far from the origin.
I Recall that the infinitesimal expected change in ‖Xt‖2 at time t is A‖x‖2.
I If Xt is large, then ‖Xt+h‖2 is expected to take a large step inward:

E[‖Xt+h‖2|Xt ] ≈ Xt − αh‖Xt‖2 + βh.

I Dissipativity relaxes the condition that f is strongly convex (c.f. mixture of Gaussians).
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Assumption III: rate of convergence bounded

Assumption (Finite Stein factors)
The function uf that solves the Poisson equation:

Auf = f − p(f )

Lipschitz and has higher order derivatives with polynomial growth,

‖∇iuf (x)‖op ≤ Ci(1 + ‖x‖n) i = 1, 2, 3, 4.
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Applications of assumption

Recall from our discussion on the mean ergodic theorem:

1
t

∫ t

0
f (Zs) ds − p(f ) =

uf (Zt)− uf (Z0)
t

− 1
t

∫ t

0
(σ>∇uf )(Zs) dBs.

I Dissipativity: ensures that
uf (Zt)− uf (Z0)

t
→ 0 as t →∞

I Stein factors + dissipativity: ensures that ‖(σ>∇uf )(Zs)‖ ≤ M , so that:

E
[(

1
T

∫ T

0
f (Zt) dt − p(f )

)2 ]
∼ M2Var(Bt)

t2
= O

(
1
t

)
.
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Discretization of di�usion

Given the SDE: dZt = b(Zt) dt + σ(Zt) dBt .

I The Euler discretization of (Zt)t≥0 corresponds to the process:

Xm+1 = Xm + ηb(Xm) +
√
ησ(Xm)Wm,

where 0 < η < 1 is the step size and Wm ∼ N (0, I) is Gaussian noise.

58 / 61



Integration error bound

Theorem (Integration error of discretization)
Let Assumptions I, II, III hold. Then:∣∣∣∣∣ 1M

M∑
m=1

E[f (Xm)]− p(f )

∣∣∣∣∣ = O
(

1
ηM

+ η

)
.

I The constants depend on the Stein factors and Lipschitz coe�icients.

I To reach ε-closeness, need O(ε−2) steps.
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Expected suboptimality bound

Theorem (Suboptimality gap)
Suppose p is the stationary density of a dissipative di�usion with global maximizer x∗. If p
is of the form pγ,θ ∝ exp

(
− γ(f (x)− f (x∗))θ

)
, and ∇f (x∗) = 0, then:

p(f )− f (x∗) = O
(
1
θ

d
γ

log
γ

d

)1/θ
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