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Optimization goal

Consider the unconstrained (non-convex) optimization problem:

min f(x).
x€R

» Sampling approach: sample from a distribution maximized at the minima of f.
e.g. the Gibbs measure with inverse temperature 7 > 0

py(x) o exp (—f (x)).
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The Langevin algorithm
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Gradient descent with noise

The Langevin algorithm is gradient descent on f with Gaussian noise:

20
Xmt1 = Xm — nVf(Xm) + ?Wm—&-lv

where Wm+1 ~ N(O, IdXd)~

» Output: at time M, return min_ f(X,,).
me[M)
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Analysis: Langevin algorithm as discretized diffusion

The Langevin update can be viewed as a discretization of the (overdamped) Langevin
diffusion for p,, which is the solution to this stochastic differential equation (SDE):

2
v

» This SDE has a limiting invariant distribution p,.
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Analysis: optimization error

If pis a distribution, denote p(f) =

~

min E[f(X,)] ~ min f(x <fZELf )~ p()] + p(f) — min f(x).

integration error expected suboptimality

» The integration error bounds the short-term non-stationarity and long-term
discretization bias.

» For the Gibbs measure p = p,, the suboptimality gap is controlled by the inverse
temperature y > 0.

ZIE [f(Z)]. The optimization error after M steps is:
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This paper: beyond the overdamped Langevin diffusion

Question: what about other distributions p besides the Gibbs measure such that

p(f) ~ min f(x)?

» This paper considers p that are the limiting invariant distributions of more general
diffusion processes:
dZt = b(Zt) dt + O'(Zt) dBt

T

» Here, the covariance coefficient o(x)o(x) " can be nonconstant over R¢

(this is constant for the overdamped Langevin diffusion; c.f. preconditioning).
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This paper: techniques

M
. . 1 .
o E[f (Xm)] — min f(x) < - > EIf(Xm) = p(f)] + p(f) — min f(x).
m=1
integration error expected suboptimality

» Bounds the integration error via Stein’s method.

» Bounds expected suboptimality for generalized Gibbs measures of the form:

pro(x) o< exp (= (f(x) = £(x)") .

where x* is a global maximizer with Vf(x*) = 0.

Note: this assumes knowledge of f(x*), which is often 0 in many settings. If f(x*) is
unknown, can carry out analysis just using an estimate.
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Motivation: techniques to bound integration error
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Goal: bounding the integration error

» Invariant measure: let p be the stationary distribution of a diffusion (Z;):>¢

» Discretization: let (X,,)%_, be an appropriate discretization with step size n

. 1
» Integration error: o %;ﬂE[f(Xm) —p(f)l

Theorem (Integration error, informal)

1
The integration error at time M is O (M + 77) .
Ui
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Broad strokes

» Let (Z)i>0 be the continuous-time diffusion.
The distribution of Z; converges to the stationary distribution p, so that:

lim E[f(Z) - p(f)] = 0.

t— 00

In fact, a quantitative mean ergodic theorem states:

[ a0 -of3)

which can be read as: ‘the time average converges to the space average.’

» The discretization using step size 77 leads to some additional bias:

w2 ElfC) ]| <0 (k).

me[M]
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Roadmap

1. Interlude I: Markov semigroups

2. Interlude II: the Poisson equation and mean ergodic theorem
3. Interlude IlI: Connection to Stein’s method
4

. Optimization using discretized diffusion
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Interlude I: Markov semigroups and generators'

'This section closely follows (Bakry et al., 2013).
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Markov process

Definition (Markov process)

Let (X;)1>0 be a stochastic process. Then, it is a (time-homogeneous) Markov process if
forallt > s, the law of X, given (Xy)o<u<s is equal to:

» the law of X; given X
» the law of X;_; given X.

Notation: we often write (X[);>0 to denote that the process is initially X, = x.

» Example: the solution (X})>¢ to the 1t6 SDE is Markov:

dXt = b(Xt) dt + O'(Xt) dBt and XQ = X.

14/61



Example: Brownian motion

Let (BY):>o be d-dimensional Brownian motion with By = x.

» Define the probability kernels for ¢t > 0,

1 x — y|?
pt(x7 y) - )d/Z exp <_||y’> )

(2mt 2t

and let po(x, - ) be the Dirac distribution at x, so that B} has density p;(x, - ).

» We can characterize the evolution of p;(x, - ) by defining the operator P; for t > 0,

Pif(x /f ) pe(x, dy),

for f bounded measurable map.
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The associated semigroup

Let (X;)r>0 be Markov. Define the operator P; on bounded measurable functions f by:
Pif (x) = E[f (X)X = «].

Read: P; maps f to the function describing the expected value of f after time t.
» The Markov property implies that P = (P;);>¢ is a semigroup:

Prisf (x) = P(Pof) (x).

That is, Psys = P; o Py and Py = Id.
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Properties of the semigroup

Let P = (P,);>0 be the semigroup for a Markov process (X;);>o on R% Let M be the set
of bounded measurable f : RY — R.

(i) Linearity: P; is a linear operator on M for all t > 0.

(i

) Initial condition: P, = Id.

(iii) Mass conservation: P;(1) = 1.

(iv) Positivity: if f > 0, then P,f > 0.
)

(v) Semigroup (Markov) property: P, = P, o P forall t,s > 0.

Question: can we define the derivative of the map ¢ — P;?
» Knowing evolution of P; implies a lot about the Markov process.

However, Markov processes are too general to define derivative—let’s impose a
continuity condition, which we can get at through P.
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Invariant measure

Definition (Invariant measure, Bakry et al. (2013))

LetP = (P;)1>o be the semigroup for a Markov process on R?. The Markov process has
invariant measure ;. on R? if for all t > 0,

/RdPtfdM:/Rdfdu.
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Markov semigroup

Definition (Markov semigroup, Bakry et al. (2013))

Let P = (P) >0 be a family of operators satisfying conditions (i-v) on Slide 17. Suppose it
has an invariant measure . Then P is a Markov semigroup if it further satisfies:

(vi) Continuity: for every f € L*(u), we have convergence in L*(11),

lim P,f = f.
ggtff

» If (X;);>0 has a Markov semigroup, then X is called a Feller process.

X has additional regularity properties (e.g. it has a cadlag modification).
If t — X, is continuous and Feller, then (X,),> is a diffusion process.
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Defining the derivative

Let C) be the set of continuous f : R? — R vanishing at infinity.

Definition (Infinitesimal generator, Revuz and Yor (2013))

Let (X;)1>0 be a Feller process. Let P = (P;);>o be its Markov semigroup. A function f € C,
belongs to the domain D 4 of the infinitesimal generator A if the limit exists in Cy,

Af = lim B = Rof Pof.
L0 t

» It turns out that A and D 4 completely characterizes P.
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Interpretation of generator

Let (X:)¢>0 be a Markov process with generator A and f € D 4. Taylor’s formula shows:

E[f(Xern) — f(X2) | Xe] = Puf (Xe) — Pof (Xi) = hAF(Xy).

» Therefore, Af(X;) describes the infinitesimal expected evolution from f(X;).
» If f is a test function, the evolution of the statistic E[f(X;)] is described by A.
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Properties of the generator

Proposition
8tPt :APt:PtA

Proof.
Fix t and consider the map s — P;. The semigroup property implies:

Poyp—P Pp—PF\ [(Ph—F
e en () = (M)

where taking the limit & | 0 shows 0,P; = AP, = P, A. ]

» Earlier: A characterizes P. Indeed, since 0,P; = AP;, we formally have P, = etA.
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Properties of the generator (cont.)

Proposition
Let P be a Markov semigroup with invariant distribution (1. Let A be its generator. Then for

all f € L'(p),
XNM / Af(x
Proof.
Since Af = atPtf‘tZO, by interchanging limits and applying invariance, we have:

f(x) p(dy) = 0. O
oI

E AF0) = 5 [ Al

X~pn

» Indeed, if X ~ p is invariant, then E[f(X})] is a constant over all time.
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Kolmogorov backward equation

Theorem (Hille-Yosida, Brezis (2010))
Let f € D 4. Define the statistic u(t,x) = E[f(X;) | Xo = x|. For all times, u(t, - ) € D 4.
Further, u is uniquely defined the partial differential equation:

%:Au, t>0,xecR?
ot

u0,x) = f(x);  xeR’
where A is applied to the function x — u(t, x).

» This PDE (Kolmogorov backward equation) describes the evolution of statistics u.

» C.f. Picard’s theorem for existence and uniqueness for the ODE: if F : R? — R% is
Lipschitz, then for all initial point x, € RY, there exists unique x(t) satisfying:
dx(t)
dt

=F(x(t)) and x(0)=x
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Dynkin’s formula

Corollary (Dynkin’s formula)
Iff € Dy, then: Pif(x)=f(x)+E [/0 Af(XT) ds}

Proof.
Integrating the Kolmogorov backward equation, we obtain:
pa)=s00+ [ apgor
= f(x) + / P Af(x) ds (Ps and A commute)
0
=f(x)+ /OtE[Af(sz)] ds (definition of Py)

Applying Fubini’s to interchange limits proves the result. O
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Duality and the Kolmogorov forward equation

Let (X]):>0 be a Feller process where p;(x, - ) describes distribution of X}".

) Let f € D4. Then E[f(X})] = P.f(x / f(y) pi(x,dy).

(ii) Therefore, the Kolmogorov backward equation states:

OiPif (x) = AP f(x) = PLAf (x /Af ) pe(x, y) dy.

(iii) Apply duality to RHS to obtain 0,P;f (x / f(y) A*pi(x, dy).

(iv) Combine (ii) and (iv), and interchange limits to obtain Fokker-Planck:
Ope(x, ) = A*pi(x, ) (Kolmogorov forward equation)
which describes the evolution of the distribution of X;.
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Focus: Itd diffusion

Let’s reduce the level of generality and apply our results to 1t6 diffusion:

Definition (I1t6 diffusion, @ksendal (2003))

Let (Bt)¢>0 be an m-dimensional Brownian motion. A (time-homogeneous) It6 diffusion
(Xt)e>0 is a solution to the 1t6 stochastic differential equation

dXt = b(Xt)dt + O'(X[)dBt,

where b(x) € R" is the drift coefficient and o (x) € R™™ (or sometimes o0 ") is the
diffusion coefficient. Furthermore, b(-) and o( - ) are Lipschitz continuous,?

b(x) = b(y)| + |o(x) —o(y)| <K|x—yl;  xyeR"

’Recall the Lipschitz condition ensures existence and uniqueness of solution.
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Example: deterministic flow

Let (x;)>0 be the solution to dx; = b(x;) dt and xp = x.
» If f: R" = Ris differentiable, then by chain rule:

Af(X) _ hmf(xt) _f(x)

L0 t
dxt !
=|—] V
(%) i
For deterministic flows, A is a first-order partial differential operator on C*(R™; R),

Af(x) = 3 bi(x) - 0f (x).
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Review: one-dimensional 1t6’s formula

Recall that dB; can be thought of as an infinitesimal of order 1/2, with dB? = dt.
» Taylor expansion of df (X;) looks like:

df (Xe) = f(X; + dX;) — f(X2)
= f(X)dX; + é F(X)dX? + - - -

1
= f(X,){bdt + o dB;} + =0? f"(X,) dB?,
2 t

where all higher-order terms have been discarded. Apply dB? = dt to obtain:

df (X;) = {bf’ + ;ozf”} dt + of' dB,.
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One-dimensional generator

Let (X{)+>0 be a one-dimensional 1té diffusion. Let f € C2(R) (i.e. twice differentiable
with compact support). Apply I1t6’s formula:

E*[f(X)] = f(x) + /Ot {bf’+ ;azf”} ds+E Uotaf’ st} .

t
» Condition on f implies E [/ of st] =0.
0

» Fundamental theorem of calculus implies:

Af(x) = b(x) - O (x) + () O (x)

Thus, A is a second-order differential operator on C3(RR; R).
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Generator of 1t6 diffusion

Theorem (Form of generator, @ksendal (2003))

Let X; be the It6 diffusion dX; = b(X;) dt + o(X;) dB. If f € C5(R"), define the
second-order partial differential operator L:

LF(x) = Y bix) D (x) + % S (007), () 04 (x).

I,j
Then, C2(R") C D 4 and if for all f € C2(R™):

Af = Lf.

» We sometimes call L the Markov generator of (X;):>o.

» 1t6’s formula shows: (X)) = f(x) + /th(X;’C) ds + /tJ(Xf)TVf(X;") dBs.

31/61



Example: Brownian motion

Let X; solve dX; = v/2dB,. Then the generator of B, is:

2
1f = ng;

when f € C2(R"). That is, L = A, where A is the Laplace operator.
» If u(t,x) = P,f(x), then u solves the heat equation:

Owu=Au and u(0,x)= f(x).
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Adjoints

» Let (-, -) be the inner product in L?(dy), so that (¢, 1)) = /]R" o(y)(y) dy.

» Given a bounded linear operator T, the adjoint T* is defined:

(T, ¥) = (&, T"Y).

» Let D be the differential operator. If T¢(x) = Z ar(x)D*¢(x), then:
k=0

T = Z 1)*D* (ar)) .
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Kolmogorov’s forward equation (or, the Fokker-Planck equation)

The evolution of a statistic u(t, x) = E[f(X})] from Kolmogorov backward equation:

Pf(x / Aus, %) (x)—i—/ot/Rde(y)ps(x, dy) ds

where ps(x, - ) describe the distribution of X7. For short, let p¥ = ps(x, -).

» The Kolmogorov forward equation describes the dual—how does the probability
density evolve over time. Taking the time derivative:

(f.0:pF) = (Lf.pf) = (f.L*pf);  feC.

> LetD = faa be the diffusion matrix. This implies:

%P; - Djpr) Za (i - p}) (Fokker-Planck equation)
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Markov semigroups and generators: summary

» If (X;):>0 is a diffusion process, it is characterized by its Markov semigroup (P;)>o,

PF) = O] = [ 100 ey,
» The generator A, seen as the derivative of t — Py, also characterizes (P;);>,

Pif — P,
Af = lim M7
t}o t
which computes E[f(X})] via the Kolmogorov backward equation.
» If (X;)>0 is Ito diffusion, then A has the form of the Markov generator L.
» If (X;):>0 has an invariant distribution (i, then for all f € D 4:

MﬁmbéﬂWMm=0

X~
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Interlude IlI: the Poisson equation and mean ergodic theorem?

3This is an informal version of Mattingly et al. (2010) mainly for intuition; see paper for rigor.
36/61



Estimating the invariant measure

Consider the following It6 diffusion:
dXt = b(Xt) dt + O'(X[) dB[7

and assume that it has a unique stationary measure .

» Goal: estimate XE [f(X)] for wide array of test functions f.
~p
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The Poisson equation

» Let A be the infinitesimal generator of the SDE.
» Let f: R? — R be sufficiently smooth.

» Define f as the space average w.r.t. the invariant distribution g,

f= [ futa) = E (X))

X~p

» The Poisson equation is the following PDE:

Auf :f_f_

Under certain conditions, a unique (up to a constant term) and smooth uy exists.
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Solution to the Poisson equation

oo
The formal solution to the Poisson equation is uf(x) = / P(f — f)(x) dt.
0

Proof (informal).

Since v is the stationary distribution, define the operator:

X~p

Pu(®) = [ g) ) = B [5(X)]

so that P, converges to Py, as t — 0o. In particular, Po (f — f) = 0.
oo
» By Dynkin’s formula, Poo (f — f) = (f — f) +/ AP(f — f) dt.
0
» Substitute Poo(f — f) = 0 and (f — f) = Aus to obtain

0:A|:Uf+/ooopt(f—f)dt:|. O
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Solution to the Poisson equation (cont.)

uix) = - | TR - F)(x) de

0

» Interpretation: us(x) measures the net fluctuation over all time of Pf from f.

Note: P;f converges to Po.f = f.
Under certain assumptions, u; is bounded (essentially, the diffusion X; remains in a
bounded region of the space).
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Mean ergodic theorem

Recall 1t6’s formula:

up(X)) = ur /Auf XX) ds+/ o(XX) " Vup(X;) dBs.

» Replace Aus = f — f and rearrange:

/fxx )ds— f —f()_uf()—l/taTVudes.

t t Jo

Assuming that uy, [|o||, || Vus|| are bounded, then It6 isometry implies:

(s [a-7)) <5
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Mean ergodic theorem (cont.)

1 /T
It follows that we can view 7 / f(X}) dt as an estimator for p(f) = XE [f(X)].
0 ~H

» The time average of f(X;) converges in L? to the space average j(f) with respect to
the stationary distribution p.

» The rate of convergence depends on the bounds on || Vur|| where us is solution to
the Poisson equation,

Aug = f — p(f).

The bounds on || Vug|| are called Stein factors, hidden in the constant K.

42/61



Interlude: connection to Stein’s method*

“This section follows Gorham et al. (2019).
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Stein’s method

Goal: bound distance between two distributions v; and p, e.g. give non-asymptotic rates
of convergence. In particular, quantify how well IE,, approximates E,,.

» Developed by Charles Stein to provide alternate proof of the central limit theorem.
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General framework

Let v; and p be distributions on R¥. Let F be a family of test functions f : RY — R.
Define the measure dr (v, 1) by:

dr(ve, 1) = sup |u(f) — vi(f)].
fer

» dr is convergence determining if it is an integral probability metric (IPM) and
dr (v, 1) converges to zero only if v; converges in distribution to p.
» In general, it may be intractable to evaluate E,[f(Z)].
Idea: it suffices to replace each f with f — u(f), so u(f) = 0 forall f € F.
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Stein’s method

1. Identify an operator 7 acting on functions g : R* — R¢ in G to mean-zero
functions under p,

n(Tg)=0 Vgeg.
2. Define the Stein discrepancy,

S, T,G) = sup ’Vt(Tg” = drg(Qn, P),
g€eg

where TG ={Tg: g€ G}
3. Prove that for each f* € F there exists some us € G solving the Stein equation,
Tur = f — u(f).

Thus, F C TG so that dr (v, ) < dyg(ve, ).
4. Prove upper bounds the Stein discrepancy so that S(v;, 7,G) — 0.
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Stein’s method (cont.)

Summary: in order to show v, converges in distribution to p,
» If F is convergence determining, we need to show dr (v, 1) — 0.
» Show (step 3) that if drg(vt, i) converges to zero, then so does dr(vy, 11).
» Show (step 4) that dyg (v, i) converges to zero.
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Stein’s method for diffusion processes

Recall: if (X;):>¢ is a Feller process with generator A and invariant measure y, then:
w(Au) =0 YueDy.
It follows that we just need to be able to solve the Stein equation,
Aup = f — p(f),

which is the familiar Poisson equation. In our discussion of the mean ergodic theorem,
» v, is the distribution of X,
» we used It6’s formula to bound E[f (X;)] — pu(f) using E[ur(X;)] and || Vug||,

» 1, converges to i, so we were able to show a rate:
1 [T
1| e up)
0
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Optimization using discretized diffusion’

>We now return to the main paper, Erdogdu et al. (2018).
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Recap: goal

Solve the unconstrained optimization problem:  min f(x).
x€R

» Idea:

Construct a diffusion process (Z;)>o with stationary distribution p concentrated
around the minima of f, so that p(f) ~ mindf(x).
x€R

Show that the time-average quickly converges:

1 /T
1| r@as o,
0
where the rate depends on the regularity (Stein factors) of uy solving Poisson equation:

A = f — p(f).

Show that discretized dynamics (X,)52, behaves similarly to (Z;);>o.
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This paper: results

M
. . 1 .
Jmin ELf(Xn)] = min f(x) < 37 > EIf(Xm) = p(f)] + p(f) — min f(x).
m=1
integration error expected suboptimality

» Provides bounds on integration error
Rate controlled by Stein factors; they provide general bounds for Stein factors

» Provides bounds on suboptimality gap

» Gives examples of optimizing ‘heavy-tailed’ objectives with general diffusion
Cases that fail with standard Langevin dynamics with constant diffusion coefficients
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Constructing an invariant distribution

Let (Z;)¢>0 be Itd diffusion for the SDE:  dZ; = b(Z;) dt + o(Z;) dBy.

Theorem (Invariant measure, Gorham et al. (2019))
A density p is an invariant measure of the diffusion (Z;)>¢ if and only if:

B 1
— 2p(x)

where D(x) = o(x)o(x) " is the covariance coefficient, C(x) € R?*? is a differentiable
skew-symmetric stream coefficient, and (V,M) is a row-wise divergence operator.

b(x) (V.p(x)(D(x) + C(x))) ,
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Example: Gibbs measure

Recall the Gibbs measure:  p,(x) o exp ( — 7f(x)).

2
» Seto(x) = \/>I and ¢(x) = 0.
v

» Solve for b(x). Note that D + C is diagonal. So,
1

"=

div(p(x) (D(x) + C(x)),)

- 2py(x) v Ox; Ypy(x)  Ox;

» This implies b(x) = —Vf(x) and dZ; = —Vf(x) + \/3dBt.

1 _(zamx))_ L opy(x)
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Assumption I: existence and uniqueness of SDE

Again, we consider the SDE:  dZ, = b(Z;) dt + o(Z;) dB,.

Assumption (Polynomial growth of coefficients)
The drift and diffusion coefficients have growth bounded above:

16G)ll2 + o ()]l < C(1+ [|x]l2)  and [ID(x)[lop < C'(1+ [|x]3)-

» This ensures existence and uniqueness of the SDE.
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Assumption Il: diffusion does not diverge

Assumption (Dissipativity)
There exists o, 5 > 0 such that:

Allxllz < —ellx|l; + 8.

» This ensures the diffusion travels inward when far from the origin.

Recall that the infinitesimal expected change in ||X;||* at time ¢ is A x||*.
If X, is large, then || X,1||* is expected to take a large step inward:

E[[| X4 1lIP1X:] = X; — aeh]| X,]|* + Bh.

Dissipativity relaxes the condition that f is strongly convex (c.f. mixture of Gaussians).
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Assumption Ill: rate of convergence bounded

Assumption (Finite Stein factors)

The function uy that solves the Poisson equation:
Aup = f = p(f)

Lipschitz and has higher order derivatives with polynomial growth,

IV ur (x)lop < Ci1 + [Ix]") i =1,2,3,4.
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Applications of assumption

Recall from our discussion on the mean ergodic theorem:

uf(Zt) — uf(Zo> B 1

. t/o (UTVuf)(ZS) dBs.

¢ |z as—pin -

Uf(Zt) — Uf(Zo)
t

» Dissipativity: ensures that —0ast— oo

» Stein factors + dissipativity: ensures that ||(0' Vug)(Z)| < M, so that:

(e | -8 o)
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Discretization of diffusion

Given the SDE: dZt = b(Zt) dt + O'(Zt) dBt

» The Euler discretization of (Z;);>¢ corresponds to the process:
X1 = Xm + nb(Xm) + /10 (Xin) Wi,

where 0 < 1 < 1 is the step size and W, ~ N (0, 1) is Gaussian noise.
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Integration error bound

Theorem (Integration error of discretization)
Let Assumptions I, 11, 11l hold. Then:

S Bl () —p(f)' —o(i+n)

m=1

» The constants depend on the Stein factors and Lipschitz coefficients.

» To reach e-closeness, need O(s~?%) steps.
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Expected suboptimality bound

Theorem (Suboptimality gap)

Suppose p is the stationary density of a dissipative diffusion with global maximizer x*. If p
is of the form p, g o< exp (— v(f(x) — f(x*))?), and Vf(x*) = 0, then:

) - £x7) = 0 (5 1o j,)w
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