Global non-convex optimization with discretized diffusions

Murat Erdogdu, Lester Mackey, Ohad Shamir (NeurIPS 2018)

Geelon So, agso@eng.ucsd.edu Sampling/Optimization Reading Group — April 14, 2021

Optimization goal

Consider the unconstrained (non-convex) optimization problem:

 $\min_{x\in\mathbb{R}^d}f(x).$

Sampling approach: sample from a distribution maximized at the minima of *f*.
 e.g. the Gibbs measure with inverse temperature γ > 0

 $p_{\gamma}(x) \propto \exp\left(-\gamma f(x)\right).$

The Langevin algorithm

Gradient descent with noise

The **Langevin algorithm** is gradient descent on f with Gaussian noise:

$$X_{m+1} = X_m - \eta \nabla f(X_m) + \sqrt{\frac{2\sigma}{\eta}} W_{m+1},$$

where $W_{m+1} \sim \mathcal{N}(0, I_{d \times d})$.

• **Output:** at time *M*, return $\min_{m \in [M]} f(X_m)$.

Analysis: Langevin algorithm as discretized diffusion

The Langevin update can be viewed as a **discretization** of the (overdamped) Langevin diffusion for p_{γ} , which is the solution to this stochastic differential equation (SDE):

$$dZ_t = -
abla f(Z_t) \, dt + \sqrt{rac{2}{\gamma}} \, dB_t \quad ext{with} \quad Z_0 = X_0.$$

▶ This SDE has a limiting invariant distribution p_{γ} .

Analysis: optimization error

If p is a distribution, denote $p(f) = \underset{Z \sim p}{\mathbb{E}}[f(Z)]$. The optimization error after M steps is:

$$\min_{m \in [M]} \mathbb{E}[f(X_m)] - \min_{x} f(x) \leq \underbrace{\frac{1}{M} \sum_{m=1}^{M} \mathbb{E}[f(X_m) - p(f)]}_{\text{integration error}} + \underbrace{p(f) - \min_{x} f(x)}_{\text{expected suboptimality}}.$$

- The integration error bounds the short-term non-stationarity and long-term discretization bias.
- For the Gibbs measure $p = p_{\gamma}$, the suboptimality gap is controlled by the inverse temperature $\gamma > 0$.

This paper: beyond the overdamped Langevin diffusion

Question: what about other distributions p besides the Gibbs measure such that

 $p(f) \approx \min_{x} f(x)?$

► This paper considers *p* that are the limiting invariant distributions of more general diffusion processes:

$$dZ_t = b(Z_t) dt + \sigma(Z_t) dB_t.$$

Here, the covariance coefficient σ(x)σ(x)[⊤] can be nonconstant over ℝ^d (this is constant for the overdamped Langevin diffusion; c.f. preconditioning).

This paper: techniques

$$\min_{m \in [M]} \mathbb{E}[f(X_m)] - \min_{x} f(x) \leq \underbrace{\frac{1}{M} \sum_{m=1}^{M} \mathbb{E}[f(X_m) - p(f)]}_{\text{integration error}} + \underbrace{p(f) - \min_{x} f(x)}_{\text{expected suboptimality}}.$$

- Bounds the integration error via **Stein's method**.
- Bounds expected suboptimality for generalized Gibbs measures of the form:

$$p_{\gamma,\theta}(x) \propto \exp\left(-\gamma (f(x) - f(x^*))^{\theta}\right),$$

where x^* is a global maximizer with $\nabla f(x^*) = 0$.

Note: this assumes knowledge of $f(x^*)$, which is often 0 in many settings. If $f(x^*)$ is unknown, can carry out analysis just using an estimate.

Motivation: techniques to bound integration error

Goal: bounding the integration error

▶ **Invariant measure:** let *p* be the stationary distribution of a diffusion $(Z_t)_{t \ge 0}$

Discretization: let $(X_m)_{m=0}^{\infty}$ be an appropriate discretization with step size η

▶ Integration error:
$$\frac{1}{M} \sum_{m \in [M]} \mathbb{E}[f(X_m) - p(f)]$$

Theorem (Integration error, informal)

The integration error at time M is O(

$$\left(\frac{1}{\eta M}+\eta\right).$$

Broad strokes

• Let $(Z_t)_{t\geq 0}$ be the continuous-time diffusion.

> The distribution of Z_t converges to the stationary distribution p, so that:

 $\lim_{t\to\infty} \mathbb{E}[f(Z_t) - p(f)] = 0.$

> In fact, a quantitative **mean ergodic theorem** states:

$$\mathbb{E}\left[\left(\frac{1}{T}\int_0^T f(Z_t) dt - p(f)\right)^2\right] = O\left(\frac{1}{T}\right),$$

which can be read as: 'the time average converges to the space average.'
The discretization using step size η leads to some additional bias:

$$\left|\frac{1}{M}\sum_{m\in[M]}\mathbb{E}[f(X_m)-p(f)]\right| \le O\left(\frac{1}{\eta M}+\eta\right).$$

Roadmap

- 1. Interlude I: Markov semigroups
- 2. Interlude II: the Poisson equation and mean ergodic theorem
- 3. Interlude III: Connection to Stein's method
- 4. Optimization using discretized diffusion

Interlude I: Markov semigroups and generators¹

¹This section closely follows (Bakry et al., 2013).

Markov process

Definition (Markov process)

Let $(X_t)_{t\geq 0}$ be a stochastic process. Then, it is a (time-homogeneous) **Markov process** if for all t > s, the law of X_t given $(X_u)_{0\leq u\leq s}$ is equal to:

- \blacktriangleright the law of X_t given X_s
- the law of X_{t-s} given X_0 .

Notation: we often write $(X_t^x)_{t\geq 0}$ to denote that the process is initially $X_0 = x$.

► Example: the solution $(X_t^x)_{t\geq 0}$ to the Itô SDE is Markov:

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t$$
 and $X_0 = x$.

Example: Brownian motion

Let $(B_t^x)_{t\geq 0}$ be *d*-dimensional **Brownian motion** with $B_0 = x$.

• Define the probability kernels for t > 0,

$$p_t(x, y) = \frac{1}{(2\pi t)^{d/2}} \exp\left(-\frac{\|x-y\|^2}{2t}\right),$$

and let $p_0(x, \cdot)$ be the Dirac distribution at x, so that B_t^x has density $p_t(x, \cdot)$. • We can characterize the evolution of $p_t(x, \cdot)$ by defining the operator P_t for $t \ge 0$,

$$P_t f(x) = \int_{\mathbb{R}^d} f(y) \, p_t(x, dy),$$

for f bounded measurable map.

The associated semigroup

Let $(X_t)_{t\geq 0}$ be Markov. Define the operator P_t on bounded measurable functions f by:

$$P_t f(x) = E[f(X_t)|X_0 = x].$$

Read: P_t maps f to the function describing the expected value of f after time t.
► The Markov property implies that P = (P_t)_{t≥0} is a semigroup:

$$P_{t+s}f(x) = P_t(P_sf)(x).$$

That is, $P_{t+s} = P_t \circ P_s$ and $P_0 = \text{Id}$.

Properties of the semigroup

Let $\mathbf{P} = (P_t)_{t \ge 0}$ be the semigroup for a Markov process $(X_t)_{t \ge 0}$ on \mathbb{R}^d . Let \mathcal{M} be the set of bounded measurable $f : \mathbb{R}^d \to \mathbb{R}$.

- (i) **Linearity**: P_t is a linear operator on \mathcal{M} for all $t \ge 0$.
- (ii) Initial condition: $P_0 = \text{Id.}$
- (iii) Mass conservation: $P_t(1) = 1$.
- (iv) **Positivity:** if $f \ge 0$, then $P_t f \ge 0$.
- (v) Semigroup (Markov) property: $P_{t+s} = P_t \circ P_s$ for all $t, s \ge 0$.

Question: can we define the derivative of the map $t \mapsto P_t$?

- Knowing evolution of P_t implies a lot about the Markov process.
 - ► However, Markov processes are too general to define derivative—let's impose a continuity condition, which we can get at through **P**.

Definition (Invariant measure, Bakry et al. (2013))

Let $\mathbf{P} = (P_t)_{t \ge 0}$ be the semigroup for a Markov process on \mathbb{R}^d . The Markov process has **invariant measure** μ on \mathbb{R}^d if for all $t \ge 0$,

$$\int_{\mathbb{R}^d} P_t f \, d\mu = \int_{\mathbb{R}^d} f \, d\mu$$

Markov semigroup

Definition (Markov semigroup, Bakry et al. (2013))

Let $\mathbf{P} = (P_t)_{t \ge 0}$ be a family of operators satisfying conditions (*i*-*v*) on Slide 17. Suppose it has an invariant measure μ . Then \mathbf{P} is a **Markov semigroup** if it further satisfies: (vi) **Continuity:** for every $f \in L^2(\mu)$, we have convergence in $L^2(\mu)$.

$$\lim_{t\downarrow 0} P_t f = f.$$

If (X_t)_{t≥0} has a Markov semigroup, then X is called a Feller process.
 X has additional regularity properties (e.g. it has a *cádlág* modification).
 If t → X_t is continuous and Feller, then (X_t)_{t≥0} is a diffusion process.

Defining the derivative

Let C_0 be the set of continuous $f : \mathbb{R}^d \to \mathbb{R}$ vanishing at infinity.

Definition (Infinitesimal generator, Revuz and Yor (2013))

Let $(X_t)_{t\geq 0}$ be a Feller process. Let $\mathbf{P} = (P_t)_{t\geq 0}$ be its Markov semigroup. A function $f \in C_0$ belongs to the domain $\mathcal{D}_{\mathcal{A}}$ of the **infinitesimal generator** \mathcal{A} if the limit exists in C_0 ,

$$\mathcal{A}f = \lim_{t\downarrow 0} \frac{P_t f - P_0 f}{t}.$$

▶ It turns out that A and D_A completely characterizes **P**.

Interpretation of generator

Let $(X_t)_{t\geq 0}$ be a Markov process with generator \mathcal{A} and $f \in \mathcal{D}_{\mathcal{A}}$. Taylor's formula shows: $E[f(X_{t+h}) - f(X_t) | X_t] = P_h f(X_t) - P_0 f(X_t) \approx h \mathcal{A} f(X_t).$

Therefore, Af(Xt) describes the *infinitesimal expected evolution* from f(Xt).
 If f is a test function, the evolution of the statistic E[f(Xt)] is described by A.

Properties of the generator

Proposition

$$\partial_t P_t = \mathcal{A} P_t = P_t \mathcal{A}.$$

Proof.

Fix *t* and consider the map $s \mapsto P_s$. The semigroup property implies:

$$\frac{P_{t+h} - P_t}{h} = P_t \left(\frac{P_h - P_0}{h}\right) = \left(\frac{P_h - P_0}{h}\right) P_t,$$

where taking the limit $h \downarrow 0$ shows $\partial_t P_t = \mathcal{A} P_t = P_t \mathcal{A}$.

► Earlier: \mathcal{A} characterizes **P**. Indeed, since $\partial_t P_t = \mathcal{A} P_t$, we formally have $P_t = e^{t\mathcal{A}}$.

Properties of the generator (cont.)

Proposition

Let **P** be a Markov semigroup with invariant distribution μ . Let \mathcal{A} be its generator. Then for all $f \in L^1(\mu)$,

$$\mathop{\mathbb{E}}_{X\sim\mu}[\mathcal{A}f(X)] = \int_{\mathbb{R}^d} \mathcal{A}f(x)\,\mu(dx) = 0.$$

Proof.

Since $\mathcal{A}f = \partial_t P_t f \big|_{t=0}$, by interchanging limits and applying invariance, we have:

$$\mathbb{E}_{X \sim \mu}[\mathcal{A}f(X)] = \frac{\partial}{\partial t} \int_{\mathbb{R}^d} P_t f(x) \, \mu(dy) \, \bigg|_{t=0} = \frac{\partial}{\partial t} \int_{\mathbb{R}^d} f(x) \, \mu(dy) = 0.$$

▶ Indeed, if $X_0 \sim \mu$ is invariant, then $\mathbb{E}[f(X_t)]$ is a constant over all time.

Kolmogorov backward equation

Theorem (Hille-Yosida, Brezis (2010))

Let $f \in D_A$. Define the statistic $u(t, x) = E[f(X_t) | X_0 = x]$. For all times, $u(t, \cdot) \in D_A$. Further, u is uniquely defined the partial differential equation:

$$egin{aligned} &rac{\partial u}{\partial t}=\mathcal{A}u, \qquad t>0, x\in \mathbb{R}^d, \ &u(0,x)=f(x); \qquad x\in \mathbb{R}^d, \end{aligned}$$

where \mathcal{A} is applied to the function $x \mapsto u(t, x)$.

- ▶ This PDE (Kolmogorov backward equation) describes the evolution of statistics *u*.
- ▶ C.f. Picard's theorem for existence and uniqueness for the ODE: if $F : \mathbb{R}^d \to \mathbb{R}^d$ is Lipschitz, then for all initial point $x_0 \in \mathbb{R}^d$, there exists unique x(t) satisfying:

$$\frac{dx(t)}{dt} = F(x(t)) \quad \text{and} \quad x(0) = x_0$$

Dynkin's formula

Corollary (Dynkin's formula) If $f \in \mathcal{D}_A$, then: $P_t f(x) = f(x) + E\left[\int_0^t \mathcal{A}f(X_s^x) ds\right]$.

Proof.

Integrating the Kolmogorov backward equation, we obtain:

$$P_t f(x) = f(x) + \int_0^t \mathcal{A} P_s f(x) \, ds$$

= $f(x) + \int_0^t P_s \mathcal{A} f(x) \, ds$ (P_s and \mathcal{A} commute)
= $f(x) + \int_0^t E[\mathcal{A} f(X_s^x)] \, ds$ (definition of P_s)

Applying Fubini's to interchange limits proves the result.

Duality and the Kolmogorov forward equation

Let $(X_t^x)_{t\geq 0}$ be a Feller process where $p_t(x, \cdot)$ describes distribution of X_t^x .

(i) Let
$$f \in \mathcal{D}_{\mathcal{A}}$$
. Then $E[f(X_t^x)] = P_t f(x) = \int_{\mathbb{R}^d} f(y) p_t(x, dy)$.

(ii) Therefore, the Kolmogorov backward equation states:

$$\partial_t P_t f(x) = \mathcal{A} P_t f(x) = P_t \mathcal{A} f(x) = \int_{\mathbb{R}^d} \mathcal{A} f(y) p_t(x, y) \, dy.$$

(iii) Apply duality to RHS to obtain $\partial_t P_t f(x) = \int_{\mathbb{R}^d} f(y) \mathcal{A}^* p_t(x, dy).$

(iv) Combine (ii) and (iv), and interchange limits to obtain Fokker-Planck:

 $\partial_t p_t(x, \cdot) = \mathcal{A}^* p_t(x, \cdot)$ (Kolmogorov forward equation)

which describes the evolution of the distribution of X_t .

Focus: Itô diffusion

Let's reduce the level of generality and apply our results to Itô diffusion:

Definition (Itô diffusion, Øksendal (2003))

Let $(B_t)_{t\geq 0}$ be an *m*-dimensional Brownian motion. A (time-homogeneous) **Itô diffusion** $(X_t)_{t\geq 0}$ is a solution to the Itô stochastic differential equation

 $dX_t = b(X_t)dt + \sigma(X_t)dB_t,$

where $b(x) \in \mathbb{R}^n$ is the **drift coefficient** and $\sigma(x) \in \mathbb{R}^{n \times m}$ (or sometimes $\frac{1}{2}\sigma\sigma^{\top}$) is the **diffusion coefficient**. Furthermore, $b(\cdot)$ and $\sigma(\cdot)$ are Lipschitz continuous,²

$$|b(x) - b(y)| + |\sigma(x) - \sigma(y)| \le K|x - y|; \qquad x, y \in \mathbb{R}^n.$$

²Recall the Lipschitz condition ensures existence and uniqueness of solution.

Example: deterministic flow

Let $(x_t)_{t\geq 0}$ be the solution to $dx_t = b(x_t) dt$ and $x_0 = x$.

▶ If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable, then by chain rule:

$$\mathcal{A}f(x) = \lim_{t \downarrow 0} \frac{f(x_t) - f(x)}{t}$$
$$= \left(\frac{dx_t}{dt}\right)^\top \nabla f(x)$$

For deterministic flows, \mathcal{A} is a first-order partial differential operator on $C^1(\mathbb{R}^n;\mathbb{R})$,

$$\mathcal{A}f(x) = \sum_{i=1}^{n} b_i(x) \cdot \partial_i f(x).$$

Review: one-dimensional Itô's formula

Recall that dB_t can be thought of as an infinitesimal of order 1/2, with $dB_t^2 = dt$. Taylor expansion of $df(X_t)$ looks like:

$$df(X_t) = f(X_t + dX_t) - f(X_t) = f(X_t) dX_t + \frac{1}{2} f''(X_t) dX_t^2 + \cdots = f'(X_t) \{ b \, dt + \sigma \, dB_t \} + \frac{1}{2} \sigma^2 f''(X_t) \, dB_t^2$$

where all higher-order terms have been discarded. Apply $dB_t^2 = dt$ to obtain:

$$df(X_t) = \left\{ bf' + \frac{1}{2}\sigma^2 f'' \right\} dt + \sigma f' dB_t.$$

One-dimensional generator

Let $(X_t^x)_{t\geq 0}$ be a one-dimensional Itô diffusion. Let $f \in C_0^2(\mathbb{R})$ (i.e. twice differentiable with compact support). Apply Itô's formula:

$$E^{x}[f(X_{t}^{x})] = f(x) + \int_{0}^{t} \left\{ bf' + \frac{1}{2}\sigma^{2}f'' \right\} ds + E\left[\int_{0}^{t} \sigma f' dB_{s} \right].$$

• Condition on f implies
$$E\left[\int_0^t \sigma f' \, dB_s\right] = 0.$$

► Fundamental theorem of calculus implies:

$$\mathcal{A}f(x) = b(x) \cdot \partial f(x) + \frac{1}{2}\sigma(x)^2 \,\partial^2 f(x).$$

Thus, \mathcal{A} is a second-order differential operator on $C_0^2(\mathbb{R};\mathbb{R})$.

Generator of Itô diffusion

Theorem (Form of generator, Øksendal (2003))

Let X_t be the Itô diffusion $dX_t = b(X_t) dt + \sigma(X_t) dB_t$. If $f \in C_0^2(\mathbb{R}^n)$, define the second-order partial differential operator L:

$$\mathcal{L}f(x) = \sum_{i=1}^{n} b_i(x) \,\partial_i f(x) + \frac{1}{2} \sum_{i,j} \left(\sigma \sigma^{\top}\right)_{ij}(x) \,\partial_{ij} f(x).$$

Then, $C_0^2(\mathbb{R}^n) \subset \mathcal{D}_A$ and if for all $f \in C_0^2(\mathbb{R}^n)$:

$$\mathcal{A}f = \mathbf{L}f.$$

• We sometimes call L the **Markov generator** of $(X_t)_{t \ge 0}$.

• Itô's formula shows:
$$f(X_t^x) = f(x) + \int_0^t Lf(X_s^x) \, ds + \int_0^t \sigma(X_s^x)^\top \nabla f(X_s^x) \, dBs.$$

Example: Brownian motion

Let X_t solve $dX_t = \sqrt{2} dB_t$. Then the generator of B_t is:

$$Lf = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2},$$

when $f \in C_0^2(\mathbb{R}^n)$. That is, $L = \Delta$, where Δ is the Laplace operator. If $u(t, x) = P_t f(x)$, then *u* solves the heat equation:

$$\partial_t u = \Delta u$$
 and $u(0, x) = f(x)$.

Adjoints

• Let $\langle \cdot, \cdot \rangle$ be the inner product in $L^2(dy)$, so that $\langle \phi, \psi \rangle = \int_{\mathbb{R}^n} \phi(y) \psi(y) \, dy$.

• Given a bounded linear operator T, the adjoint T^* is defined:

 $\langle T\phi,\psi\rangle = \langle \phi,T^*\psi\rangle.$

• Let *D* be the differential operator. If $T\phi(x) = \sum_{k=0}^{n} a_k(x)D^k\phi(x)$, then:

$$T^*\psi = \sum_{k=0}^n (-1)^k D^k(a_k\psi).$$

Kolmogorov's forward equation (or, the Fokker-Planck equation)

The evolution of a statistic $u(t, x) = E[f(X_t^x)]$ from Kolmogorov backward equation:

$$P_t f(x) = f(x) + \int_0^t \mathcal{A}u(s, x) \, ds = f(x) + \int_0^t \int_{\mathbb{R}^d} \mathcal{L}f(y) \, p_s(x, dy) \, ds,$$

where $p_s(x, \cdot)$ describe the distribution of X_s^x . For short, let $p_s^x = p_s(x, \cdot)$.

► The Kolmogorov forward equation describes the dual—how does the probability density evolve over time. Taking the time derivative:

$$\langle f, \partial_t p_t^x \rangle = \langle \mathrm{L}f, p_t^x \rangle = \langle f, \mathrm{L}^* p_t^x \rangle; \qquad f \in C_0^2.$$

• Let $\mathbf{D} = \frac{1}{2}\sigma\sigma^{\top}$ be the diffusion matrix. This implies:

$$\frac{\partial p_t^x}{\partial t} = \sum_{i,j} \frac{\partial^2}{\partial_i \partial_j} (\mathbf{D}_{ij} p_t^x) - \sum_{i=1}^n \partial_i (b_i \cdot p_t^x)$$

(Fokker-Planck equation)

Markov semigroups and generators: summary

▶ If $(X_t)_{t\geq 0}$ is a diffusion process, it is characterized by its Markov semigroup $(P_t)_{t\geq 0}$,

$$P_t f(x) = E[f(X_t^x)] = \int_{\mathbb{R}^d} f(y) p_t(x, dy).$$

▶ The generator \mathcal{A} , seen as the derivative of $t \mapsto P_t$, also characterizes $(P_t)_{t \ge 0}$,

$$\mathcal{A}f = \lim_{t \downarrow 0} \frac{P_t f - P_0 f}{t},$$

which computes $E[f(X_t^x)]$ via the Kolmogorov backward equation.

If (X_t)_{t≥0} is Itô diffusion, then A has the form of the Markov generator L.
If (X_t)_{t≥0} has an invariant distribution µ, then for all f ∈ D_A:

$$\mathop{\mathbb{E}}_{X\sim\mu}[\mathcal{A}f(X)] = \int_{\mathbb{R}^d} \mathcal{A}f(x)\,\mu(dx) = 0.$$

Interlude II: the Poisson equation and mean ergodic theorem³

³This is an informal version of Mattingly et al. (2010) mainly for intuition; see paper for rigor.

Estimating the invariant measure

Consider the following Itô diffusion:

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t,$$

and assume that it has a unique stationary measure μ .

► **Goal:** estimate
$$\underset{X \sim \mu}{\mathbb{E}}[f(X)]$$
 for wide array of test functions *f*.

The Poisson equation

- \blacktriangleright Let $\mathcal A$ be the infinitesimal generator of the SDE.
- Let $f : \mathbb{R}^d \to \mathbb{R}$ be sufficiently smooth.
- Define \overline{f} as the space average w.r.t. the invariant distribution μ ,

$$\overline{f} = \int_{\mathbb{R}^d} f(x) \, \mu(dx) = \mathop{\mathbb{E}}_{X \sim \mu} [f(X)].$$

► The **Poisson equation** is the following PDE:

$$\mathcal{A}u_f=f-\overline{f}.$$

 \triangleright Under certain conditions, a unique (up to a constant term) and smooth u_f exists.

Solution to the Poisson equation

The formal solution to the Poisson equation is $u_f(x) = -\int_0^\infty P_t(f-\overline{f})(x) dt$.

Proof (informal).

Since μ is the stationary distribution, define the operator:

$$P_{\infty}g(x) = \int_{\mathbb{R}^d} g(y) \, \mu(dy) = \mathop{\mathbb{E}}_{X \sim \mu}[g(X)],$$

so that P_t converges to P_{∞} as $t \to \infty$. In particular, $P_{\infty}(f - \overline{f}) = 0$.

• By Dynkin's formula, $P_{\infty}(f - \overline{f}) = (f - \overline{f}) + \int_{0}^{\infty} \mathcal{A}P_{t}(f - \overline{f}) dt.$

• Substitute $P_{\infty}(f - \overline{f}) = 0$ and $(f - \overline{f}) = Au_f$ to obtain

$$0 = \mathcal{A}\left[u_f + \int_0^\infty P_t(f-\overline{f}) dt\right].$$

Solution to the Poisson equation (cont.)

$$u_f(x) = -\int_0^\infty P_t(f-\overline{f})(x) \, dt$$

▶ Interpretation: $u_f(x)$ measures the *net fluctuation over all time of* $P_t f$ *from* \overline{f} .

- ▶ Note: $P_t f$ converges to $P_{\infty} f = \overline{f}$.
- ▶ Under certain assumptions, u_f is bounded (essentially, the diffusion X_t remains in a bounded region of the space).

Mean ergodic theorem

Recall Itô's formula:

$$u_f(X_t^x) = u_f(x) + \int_0^t \mathcal{A}u_f(X_s^x) \, ds + \int_0^t \sigma(X_s^x)^\top \nabla u_f(X_s) \, dB_s.$$

• Replace $Au_f = f - \overline{f}$ and rearrange:

$$\frac{1}{t}\int_0^t f(X_s^x)\,ds - \overline{f} = \frac{u_f(X_t^x) - u_f(x)}{t} - \frac{1}{t}\int_0^t \sigma^\top \nabla u_f\,dB_s.$$

▶ Assuming that u_f , $\|\sigma\|$, $\|\nabla u_f\|$ are bounded, then Itô isometry implies:

$$E\left[\left(\frac{1}{T}\int_0^T f(X_t) dt - \overline{f}\right)^2\right] \le \frac{K}{T}$$

Mean ergodic theorem (cont.)

It follows that we can view $\frac{1}{T} \int_0^T f(X_t) dt$ as an estimator for $\mu(f) = \underset{X \sim \mu}{\mathbb{E}} [f(X)].$

- The *time average* of $f(X_t)$ converges in L^2 to the *space average* $\mu(f)$ with respect to the stationary distribution μ .
- ► The *rate of convergence* depends on the bounds on $\|\nabla u_f\|$ where u_f is solution to the Poisson equation,

$$\mathcal{A}u_f=f-\mu(f).$$

The bounds on $\|\nabla u_f\|$ are called **Stein factors**, hidden in the constant *K*.

Interlude: connection to Stein's method⁴

⁴This section follows Gorham et al. (2019).

Stein's method

Goal: bound distance between two distributions ν_t and μ , e.g. give non-asymptotic rates of convergence. In particular, quantify how well \mathbb{E}_{ν_t} approximates \mathbb{E}_{μ} .

> Developed by Charles Stein to provide alternate proof of the central limit theorem.

General framework

Let ν_t and μ be distributions on \mathbb{R}^d . Let \mathcal{F} be a family of test functions $f : \mathbb{R}^d \to \mathbb{R}$. Define the measure $d_{\mathcal{F}}(\nu_t, \mu)$ by:

$$d_{\mathcal{F}}(\nu_t,\mu) = \sup_{f \in \mathcal{F}} |\mu(f) - \nu_t(f)|.$$

- $d_{\mathcal{F}}$ is **convergence determining** if it is an integral probability metric (IPM) and $d_{\mathcal{F}}(\nu_t, \mu)$ converges to zero only if ν_t converges in distribution to μ .
- ▶ In general, it may be intractable to evaluate $\mathbb{E}_{\mu}[f(Z)]$.
 - ▶ Idea: it suffices to replace each f with $f \mu(f)$, so $\mu(f) = 0$ for all $f \in \mathcal{F}$.

Stein's method

1. Identify an operator \mathcal{T} acting on functions $g : \mathbb{R}^d \to \mathbb{R}^d$ in \mathcal{G} to mean-zero functions under μ ,

$$\mu(\mathcal{T}g) = 0 \quad \forall g \in \mathcal{G}.$$

2. Define the Stein discrepancy,

$$S(\nu_t, \mathcal{T}, \mathcal{G}) = \sup_{g \in \mathcal{G}} |\nu_t(\mathcal{T}g)| = d_{\mathcal{T}\mathcal{G}}(Q_n, P),$$

where $\mathcal{TG} = \{\mathcal{Tg} : g \in \mathcal{G}\}.$

3. Prove that for each $f \in \mathcal{F}$ there exists some $u_f \in \mathcal{G}$ solving the **Stein equation**,

$$\mathcal{T}u_f = f - \mu(f).$$

Thus, $\mathcal{F} \subset \mathcal{TG}$ so that $d_{\mathcal{F}}(\nu_t, \mu) \leq d_{\mathcal{TG}}(\nu_t, \mu)$.

4. Prove upper bounds the Stein discrepancy so that $\mathcal{S}(\nu_t, \mathcal{T}, \mathcal{G}) \to 0$.

Summary: in order to show ν_t converges in distribution to μ ,

- ▶ If \mathcal{F} is convergence determining, we need to show $d_{\mathcal{F}}(\nu_t, \mu) \rightarrow 0$.
- Show (step 3) that if $d_{T\mathcal{G}}(\nu_t, \mu)$ converges to zero, then so does $d_{\mathcal{F}}(\nu_t, \mu)$.
- Show (step 4) that $d_{TG}(\nu_t, \mu)$ converges to zero.

Stein's method for diffusion processes

Recall: if $(X_t)_{t\geq 0}$ is a Feller process with generator \mathcal{A} and invariant measure μ , then:

$$\mu(\mathcal{A}u) = 0 \quad \forall u \in \mathcal{D}_{\mathcal{A}}$$

It follows that we just need to be able to solve the Stein equation,

$$\mathcal{A}u_f = f - \mu(f),$$

which is the familiar Poisson equation. In our discussion of the mean ergodic theorem,

- \triangleright ν_t is the distribution of X_t^x ,
- ▶ we used Itô's formula to bound $E[f(X_t)] \mu(f)$ using $E[u_f(X_t)]$ and $\|\nabla u_f\|$,
- \triangleright ν_t converges to μ , so we were able to show a rate:

$$\frac{1}{T}\int_0^T f(X_t) \, dt \to \mu(f).$$

Optimization using discretized diffusion⁵

⁵We now return to the main paper, Erdogdu et al. (2018).

Recap: goal

Solve the unconstrained optimization problem:

 $\min_{x\in\mathbb{R}^d}f(x).$

► Idea:

- ► Construct a diffusion process $(Z_t)_{t\geq 0}$ with stationary distribution *p* concentrated around the minima of *f*, so that $p(f) \approx \min_{x \in \mathbb{D}^d} f(x)$.
- Show that the time-average quickly converges:

$$\frac{1}{T}\int_0^T f(Z_t) \, dt \to p(f),$$

where the rate depends on the regularity (Stein factors) of u_f solving Poisson equation:

$$\mathcal{A}u_f=f-p(f).$$

▶ Show that discretized dynamics $(X_n)_{n=0}^{\infty}$ behaves similarly to $(Z_t)_{t\geq 0}$.

This paper: results

$$\min_{m \in [M]} \mathbb{E}[f(X_m)] - \min_{x} f(x) \leq \underbrace{\frac{1}{M} \sum_{m=1}^{M} \mathbb{E}[f(X_m) - p(f)]}_{\text{integration error}} + \underbrace{p(f) - \min_{x} f(x)}_{\text{expected suboptimality}}.$$

Provides bounds on integration error

> Rate controlled by Stein factors; they provide general bounds for Stein factors

- Provides bounds on suboptimality gap
- ▶ Gives examples of optimizing 'heavy-tailed' objectives with general diffusion
 - > Cases that fail with standard Langevin dynamics with constant diffusion coefficients

Constructing an invariant distribution

Let $(Z_t)_{t\geq 0}$ be Itô diffusion for the SDE: $dZ_t = b(Z_t) dt + \sigma(Z_t) dB_t$.

Theorem (Invariant measure, Gorham et al. (2019))

A density p is an invariant measure of the diffusion $(Z_t)_{t\geq 0}$ if and only if:

$$b(x) = \frac{1}{2p(x)} \left\langle \nabla, p(x) \left(\mathbf{D}(x) + \mathbf{C}(x) \right) \right\rangle,$$

where $\mathbf{D}(x) = \sigma(x)\sigma(x)^{\top}$ is the covariance coefficient, $\mathbf{C}(x) \in \mathbb{R}^{d \times d}$ is a differentiable skew-symmetric stream coefficient, and $\langle \nabla, \mathbf{M} \rangle$ is a row-wise divergence operator.

Example: Gibbs measure

Recall the Gibbs measure: $p_{\gamma}(x) \propto \exp \big(- \gamma f(x) \big).$

• Set
$$\sigma(x) = \sqrt{\frac{2}{\gamma}I}$$
 and $c(x) = 0$.

Solve for b(x). Note that $\mathbf{D} + \mathbf{C}$ is diagonal. So,

$$b(x)_{i} = \frac{1}{2p(x)} \operatorname{div}(p(x)(\mathbf{D}(x) + \mathbf{C}(x))_{i})$$
$$= \frac{1}{2p_{\gamma}(x)} \cdot \left(\frac{2}{\gamma} \frac{\partial p_{\gamma}(x)}{\partial x_{j}}\right) = \frac{1}{\gamma p_{\gamma}(x)} \frac{\partial p_{\gamma}(x)}{\partial x_{j}}.$$

• This implies $b(x) = -\nabla f(x)$ and $dZ_t = -\nabla f(x) + \sqrt{\frac{2}{\gamma}} dB_t$.

Assumption I: existence and uniqueness of SDE

Again, we consider the SDE: $dZ_t = b(Z_t) dt + \sigma(Z_t) dB_t$.

Assumption (Polynomial growth of coefficients)

The drift and diffusion coefficients have growth bounded above:

 $\|b(x)\|_{2} + \|\sigma(x)\|_{2} \le C(1+\|x\|_{2})$ and $\|\mathbf{D}(x)\|_{op} \le C'(1+\|x\|_{2}^{2}).$

▶ This ensures existence and uniqueness of the SDE.

Assumption II: diffusion does not diverge

Assumption (Dissipativity)

There exists $\alpha, \beta > 0$ *such that:*

$$\mathcal{A} \|x\|_{2}^{2} \leq -\alpha \|x\|_{2}^{2} + \beta.$$

▶ This ensures the diffusion travels inward when far from the origin.

- ▶ Recall that the infinitesimal expected change in $||X_t||^2$ at time *t* is $\mathcal{A}||x||^2$.
- ▶ If X_t is large, then $||X_{t+h}||^2$ is expected to take a large step inward:

$$E[||X_{t+h}||^2|X_t] \approx X_t - \alpha h ||X_t||^2 + \beta h.$$

• Dissipativity relaxes the condition that *f* is strongly convex (c.f. mixture of Gaussians).

Assumption III: rate of convergence bounded

Assumption (Finite Stein factors)

The function u_f *that solves the Poisson equation:*

$$\mathcal{A}u_f = f - p(f)$$

Lipschitz and has higher order derivatives with polynomial growth,

$$\|\nabla^{i} u_{f}(x)\|_{\text{op}} \leq C_{i}(1+\|x\|^{n}) \quad i=1,2,3,4.$$

Applications of assumption

Recall from our discussion on the mean ergodic theorem:

$$\frac{1}{t}\int_0^t f(Z_s) \, ds - p(f) = \frac{u_f(Z_t) - u_f(Z_0)}{t} - \frac{1}{t}\int_0^t (\sigma^\top \nabla u_f)(Z_s) \, dB_s.$$

▶ **Dissipativity**: ensures that
$$\frac{u_f(Z_t) - u_f(Z_0)}{t} \rightarrow 0$$
 as $t \rightarrow \infty$

Stein factors + dissipativity: ensures that $||(\sigma^{\top} \nabla u_f)(Z_s)|| \le M$, so that:

$$\mathbb{E}\left[\left(\frac{1}{T}\int_0^T f(Z_t) dt - p(f)\right)^2\right] \sim \frac{M^2 \operatorname{Var}(B_t)}{t^2} = O\left(\frac{1}{t}\right).$$

Discretization of diffusion

Given the SDE: $dZ_t = b(Z_t) dt + \sigma(Z_t) dB_t$.

▶ The **Euler discretization** of $(Z_t)_{t \ge 0}$ corresponds to the process:

$$X_{m+1} = X_m + \eta b(X_m) + \sqrt{\eta} \sigma(X_m) W_m$$

where $0 < \eta < 1$ is the **step size** and $W_m \sim \mathcal{N}(0, I)$ is Gaussian noise.

Theorem (Integration error of discretization)

Let Assumptions I, II, III hold. Then:

$$\left|\frac{1}{M}\sum_{m=1}^{M}\mathbb{E}[f(X_m)] - p(f)\right| = O\left(\frac{1}{\eta M} + \eta\right).$$

The constants depend on the Stein factors and Lipschitz coefficients.
 To reach *ε*-closeness, need O(*ε*⁻²) steps.

Expected suboptimality bound

Theorem (Suboptimality gap)

Suppose *p* is the stationary density of a dissipative diffusion with global maximizer x^* . If *p* is of the form $p_{\gamma,\theta} \propto \exp\left(-\gamma(f(x) - f(x^*))^{\theta}\right)$, and $\nabla f(x^*) = 0$, then:

$$p(f) - f(x^*) = O\left(\frac{1}{\theta}\frac{d}{\gamma}\log\frac{\gamma}{d}\right)^{1/\theta}$$

References

- Dominique Bakry, Ivan Gentil, and Michel Ledoux. *Analysis and geometry of Markov diffusion operators*, volume 348. Springer Science & Business Media, 2013.
- Haim Brezis. *Functional analysis, Sobolev spaces and partial differential equations.* Springer Science & Business Media, 2010.
- Murat A Erdogdu, Lester Mackey, and Ohad Shamir. Global non-convex optimization with discretized diffusions. *arXiv preprint arXiv:1810.12361*, 2018.
- Jackson Gorham, Andrew B Duncan, Sebastian J Vollmer, Lester Mackey, et al. Measuring sample quality with diffusions. *Annals of Applied Probability*, 29(5):2884–2928, 2019.
- Jonathan C Mattingly, Andrew M Stuart, and Michael V Tretyakov. Convergence of numerical time-averaging and stationary measures via poisson equations. *SIAM Journal on Numerical Analysis*, 48 (2):552–577, 2010.
- Bernt Øksendal. Stochastic differential equations: an introduction with applications. Springer, 2003.
- Daniel Revuz and Marc Yor. *Continuous martingales and Brownian motion*, volume 293. Springer Science & Business Media, 2013.