Metric learning from lazy, opinionated crowds

i.e., from limited pairwise preference comparisons

Geelon So (UCSD), agso@ucsd.edu Signals, Information, and Algorithms Lab @ MIT - March 7, 2024

An opinionated member of society

An opinionated member of society

I prefer Blade Runner over Godzilla.

An opinionated member of society

I prefer Blade Runner over Godzilla.

For it is more similar to my favorite movie The Matrix.

Metric learning from preferences

Question:

Suppose a lot of people on the internet tell us these sorts of pairwise movie rankings.

Metric learning from preferences

Question:

Suppose a lot of people on the internet tell us these sorts of pairwise movie rankings.

► Can we learn a metric that captures the similarity of movies in general?

Background

Distance-based algorithms

- nearest neighbor methods
- ▶ margin-based classification
- ▶ information retrieval
- clustering
- ► etc.

Distance-based algorithms

- nearest neighbor methods
- margin-based classification
- ▶ information retrieval
- clustering
- ► etc.

► The behavior/performance are often sensitive to the choice of distance.

Distance-based algorithms

- nearest neighbor methods
- margin-based classification
- ▶ information retrieval
- clustering
- ► etc.

- ► The behavior/performance are often sensitive to the choice of distance.
- ► Good metrics (e.g. for visual similarity) are hard to construct by hand.

Distance-based algorithms

- nearest neighbor methods
- margin-based classification
- ▶ information retrieval
- clustering
- ► etc.

- ► The behavior/performance are often sensitive to the choice of distance.
- ► Good metrics (e.g. for visual similarity) are hard to construct by hand.

Goal of metric learning:

Automatically learn a good metric for these downstream tasks

Distance-based algorithms

- nearest neighbor methods
- margin-based classification
- ▶ information retrieval
- clustering
- ▶ etc.

- ► The behavior/performance are often sensitive to the choice of distance.
- ► Good metrics (e.g. for visual similarity) are hard to construct by hand.

Goal of metric learning:

Automatically learn a good metric for these downstream tasks

▶ esp. metrics aligning with human values, perception, and preferences.

The alignment problem

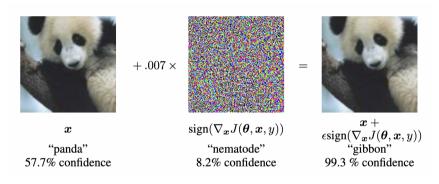


Figure 1: These two images are visually indistinguishable to a human, but very well-separated under the Euclidean distance (Goodfellow et al., 2014).

Metric learning from triplet comparisons

Metric learning from triplet comparisons

▶ Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.

Metric learning from triplet comparisons

- ▶ Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ightharpoonup Feedback: "A is more similar to B than to C."

Metric learning from triplet comparisons

- ▶ Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ► Feedback: "*A* is more similar to *B* than to *C*."

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

Metric learning from triplet comparisons

- ▶ Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ► Feedback: "*A* is more similar to *B* than to *C*."

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

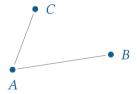


Figure 2: Triplet feedback: "*B* is closer to *A* than *C* is."

Problem: triplet comparisons are not a common form of feedback.

Problem: triplet comparisons are not a common form of feedback.

► Can be costly to obtain.

Problem: triplet comparisons are not a common form of feedback.

► Can be costly to obtain.

Problem: triplet comparisons are not a common form of feedback.

► Can be costly to obtain.

Metric learning from pairwise preference comparisons

▶ Assume a user has an *ideal item A* and prefers items more similar to *A*.

Problem: triplet comparisons are not a common form of feedback.

► Can be costly to obtain.

- Assume a user has an *ideal item A* and prefers items more similar to *A*.
- ▶ Goal: given a set of items \mathcal{X} , learn ideal item A and metric ρ .

Problem: triplet comparisons are not a common form of feedback.

► Can be costly to obtain.

- Assume a user has an *ideal item A* and prefers items more similar to *A*.
- ▶ Goal: given a set of items \mathcal{X} , learn ideal item A and metric ρ .
- ► Feedback: "I prefer *B* over *C*."

Problem: triplet comparisons are not a common form of feedback.

► Can be costly to obtain.

- ▶ Assume a user has an *ideal item A* and prefers items more similar to *A*.
- ▶ Goal: given a set of items \mathcal{X} , learn ideal item A and metric ρ .
- ► Feedback: "I prefer *B* over *C*."
 - ▶ triplet comparison with a latent comparator (i.e. *A* is not observed)

Problem: triplet comparisons are not a common form of feedback.

► Can be costly to obtain.

- ▶ Assume a user has an *ideal item A* and prefers items more similar to *A*.
- ▶ Goal: given a set of items \mathcal{X} , learn ideal item A and metric ρ .
- ► Feedback: "I prefer *B* over *C*."
 - ▶ triplet comparison with a latent comparator (i.e. *A* is not observed)
 - much more prevalent form of feedback than triplet comparisons

Problem: triplet comparisons are not a common form of feedback.

► Can be costly to obtain.

Metric learning from pairwise preference comparisons

- ▶ Assume a user has an *ideal item A* and prefers items more similar to *A*.
- ▶ Goal: given a set of items \mathcal{X} , learn ideal item A and metric ρ .
- ► Feedback: "I prefer *B* over *C*."
 - ▶ triplet comparison with a latent comparator (i.e. *A* is not observed)
 - much more prevalent form of feedback than triplet comparisons

Xu and Davenport (2020) and Canal et al. (2022)

The hidden cost of weaker feedback

The hidden cost of weaker feedback

▶ Weaker feedback may make data easier/cheaper to collect.

The hidden cost of weaker feedback

▶ Weaker feedback may make data easier/cheaper to collect.

triplet: (A; B, C) vs. binary: (?; B, C).

The hidden cost of weaker feedback

▶ Weaker feedback may make data easier/cheaper to collect.

triplet:
$$(A; B, C)$$
 vs. binary: $(?; B, C)$.

▶ However, this can introduce new fundamental regimes where data is unusable.

The hidden cost of weaker feedback

▶ Weaker feedback may make data easier/cheaper to collect.

triplet:
$$(A; B, C)$$
 vs. binary: $(?; B, C)$.

▶ However, this can introduce new fundamental regimes where data is unusable.

Paying for weaker feedback

The hidden cost of weaker feedback

▶ Weaker feedback may make data easier/cheaper to collect.

triplet:
$$(A; B, C)$$
 vs. binary: $(?; B, C)$.

▶ However, this can introduce new fundamental regimes where data is unusable.

Paying for weaker feedback

▶ It may be possible to overcome new limits with structural assumptions.

The hidden cost of weaker feedback

▶ Weaker feedback may make data easier/cheaper to collect.

triplet:
$$(A; B, C)$$
 vs. binary: $(?; B, C)$.

▶ However, this can introduce new fundamental regimes where data is unusable.

Paying for weaker feedback

- ▶ It may be possible to overcome new limits with structural assumptions.
- ▶ These assumptions may be realistic (e.g. approximate low rank structures).

Our work in context

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

Our work in context

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

• we can learn ρ_M using $\Theta(d^2)$ measurements from a single user

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

- we can learn ρ_M using $\Theta(d^2)$ measurements from a single user
- ightharpoonup or, using $\Theta(d)$ measurements from $\Omega(d)$ users

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

- we can learn ρ_M using $\Theta(d^2)$ measurements from a single user
- ightharpoonup or, using $\Theta(d)$ measurements from $\Omega(d)$ users
 - $ightharpoonup \Theta(d)$ is necessary for simultaneous recovery of metric and ideal points

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

- we can learn ρ_M using $\Theta(d^2)$ measurements from a single user
- $lackbox{ or, using }\Theta(d)$ measurements from $\Omega(d)$ users
 - igwdots $\Theta(d)$ is necessary for simultaneous recovery of metric and ideal points

Limitations:

▶ modern representations of data can be extremely high dimensional

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

- lacktriangle we can learn ho_M using $\Theta(d^2)$ measurements from a single user
- lackbox or, using $\Theta(d)$ measurements from $\Omega(d)$ users
 - $igspace \Theta(d)$ is necessary for simultaneous recovery of metric and ideal points

Limitations:

- modern representations of data can be extremely high dimensional
- ightharpoonup it could be infeasible to obtain $\Theta(d)$ measurements per user

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

- lacktriangle we can learn ho_M using $\Theta(d^2)$ measurements from a single user
- lackbox or, using $\Theta(d)$ measurements from $\Omega(d)$ users
 - $ightharpoonup \Theta(d)$ is necessary for simultaneous recovery of metric and ideal points

Limitations:

- ▶ modern representations of data can be extremely high dimensional
- ightharpoonup it could be infeasible to obtain $\Theta(d)$ measurements per user

Our work: Let's just give up on trying to learn the ideal points. We ask: Can we recover the metric using $m \ll d$ measurements per user?

Preliminaries

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

ightharpoonup Assume \mathbb{R}^d is equipped with an unknown Mahalanobis distance ρ_M .

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

▶ Assume \mathbb{R}^d is equipped with an unknown Mahalanobis distance ρ_M .

Feedback model

Users provide preference feedback under the *ideal point model* (Coombs, 1950).

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

▶ Assume \mathbb{R}^d is equipped with an unknown Mahalanobis distance ρ_M .

Feedback model

Users provide preference feedback under the *ideal point model* (Coombs, 1950).

▶ Assume each user has a ideal point $u \in \mathbb{R}^d$ (which we cannot observe).

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

lacktriangle Assume \mathbb{R}^d is equipped with an unknown Mahalanobis distance ρ_M .

Feedback model

Users provide preference feedback under the ideal point model (Coombs, 1950).

- ▶ Assume each user has a ideal point $u \in \mathbb{R}^d$ (which we cannot observe).
- ▶ The user prefers an item x over x' whenever:

$$\rho_M(u,x)<\rho(u,x').$$

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

lacktriangle Assume \mathbb{R}^d is equipped with an unknown Mahalanobis distance ρ_M .

Feedback model

Users provide preference feedback under the ideal point model (Coombs, 1950).

- ▶ Assume each user has a ideal point $u \in \mathbb{R}^d$ (which we cannot observe).
- ▶ The user prefers an item x over x' whenever:

$$\rho_M(u,x)<\rho(u,x').$$

▶ We receive measurements from users of the form:

$$(x, x', y)$$
 where $y = 1\{\rho_M(u, x) < \rho_M(u, x')\}.$

A *Mahalanobis distance* ρ_M on \mathbb{R}^d is a metric of the form:

$$\rho_M(x, x') = \sqrt{(x - x')^{\top} M(x - x')} = ||x - x'||_M,$$

A *Mahalanobis distance* ρ_M on \mathbb{R}^d is a metric of the form:

$$\rho_M(x, x') = \sqrt{(x - x')^{\top} M(x - x')} = ||x - x'||_M,$$

where $M \in \operatorname{Sym}(\mathbb{R}^d)$ is a positive-definite (symmetric) matrix.

A *Mahalanobis distance* ρ_M on \mathbb{R}^d is a metric of the form:

$$\rho_M(x, x') = \sqrt{(x - x')^{\top} M(x - x')} = ||x - x'||_M,$$

where $M \in \operatorname{Sym}(\mathbb{R}^d)$ is a positive-definite (symmetric) matrix.

Geometric interpretation

▶ $M = A^{\top}A$ for some $A \in \mathbb{R}^{d \times d}$ since $M \succ 0$.

A *Mahalanobis distance* ρ_M on \mathbb{R}^d is a metric of the form:

$$\rho_M(x, x') = \sqrt{(x - x')^{\top} M(x - x')} = ||x - x'||_M,$$

where $M \in \operatorname{Sym}(\mathbb{R}^d)$ is a positive-definite (symmetric) matrix.

Geometric interpretation

- $M = A^{\top}A$ for some $A \in \mathbb{R}^{d \times d}$ since $M \succ 0$.
- ▶ Let $\Phi(x) = Ax$ be a new (linear) representation. Then:

$$\rho_M(x, x') = \|\Phi(x) - \Phi(x')\|_2.$$

A user with ideal point $u \in \mathbb{R}^d$ can give two types of feedback:

A user with ideal point $u \in \mathbb{R}^d$ can give two types of feedback:

Continuous responses: measurements of the form (x, x', ψ) , where:

A user with ideal point $u \in \mathbb{R}^d$ can give two types of feedback:

Continuous responses: measurements of the form (x, x', ψ) , where:

$$\psi \equiv \psi_M(x, x'; u) = \|u - x\|_M^2 - \|u - x'\|_M^2.$$

A user with ideal point $u \in \mathbb{R}^d$ can give two types of feedback:

Continuous responses: measurements of the form (x, x', ψ) , where:

$$\psi \equiv \psi_M(x, x'; u) = \|u - x\|_M^2 - \|u - x'\|_M^2.$$

▶ Not realistic form of feedback, but mathematically easy to work with.

A user with ideal point $u \in \mathbb{R}^d$ can give two types of feedback:

Continuous responses: measurements of the form (x, x', ψ) , where:

$$\psi \equiv \psi_M(x, x'; u) = \|u - x\|_M^2 - \|u - x'\|_M^2.$$

- ▶ Not realistic form of feedback, but mathematically easy to work with.
- **Binary responses:** measurements of the form (x, x', y) where:

A user with ideal point $u \in \mathbb{R}^d$ can give two types of feedback:

Continuous responses: measurements of the form (x, x', ψ) , where:

$$\psi \equiv \psi_M(x, x'; u) = \|u - x\|_M^2 - \|u - x'\|_M^2.$$

- ▶ Not realistic form of feedback, but mathematically easy to work with.
- **Binary responses:** measurements of the form (x, x', y) where:

$$y=\mathbf{1}\big\{\psi<0\big\}.$$

A user with ideal point $u \in \mathbb{R}^d$ can give two types of feedback:

Continuous responses: measurements of the form (x, x', ψ) , where:

$$\psi \equiv \psi_M(x, x'; u) = \|u - x\|_M^2 - \|u - x'\|_M^2.$$

- ▶ Not realistic form of feedback, but mathematically easy to work with.
- **Binary responses:** measurements of the form (x, x', y) where:

$$y = \mathbf{1}\{\psi < 0\}.$$

Later, we consider the setting where labels are binary and noisy.

Let $x, x' \in \mathbb{R}^d$ be two items. If a user has ideal point $u \in \mathbb{R}^d$, then:

$$\psi_M(x, x'; u) = \underbrace{\left\langle xx^\top - x'x'^\top, M \right\rangle}_{(1)} + \underbrace{\left\langle x - x', v \right\rangle}_{(2)}, \quad \text{where } \underbrace{v = -2Mu}_{(3)}.$$

Let $x, x' \in \mathbb{R}^d$ be two items. If a user has ideal point $u \in \mathbb{R}^d$, then:

$$\psi_M(x, x'; u) = \underbrace{\left\langle xx^\top - x'x'^\top, M \right\rangle}_{(1)} + \underbrace{\left\langle x - x', v \right\rangle}_{(2)}, \quad \text{where } \underbrace{v = -2Mu}_{(3)}.$$

1. $\langle xx^{\top} - x'x'^{\top}, M \rangle$ is the trace inner product on $\operatorname{Sym}(\mathbb{R}^d)$, where $\langle A, B \rangle = \operatorname{tr}(AB)$.

Let $x, x' \in \mathbb{R}^d$ be two items. If a user has ideal point $u \in \mathbb{R}^d$, then:

$$\psi_M(x, x'; u) = \underbrace{\langle xx^\top - x'x'^\top, M \rangle}_{(1)} + \underbrace{\langle x - x', v \rangle}_{(2)}, \quad \text{where } \underbrace{v = -2Mu}_{(3)}.$$

- 1. $\langle xx^{\top} x'x'^{\top}, M \rangle$ is the trace inner product on $\operatorname{Sym}(\mathbb{R}^d)$, where $\langle A, B \rangle = \operatorname{tr}(AB)$.
- 2. $\langle x x', v \rangle$ is the standard inner product on \mathbb{R}^d .

Let $x, x' \in \mathbb{R}^d$ be two items. If a user has ideal point $u \in \mathbb{R}^d$, then:

$$\psi_M(x, x'; u) = \underbrace{\langle xx^\top - x'x'^\top, M \rangle}_{(1)} + \underbrace{\langle x - x', v \rangle}_{(2)}, \quad \text{where } \underbrace{v = -2Mu}_{(3)}.$$

- 1. $\langle xx^{\top} x'x'^{\top}, M \rangle$ is the trace inner product on $Sym(\mathbb{R}^d)$, where $\langle A, B \rangle = tr(AB)$.
- 2. $\langle x x', v \rangle$ is the standard inner product on \mathbb{R}^d .
- 3. The reparametrization v = -2Mu is called the user's *pseudo-ideal point*.

Let $x, x' \in \mathbb{R}^d$ be two items. If a user has ideal point $u \in \mathbb{R}^d$, then:

$$\psi_M(x, x'; u) = \underbrace{\langle xx^\top - x'x'^\top, M \rangle}_{(1)} + \underbrace{\langle x - x', v \rangle}_{(2)}, \quad \text{where } \underbrace{v = -2Mu}_{(3)}.$$

- 1. $\langle xx^{\top} x'x'^{\top}, M \rangle$ is the trace inner product on $Sym(\mathbb{R}^d)$, where $\langle A, B \rangle = tr(AB)$.
- 2. $\langle x x', v \rangle$ is the standard inner product on \mathbb{R}^d .
- 3. The reparametrization v = -2Mu is called the user's *pseudo-ideal point*.

Upshot: Reparametrize (M, u) to (M, v). Then, the following map is linear:

$$(M, v) \mapsto \psi_M(x, x'; u).$$

Let $x, x' \in \mathbb{R}^d$ be two items. If a user has ideal point $u \in \mathbb{R}^d$, then:

$$\psi_M(x, x'; u) = \underbrace{\langle xx^\top - x'x'^\top, M \rangle}_{(1)} + \underbrace{\langle x - x', v \rangle}_{(2)}, \quad \text{where } \underbrace{v = -2Mu}_{(3)}.$$

- 1. $\langle xx^{\top} x'x'^{\top}, M \rangle$ is the trace inner product on $Sym(\mathbb{R}^d)$, where $\langle A, B \rangle = tr(AB)$.
- 2. $\langle x x', v \rangle$ is the standard inner product on \mathbb{R}^d .
- 3. The reparametrization v = -2Mu is called the user's *pseudo-ideal point*.

Upshot: Reparametrize (M, u) to (M, v). Then, the following map is linear:

$$(M, \nu) \mapsto \psi_M(x, x'; u).$$

Thus, there is a reparametrization under which measurements are linear.

Design matrices

Let $\{(x_{i_0}, x_{i_1})\}_{i=1}^m$ be a set of item pairs.

Design matrices

Let $\{(x_{i_0}, x_{i_1})\}_{i=1}^m$ be a set of item pairs.

▶ Define the linear map $D : \operatorname{Sym}(\mathbb{R}^d) \oplus \mathbb{R}^d \to \mathbb{R}^m$:

$$D_i(A, w) = \langle x_{i_0} x_{i_0}^{\top} - x'_{i_1} x'_{i_1}^{\top}, A \rangle + \langle x_{i_0} - x'_{i_1}, w \rangle.$$

Design matrices

Let $\{(x_{i_0}, x_{i_1})\}_{i=1}^m$ be a set of item pairs.

▶ Define the linear map $D : \operatorname{Sym}(\mathbb{R}^d) \oplus \mathbb{R}^d \to \mathbb{R}^m$:

$$D_i(A, w) = \langle x_{i_0} x_{i_0}^{\top} - x'_{i_1} x'_{i_1}^{\top}, A \rangle + \langle x_{i_0} - x'_{i_1}, w \rangle.$$

▶ We call *D* the design matrix induced by the item pairs.

Suppose a user provides us with measurements $\{(x_{i_0}, x_{i_1}, \psi_i)\}_{i=1}^m$, where:

$$\psi_i = \psi_M(x_{i_0}, x_{i_1}; u).$$

Suppose a user provides us with measurements $\{(x_{i_0}, x_{i_1}, \psi_i)\}_{i=1}^m$, where:

$$\psi_i = \psi_M(x_{i_0}, x_{i_1}; u).$$

 \blacktriangleright We can recover (M, u) by solving the linear system of equations:

$$D_i(A, w) = \psi_i.$$

Suppose a user provides us with measurements $\{(x_{i_0}, x_{i_1}, \psi_i)\}_{i=1}^m$, where:

$$\psi_i = \psi_M(x_{i_0}, x_{i_1}; u).$$

 \blacktriangleright We can recover (M, u) by solving the linear system of equations:

$$D_i(A, w) = \psi_i.$$

▶ The pair (M, v) of the Mahalanobis matrix and pseudo-ideal point is a solution.

Suppose a user provides us with measurements $\{(x_{i_0}, x_{i_1}, \psi_i)\}_{i=1}^m$, where:

$$\psi_i = \psi_M(x_{i_0}, x_{i_1}; u).$$

 \blacktriangleright We can recover (M, u) by solving the linear system of equations:

$$D_i(A, w) = \psi_i.$$

- ▶ The pair (M, v) of the Mahalanobis matrix and pseudo-ideal point is a solution.
 - ▶ The ideal point can be computed from the pseudo-ideal point since v = -2Mu.

Suppose a user provides us with measurements $\{(x_{i_0}, x_{i_1}, \psi_i)\}_{i=1}^m$, where:

$$\psi_i = \psi_M(x_{i_0}, x_{i_1}; u).$$

 \blacktriangleright We can recover (M, u) by solving the linear system of equations:

$$D_i(A, w) = \psi_i.$$

- ▶ The pair (M, v) of the Mahalanobis matrix and pseudo-ideal point is a solution.
 - ▶ The ideal point can be computed from the pseudo-ideal point since v = -2Mu.
- ▶ To recover the metric and ideal point, $m = \frac{d(d+1)}{2} + d$ measurements is necessary.

Generalization to multiple users

▶ Suppose *K* users provide us with measurements (on distinct pairs of items).

Generalization to multiple users

- ▶ Suppose *K* users provide us with measurements (on distinct pairs of items).
- ▶ Recover the metric and all ideal points by solving a linear system of equations:

$$\mathbf{D}(A, w_1, \ldots, w_K) = \Psi,$$

where $A \in \operatorname{Sym}(\mathbb{R}^d)$ and each $w_k \in \mathbb{R}^d$.

Generalization to multiple users

- ▶ Suppose *K* users provide us with measurements (on distinct pairs of items).
- ▶ Recover the metric and all ideal points by solving a linear system of equations:

$$\mathbf{D}(A, w_1, \ldots, w_K) = \Psi,$$

where $A \in \operatorname{Sym}(\mathbb{R}^d)$ and each $w_k \in \mathbb{R}^d$.

Known results

► At least *d* measurements from each user is necessary to recover ideal points.

Generalization to multiple users

- ▶ Suppose *K* users provide us with measurements (on distinct pairs of items).
- ▶ Recover the metric and all ideal points by solving a linear system of equations:

$$\mathbf{D}(A, w_1, \ldots, w_K) = \Psi,$$

where $A \in \operatorname{Sym}(\mathbb{R}^d)$ and each $w_k \in \mathbb{R}^d$.

Known results

- ▶ At least *d* measurements from each user is necessary to recover ideal points.
- ▶ Recovering $(M, u_1, ..., u_K)$ is possible:
 - ightharpoonup from 2d measurements per user if $K=\Omega(d)$

Generalization to multiple users

- ▶ Suppose *K* users provide us with measurements (on distinct pairs of items).
- ▶ Recover the metric and all ideal points by solving a linear system of equations:

$$\mathbf{D}(A, w_1, \ldots, w_K) = \Psi,$$

where $A \in \operatorname{Sym}(\mathbb{R}^d)$ and each $w_k \in \mathbb{R}^d$.

Known results

- ▶ At least *d* measurements from each user is necessary to recover ideal points.
- ▶ Recovering $(M, u_1, ..., u_K)$ is possible:
 - ▶ from 2d measurements per user if $K = \Omega(d)$
 - ightharpoonup from d+1 measurements per user if $K=\Omega(d^2)$.

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

High-level structure:

▶ Matrix sensing problem: learn the parameters of $M \in \text{Sym}(\mathbb{R}^d)$.

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

- ▶ Matrix sensing problem: learn the parameters of $M \in \text{Sym}(\mathbb{R}^d)$.
- ▶ We have access to a large pool of sensors (users + items).

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

- ▶ Matrix sensing problem: learn the parameters of $M \in \text{Sym}(\mathbb{R}^d)$.
- ▶ We have access to a large pool of sensors (users + items).
 - ▶ Part of the measurement parameters are latent (unknown ideal points).

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

- ▶ Matrix sensing problem: learn the parameters of $M \in \text{Sym}(\mathbb{R}^d)$.
- ▶ We have access to a large pool of sensors (users + items).
 - ▶ Part of the measurement parameters are latent (unknown ideal points).
 - ightharpoonup Previous work: learn latent parameters along with M.

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

- ▶ Matrix sensing problem: learn the parameters of $M \in \text{Sym}(\mathbb{R}^d)$.
- ▶ We have access to a large pool of sensors (users + items).
 - ▶ Part of the measurement parameters are latent (unknown ideal points).
 - ightharpoonup Previous work: learn latent parameters along with M.
- ▶ Our regime: too few measurements per user to learn latent parameters.

An impossibility result

Setting.

▶ Let $\mathcal{X} \subset (\mathbb{R}^d, \rho_M)$ be a countable set of items.

Setting.

- ▶ Let $\mathcal{X} \subset (\mathbb{R}^d, \rho_M)$ be a countable set of items.
- ▶ Let user $k \in \mathbb{N}$ have pseudo-ideal point v_k .

Setting.

- ▶ Let $\mathcal{X} \subset (\mathbb{R}^d, \rho_M)$ be a countable set of items.
- ▶ Let user $k \in \mathbb{N}$ have pseudo-ideal point v_k .
- ▶ We ask $m \le d$ pairwise comparisons per user over items in \mathcal{X} .

Setting.

- ▶ Let $\mathcal{X} \subset (\mathbb{R}^d, \rho_M)$ be a countable set of items.
- ▶ Let user $k \in \mathbb{N}$ have pseudo-ideal point v_k .
- ▶ We ask $m \le d$ pairwise comparisons per user over items in \mathcal{X} .
 - ▶ Let $D^{(k)}$ be the design matrix for user k.

Theorem (Impossibility result)

For (i) almost all sets X,

Theorem (Impossibility result)

For (i) almost all sets X, (ii) any set of designs $D^{(k)}$,

Theorem (Impossibility result)

For (i) almost all sets \mathcal{X} , (ii) any set of designs $D^{(k)}$, and (iii) any $M' \in \operatorname{Sym}(\mathbb{R}^d)$,

Theorem (Impossibility result)

For (i) almost all sets \mathcal{X} , (ii) any set of designs $D^{(k)}$, and (iii) any $M' \in \operatorname{Sym}(\mathbb{R}^d)$, there exists $v'_k \in \mathbb{R}^d$ such that:

$$D^{(k)}(M, \nu_k) = D^{(k)}(M', \nu'_k), \qquad \forall k \in \mathbb{N}.$$

Theorem (Impossibility result)

For (i) almost all sets \mathcal{X} , (ii) any set of designs $D^{(k)}$, and (iii) any $M' \in \operatorname{Sym}(\mathbb{R}^d)$, there exists $v'_k \in \mathbb{R}^d$ such that:

$$D^{(k)}(M, \nu_k) = D^{(k)}(M', \nu'_k), \qquad \forall k \in \mathbb{N}.$$

ightharpoonup That is, M' is consistent with observed data.

Theorem (Impossibility result)

For (i) almost all sets \mathcal{X} , (ii) any set of designs $D^{(k)}$, and (iii) any $M' \in \operatorname{Sym}(\mathbb{R}^d)$, there exists $v'_k \in \mathbb{R}^d$ such that:

$$D^{(k)}(M, \nu_k) = D^{(k)}(M', \nu'_k), \qquad \forall k \in \mathbb{N}.$$

- ightharpoonup That is, M' is consistent with observed data.
- ► Each user introduces enough degrees of freedom to account for all variation in data.

Theorem (Impossibility result)

For (i) almost all sets \mathcal{X} , (ii) any set of designs $D^{(k)}$, and (iii) any $M' \in \operatorname{Sym}(\mathbb{R}^d)$, there exists $v'_k \in \mathbb{R}^d$ such that:

$$D^{(k)}(M, \nu_k) = D^{(k)}(M', \nu'_k), \qquad \forall k \in \mathbb{N}.$$

- ightharpoonup That is, M' is consistent with observed data.
- ► Each user introduces enough degrees of freedom to account for all variation in data.
- \blacktriangleright Not only is recovery impossible, but we learn nothing at all about M.

Which sets do "almost all" item sets refer to?

Theorem (Impossibility result)

When (i) \mathcal{X} has generic pairwise relations, (ii) . . . the impossibility result holds.

Which sets do "almost all" item sets refer to?

Theorem (Impossibility result)

When (i) \mathcal{X} has generic pairwise relations, (ii) . . . the impossibility result holds.

▶ We introduce a notion of genericity, slightly stronger than *general linear position*.

Which sets do "almost all" item sets refer to?

Theorem (Impossibility result)

When (i) \mathcal{X} has generic pairwise relations, (ii) . . . the impossibility result holds.

- ▶ We introduce a notion of genericity, slightly stronger than *general linear position*.
- \blacktriangleright Almost all finite sets are generic in this sense (w.r.t. Lebesgue measure on \mathbb{R}^d).

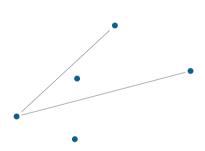
General linear position

Definition

A set $\mathcal{X} \subset \mathbb{R}^d$ is in general linear position if the following is linearly independent:

$${x_i - x_0 : i = 1, \ldots, n},$$

for any distinct $x_0, x_1, \ldots, x_n \in \mathcal{X}$ and $n \leq d$.



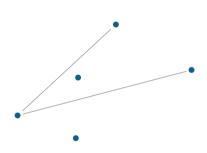
A set of points $\mathcal{X} \subset \mathbb{R}^d$.

General linear position: alternate definition

Definition

A set $\mathcal{X} \subset \mathbb{R}^d$ is in general linear position if for any star graph $G = (V \subset \mathcal{X}, E)$ with $|E| \leq d$, the following is linearly independent:

$${x - x' : (x, x') \in E}.$$



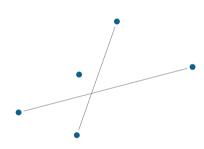
A set of points $\mathcal{X} \subset \mathbb{R}^d$.

Generic pairwise relation

Definition

A set $\mathcal{X} \subset \mathbb{R}^d$ has generic pairwise relations if for any acyclic graph $G = (\mathcal{X}, E)$ with $|E| \leq d$, the following is linearly independent:

$${x - x' : (x, x') \in E}.$$



A set of points $\mathcal{X} \subset \mathbb{R}^d$.

Generic pairwise relations \Longrightarrow general linear position

Proof.

A star graph with at most d edges is an acyclic graph with at most d edges.

General linear position \implies generic pairwise relations

- ✓ General linear position—no three points are colinear.
- **x** These points do not have generic pairwise relations.



General takeaway I

(Not) learning from crowd data

- ▶ Weaker feedback may make data easier/cheaper to collect
 - ightharpoonup e.g. triplet ightharpoonup binary feedback (with latent comparator)

General takeaway I

(Not) learning from crowd data

- ▶ Weaker feedback may make data easier/cheaper to collect
 - ightharpoonup e.g. triplet ightarrow binary feedback (with latent comparator)
- ▶ But we may need to pay for it elsewhere
 - e.g. new fundamental limits/regimes where data carries no information

Metric learning with subspace-cluster structure

Real data often exhibit additional structure

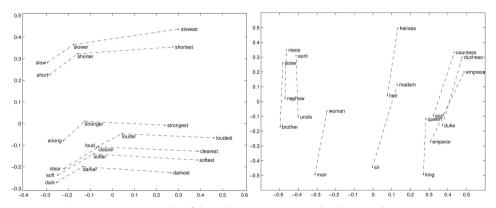


Figure 3: An example of data that approximately *does not have* generic pairwise relations (Pennington et al., 2014).

Subspace-clusterability assumption

Assumption:

There are low-dimensional subspaces of \mathbb{R}^d that are 'rich' with items.

ightharpoonup That is, assume that $\mathcal X$ lies on a union of low-rank subspaces.

Subspace-clusterability assumption

Assumption:

There are low-dimensional subspaces of \mathbb{R}^d that are 'rich' with items.

- \blacktriangleright That is, assume that $\mathcal X$ lies on a union of low-rank subspaces.
- ightharpoonup e.g. $\mathcal X$ is *sparsely encodable*, in the sense of dictionary learning.

Divide-and-conquer approach

A natural approach:

- 1. Learn the metric restricted to each of the item-rich subspaces.
- **2.** Stitch the subspace metrics together.

Subspace Mahalanobis distances

Definition

Let $V \subset \mathbb{R}^d$ be a subspace. A metric on V is a subspace Mahalanobis distance if it is the subspace metric of a Mahalanobis distance ρ on \mathbb{R}^d ,

$$\rho\big|_{V}(x,x')=\rho(x,x'), \qquad \forall x,x'\in V.$$

Simple case: both items \mathcal{X} and user ideal point u belong to V.

Simple case: both items \mathcal{X} and user ideal point u belong to V.

- ightharpoonup Simply reparametrize problem without the extra dimensions V^{\perp} .
- ▶ Learn $\rho|_V$ like before.

Simple case: both items \mathcal{X} and user ideal point u belong to V.

- ightharpoonup Simply reparametrize problem without the extra dimensions V^{\perp} .
- ▶ Learn $\rho|_V$ like before.

General case: we cannot assume the user ideal point u belongs to V.

Simple case: both items \mathcal{X} and user ideal point u belong to V.

- ightharpoonup Simply reparametrize problem without the extra dimensions V^{\perp} .
- ▶ Learn $\rho|_V$ like before.

General case: we cannot assume the user ideal point u belongs to V.

▶ It turns out for any $u \in \mathbb{R}^d$, there exists a phantom ideal point \tilde{u} in V such that:

$$\psi_M(x, x'; u) = \psi_M(x, x'; \tilde{u}), \quad \forall x, x' \in V.$$

Simple case: both items \mathcal{X} and user ideal point u belong to V.

- ightharpoonup Simply reparametrize problem without the extra dimensions V^{\perp} .
- ▶ Learn $\rho|_V$ like before.

General case: we cannot assume the user ideal point u belongs to V.

▶ It turns out for any $u \in \mathbb{R}^d$, there exists a phantom ideal point \tilde{u} in V such that:

$$\psi_M(x, x'; u) = \psi_M(x, x'; \tilde{u}), \quad \forall x, x' \in V.$$

• We can no longer recover u, but we can learn $\rho|_V$.

Why can we recombine?

After dividing, we end up with a collection of subspace metric:

$$\rho|_{V_1},\ldots,\rho|_{V_n}.$$

Why can we recombine?

After dividing, we end up with a collection of subspace metric:

$$\rho|_{V_1},\ldots,\rho|_{V_n}.$$

Result: As long as the subspaces V_1, \ldots, V_n quadratically span \mathbb{R}^d , there is a unique Mahalanobis distance on \mathbb{R}^d generating the joint subspace metrics.

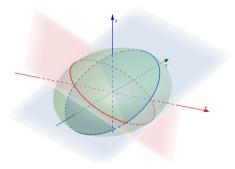


Figure 4: Unit spheres of Mahalanobis distances are ellipsoids in \mathbb{R}^d .

For Mahalanobis distances:

 $lackbox{ }$ Metric learning is equivalent to recovering its unit ellipsoid $\mathcal{E}.$

For Mahalanobis distances:

- ightharpoonup Metric learning is equivalent to recovering its unit ellipsoid \mathcal{E} .
- ▶ Learning the subspace metric on V correspond to recovering the slice $V \cap \mathcal{E}$.

For Mahalanobis distances:

- \blacktriangleright Metric learning is equivalent to recovering its unit ellipsoid \mathcal{E} .
- ▶ Learning the subspace metric on V correspond to recovering the slice $V \cap \mathcal{E}$.

Fact from geometry:

We can reconstruct an ellipsoid given enough low-dimensional slices.

Quadratic spanning

Definition

The subspaces $V_1, \ldots, V_n \subset \mathbb{R}^d$ quadratically span \mathbb{R}^d if the (linear) span satisfies:

$$\operatorname{Sym}(\mathbb{R}^d) = \operatorname{span}\left(\left\{xx^\top : x \in V_1 \cup \cdots \cup V_n\right\}\right).$$

Metric learning from lazy crowds (simple math setting)

We asked: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

Metric learning from lazy crowds (simple math setting)

We asked: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

Answer (continuous response model):

► In general, this is not possible.

Metric learning from lazy crowds (simple math setting)

We asked: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

Answer (continuous response model):

- ▶ In general, this is not possible.
- ▶ If \mathcal{X} is a union of r-dimensional subspaces ($r \ll d$), it is possible with:

number of users	d^2/r
measurements per user	2r

General takeaway II

Learning from crowd data

- ► Fundamental limit overcome using additional structural assumptions
 - ightharpoonup e.g. generic pairwise relations ightharpoonup subspace-cluster structure

General takeaway II

Learning from crowd data

- ► Fundamental limit overcome using additional structural assumptions
 - ightharpoonup e.g. generic pairwise relations ightharpoonup subspace-cluster structure
- ▶ These structural assumptions could be (approximately) realistic
 - we could even enforce the structure upsteam
 - e.g. generate representations via dictionary learning

Goals of the rest of the talk

Up to now:

- ► Fundamental limits of weak and per-user-budgeted crowdsourced data
- ▶ Paying for weak feedback if there is additional structure

Goals of the rest of the talk

Up to now:

- ► Fundamental limits of weak and per-user-budgeted crowdsourced data
- ▶ Paying for weak feedback if there is additional structure

Rest of the talk:

- ► High-level description of statistical/learning-theoretic techniques
- ► A commonly used model for analyzing preference feedback
- ▶ A fundamental open question: crowdsourced sensing with latent parameters

Metric learning from non-idealized data

Divide-and-conquer for idealized data

Divide step:

For each subspace V_1, \ldots, V_n , solve a system of linear equations:

$$\mathbf{D}_i(\hat{Q}_i, w_1, \ldots, w_K) = \Psi_i.$$

Divide-and-conquer for idealized data

Divide step:

For each subspace V_1, \ldots, V_n , solve a system of linear equations:

$$\mathbf{D}_i(\hat{Q}_i, w_1, \dots, w_K) = \Psi_i.$$

Recombine step:

Define $\Pi(M) = (Q_1, \dots, Q_n)$ to be the linear map:

 Π : parameters of Mahalanobis distances \mapsto parameters of subspace metrics.

Divide-and-conquer for idealized data

Divide step:

For each subspace V_1, \ldots, V_n , solve a system of linear equations:

$$\mathbf{D}_i(\hat{Q}_i, w_1, \dots, w_K) = \Psi_i.$$

Recombine step:

Define $\Pi(M) = (Q_1, \dots, Q_n)$ to be the linear map:

 Π : parameters of Mahalanobis distances \mapsto parameters of subspace metrics.

Solve a system of linear equations:

$$\hat{M}=\Pi(\hat{Q}_1,\ldots,\hat{Q}_n).$$

Question: What happens in the non-idealized setting?

Question: What happens in the non-idealized setting?

► Feedback is inexact/binary/noisy.

Question: What happens in the non-idealized setting?

- ► Feedback is inexact/binary/noisy.
- ▶ The set of items is only approximately subspace clusterable.

Question: What happens in the non-idealized setting?

- ► Feedback is inexact/binary/noisy.
- ▶ The set of items is only approximately subspace clusterable.

Divide step:

Prior work shows shows metric learning from non-idealized feedback.

Question: What happens in the non-idealized setting?

- ► Feedback is inexact/binary/noisy.
- ▶ The set of items is only approximately subspace clusterable.

Divide step:

Prior work shows shows metric learning from non-idealized feedback.

▶ If we get binary responses, solve a binary regression problem instead.

Question: What happens in the non-idealized setting?

- ► Feedback is inexact/binary/noisy.
- ▶ The set of items is only approximately subspace clusterable.

Divide step:

Prior work shows shows metric learning from non-idealized feedback.

▶ If we get binary responses, solve a binary regression problem instead.

Recombine step:

We need to show that we can recombine estimated subspace metrics.

Question: What happens in the non-idealized setting?

- ► Feedback is inexact/binary/noisy.
- ▶ The set of items is only approximately subspace clusterable.

Divide step:

Prior work shows shows metric learning from non-idealized feedback.

▶ If we get binary responses, solve a binary regression problem instead.

Recombine step:

We need to show that we can recombine estimated subspace metrics.

► Algorithm: perform linear regression instead, and project onto the PSD cone.

Setting for recombination recovery guarantee

Setting:

▶ Let $V_n = \{V_1, \dots, V_n\}$ be a collection of subspaces of \mathbb{R}^d .

Setting for recombination recovery guarantee

Setting:

- ▶ Let $V_n = \{V_1, \dots, V_n\}$ be a collection of subspaces of \mathbb{R}^d .
- ▶ Let $Q_1, ..., Q_n$ be the true parameters of the subspace metrics.

- ▶ Let $V_n = \{V_1, \dots, V_n\}$ be a collection of subspaces of \mathbb{R}^d .
- ▶ Let $Q_1, ..., Q_n$ be the true parameters of the subspace metrics.
- ▶ Let $\hat{Q}_1, \ldots, \hat{Q}_n$ be independent estimators of the subspace metrics.

- ▶ Let $V_n = \{V_1, \dots, V_n\}$ be a collection of subspaces of \mathbb{R}^d .
- ▶ Let $Q_1, ..., Q_n$ be the true parameters of the subspace metrics.
- ▶ Let $\hat{Q}_1, \ldots, \hat{Q}_n$ be independent estimators of the subspace metrics.
- lackbox Let \hat{M} be the projected ordinary least squares solution (on the PSD cone):

$$\hat{M}_{\text{OLS}} = \underset{A \in \text{Sym}(\mathbb{R}^d)}{\operatorname{arg min}} \sum_{i=1}^n \|\hat{Q}_i - \Pi_{V_i}(A)\|^2$$

- ▶ Let $V_n = \{V_1, \dots, V_n\}$ be a collection of subspaces of \mathbb{R}^d .
- ▶ Let $Q_1, ..., Q_n$ be the true parameters of the subspace metrics.
- ▶ Let $\hat{Q}_1, \ldots, \hat{Q}_n$ be independent estimators of the subspace metrics.
- lackbox Let \hat{M} be the projected ordinary least squares solution (on the PSD cone):

$$\hat{M}_{\text{OLS}} = \underset{A \in \text{Sym}(\mathbb{R}^d)}{\operatorname{arg min}} \sum_{i=1}^n \|\hat{Q}_i - \Pi_{V_i}(A)\|^2$$

- ▶ Let $V_n = \{V_1, \dots, V_n\}$ be a collection of subspaces of \mathbb{R}^d .
- ▶ Let $Q_1, ..., Q_n$ be the true parameters of the subspace metrics.
- ▶ Let $\hat{Q}_1, \ldots, \hat{Q}_n$ be independent estimators of the subspace metrics.
- ▶ Let \hat{M} be the projected ordinary least squares solution (on the PSD cone):

$$\hat{M}_{\text{OLS}} = \underset{A \in \text{Sym}(\mathbb{R}^d)}{\arg \min} \sum_{i=1}^n \|\hat{Q}_i - \Pi_{V_i}(A)\|^2$$
$$\hat{M} = \underset{A \succeq 0}{\arg \min} \|\hat{M}_{\text{OLS}} - A\|_F^2.$$

Assumptions:

▶ The estimators have low-bias: $\|\mathbb{E}[\hat{Q}_i] - Q_i\| \leq \gamma$.

Assumptions:

- ▶ The estimators have low-bias: $\|\mathbb{E}[\hat{Q}_i] Q_i\| \leq \gamma$.
- ▶ The estimators have bounded spread: $\|\hat{Q}_i \mathbb{E}[\hat{Q}_i]\| \leq \varepsilon$.

Assumptions:

- ▶ The estimators have low-bias: $\|\mathbb{E}[\hat{Q}_i] Q_i\| \leq \gamma$.
- ▶ The estimators have bounded spread: $\|\hat{Q}_i \mathbb{E}[\hat{Q}_i]\| \leq \varepsilon$.

Theorem

There is a constant c > 0 such that for any $p \in (0, 1]$, with probability at least 1 - p,

Assumptions:

- ▶ The estimators have low-bias: $\|\mathbb{E}[\hat{Q}_i] Q_i\| \leq \gamma$.
- ▶ The estimators have bounded spread: $\|\hat{Q}_i \mathbb{E}[\hat{Q}_i]\| \leq \varepsilon$.

Theorem

There is a constant c > 0 such that for any $p \in (0, 1]$, with probability at least 1 - p,

$$\|\hat{M} - M\|_F \le c \cdot \frac{1}{\sigma(\mathcal{V}_n)} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}}\right),$$

Assumptions:

- ▶ The estimators have low-bias: $\|\mathbb{E}[\hat{Q}_i] Q_i\| \leq \gamma$.
- ▶ The estimators have bounded spread: $\|\hat{Q}_i \mathbb{E}[\hat{Q}_i]\| \leq \varepsilon$.

Theorem

There is a constant c > 0 such that for any $p \in (0, 1]$, with probability at least 1 - p,

$$\|\hat{M} - M\|_F \le c \cdot \frac{1}{\sigma(\mathcal{V}_n)} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}}\right),$$

where $\sigma(V)$ quantifies the 'quadratic spread' of subspaces V_1, \ldots, V_n in $Sym(\mathbb{R}^d)$.

For simplicity, we just show bound for $\|\hat{M}_{OLS} - M\|_F$.

For simplicity, we just show bound for $\|\hat{M}_{OLS} - M\|_F$.

1. Recall the linear map $\Pi(M) = (Q_1, \dots, Q_n)$.

For simplicity, we just show bound for $\|\hat{M}_{OLS} - M\|_F$.

- 1. Recall the linear map $\Pi(M) = (Q_1, \dots, Q_n)$.
- 2. The OLS solution is computed by the Moore-Penrose pseudoinverse:

$$\hat{M}_{\text{OLS}} = \Pi^+(\hat{Q}_1, \dots, \hat{Q}_n).$$

For simplicity, we just show bound for $\|\hat{M}_{\text{OLS}} - M\|_F$.

- 1. Recall the linear map $\Pi(M) = (Q_1, \dots, Q_n)$.
- 2. The OLS solution is computed by the Moore-Penrose pseudoinverse:

$$\hat{M}_{\text{OLS}} = \Pi^+(\hat{Q}_1, \dots, \hat{Q}_n).$$

3. Since Π^+ is linear, we get the bound:

$$\|\hat{M}_{OLS} - M\|_F^2 = \|\Pi^+(\hat{Q}_1 - Q, \dots, \hat{Q}_n - Q_n)\|_F^2 \le \sigma_{\max}^2(\Pi^+) \sum_{i=1}^n \|\hat{Q}_1 - Q_i\|^2.$$

For simplicity, we just show bound for $\|\hat{M}_{OLS} - M\|_F$.

- 1. Recall the linear map $\Pi(M) = (Q_1, \dots, Q_n)$.
- 2. The OLS solution is computed by the Moore-Penrose pseudoinverse:

$$\hat{\mathit{M}}_{OLS} = \Pi^{+}(\hat{\mathit{Q}}_{1}, \ldots, \hat{\mathit{Q}}_{n}).$$

3. Since Π^+ is linear, we get the bound:

$$\|\hat{M}_{OLS} - M\|_F^2 = \|\Pi^+(\hat{Q}_1 - Q, \dots, \hat{Q}_n - Q_n)\|_F^2 \le \sigma_{\max}^2(\Pi^+) \sum_{i=1}^n \|\hat{Q}_1 - Q_i\|^2.$$

4. A more fine-grained bound by decomposition: $\hat{Q} - Q = \underbrace{\hat{Q} - \mathbb{E}[\hat{Q}]}_{\text{mean-zero r.v.}} + \underbrace{\mathbb{E}[\hat{Q}] - Q}_{\text{bias}}.$

For simplicity, we just show bound for $\|\hat{M}_{OLS} - M\|_F$.

- 1. Recall the linear map $\Pi(M) = (Q_1, \dots, Q_n)$.
- 2. The OLS solution is computed by the Moore-Penrose pseudoinverse:

$$\hat{\mathit{M}}_{OLS} = \Pi^{+}(\hat{\mathit{Q}}_{1}, \ldots, \hat{\mathit{Q}}_{n}).$$

3. Since Π^+ is linear, we get the bound:

$$\|\hat{M}_{OLS} - M\|_F^2 = \|\Pi^+(\hat{Q}_1 - Q, \dots, \hat{Q}_n - Q_n)\|_F^2 \le \sigma_{\max}^2(\Pi^+) \sum_{i=1}^n \|\hat{Q}_1 - Q_i\|^2.$$

- 4. A more fine-grained bound by decomposition: $\hat{Q} Q = \underbrace{\hat{Q} \mathbb{E}[\hat{Q}]}_{\text{mean-zero r.v.}} + \underbrace{\mathbb{E}[\hat{Q}] Q}_{\text{bias}}$.
 - For independent mean-zero error terms, can apply Chernoff-style concentration.

Interpretation of the bound

Key quantities: n= number of subspaces; $\gamma, \varepsilon=$ subspace recovery bias/accuracy

$$\|\hat{M} - M\|_F \le c \cdot \frac{1}{\sigma(\mathcal{V})} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}}\right)$$

Interpretation of the bound

Key quantities: n= number of subspaces; $\gamma, \varepsilon=$ subspace recovery bias/accuracy

$$\|\hat{M} - M\|_F \le c \cdot \frac{1}{\sigma(\mathcal{V})} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}}\right)$$

 $ightharpoonup \sigma(\mathcal{V}_n)$ grows with the number of subspaces,

$$\sigma(\mathcal{V}_n) = \Omega(\sqrt{n})$$
 is possible.

Interpretation of the bound

Key quantities: n= number of subspaces; $\gamma, \varepsilon=$ subspace recovery bias/accuracy

$$\|\hat{M} - M\|_F \le c \cdot \frac{1}{\sigma(\mathcal{V})} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}}\right)$$

 $ightharpoonup \sigma(\mathcal{V}_n)$ grows with the number of subspaces,

$$\sigma(\mathcal{V}_n) = \Omega(\sqrt{n})$$
 is possible.

As $n \to \infty$, the dominating term is possibly the bias term γ .

ightharpoonup e.g. if the estimators \hat{Q} have a systematic constant biases $\gamma > 0$.

A noisy feedback model with recovery guarantee

Generalized linear model:

▶ Continuous response: (x, x', ψ)

$$\psi \equiv \psi_M(x, x'; u) = D_{x,x'}(M, v).$$

Generalized linear model:

► Continuous response: (x, x', ψ)

$$\psi \equiv \psi_M(x, x'; u) = D_{x,x'}(M, v).$$

▶ Noisy response: (x, x', y)

$$\Pr\left[Y = y \mid M, x, x', u\right] = f\left(y \cdot D_{x,x'}(M, v)\right),\,$$

where f is a (non-linear) link function.

Generalized linear model:

► Continuous response: (x, x', ψ)

$$\psi \equiv \psi_M(x, x'; u) = D_{x,x'}(M, v).$$

▶ Noisy response: (x, x', y)

$$\Pr\left[Y = y \,\middle|\, M, x, x', u\right] = f\left(y \cdot D_{x,x'}(M, v)\right),\,$$

where f is a (non-linear) *link function*.

▶ The link function is the first (and only) instance of a non-linearity in this work.

Generalized linear model:

► Continuous response: (x, x', ψ)

$$\psi \equiv \psi_M(x, x'; u) = D_{x,x'}(M, v).$$

▶ Noisy response: (x, x', y)

$$\Pr\left[Y = y \mid M, x, x', u\right] = f\left(y \cdot D_{x,x'}(M, v)\right),\,$$

where f is a (non-linear) *link function*.

- ▶ The link function is the first (and only) instance of a non-linearity in this work.
- When $f(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function, this leads to a logistic regression.

Setting for subspace metric recovery

Setting:

▶ Assume that user provide measurements (x, x', Y) where $Y \in \{-1, +1\}$,

$$\Pr[Y = y] = f(-y \cdot D_{x,x'}(M, \nu)),$$

where f is the sigmoid link function.

Setting for subspace metric recovery

Setting:

▶ Assume that user provide measurements (x, x', Y) where $Y \in \{-1, +1\}$,

$$\Pr[Y = y] = f(-y \cdot D_{x,x'}(M, \nu)),$$

where f is the sigmoid link function.

▶ We can perform maximum likelihood estimation:

$$(\hat{M}, \hat{v}_1, \dots, \hat{v}_k) \leftarrow \underset{(A, w_1, \dots, w_K)}{\operatorname{arg max}} \sum_k \sum_{(x, x', Y)} \log f(-Y \cdot D_{x, x'}(M, v_k)).$$

Setting for subspace metric recovery

Setting:

Assume that user provide measurements (x, x', Y) where $Y \in \{-1, +1\}$,

$$\Pr[Y = y] = f(-y \cdot D_{x,x'}(M, \nu)),$$

where f is the sigmoid link function.

▶ We can perform maximum likelihood estimation:

$$(\hat{M}, \hat{v}_1, \dots, \hat{v}_k) \leftarrow \underset{(A, w_1, \dots, w_K)}{\operatorname{arg max}} \sum_k \sum_{(x, x', Y)} \log f(-Y \cdot D_{x, x'}(M, v_k)).$$

▶ Assume $||M||_{\infty} \le 1$ and items and ideal points are contained in unit Euclidean ball.

Theorem (Metric recovery, adapted from Canal et al. (2022))

Let \mathcal{X} quadratically span \mathbb{R}^d . There exists designs $D^{(k)}$ asking for m responses from each of K users such that from that data, the maximum likelihood estimator \hat{M} satisfies w.h.p.:

$$\|\hat{M} - M\|_F^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right).$$

Theorem (Metric recovery, adapted from Canal et al. (2022))

Let \mathcal{X} quadratically span \mathbb{R}^d . There exists designs $D^{(k)}$ asking for m responses from each of K users such that from that data, the maximum likelihood estimator \hat{M} satisfies w.h.p.:

$$\|\hat{M} - M\|_F^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right).$$

Proof uses standard techniques from generalization theory.

Theorem (Metric recovery, adapted from Canal et al. (2022))

Let \mathcal{X} quadratically span \mathbb{R}^d . There exists designs $D^{(k)}$ asking for m responses from each of K users such that from that data, the maximum likelihood estimator \hat{M} satisfies w.h.p.:

$$\|\hat{M} - M\|_F^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right).$$

- ▶ Proof uses standard techniques from generalization theory.
- ▶ The $d^2 + dK$ term comes from a metric entropy bound on:

$$\{(A, u_1, \dots, u_K) : ||A||_{\infty} \le 1 \text{ and } ||u_k|| \le 1, \forall k\}.$$

Theorem (Metric recovery, adapted from Canal et al. (2022))

Let \mathcal{X} quadratically span \mathbb{R}^d . There exists designs $D^{(k)}$ asking for m responses from each of K users such that from that data, the maximum likelihood estimator \hat{M} satisfies w.h.p.:

$$\|\hat{M} - M\|_F^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right).$$

- ▶ Proof uses standard techniques from generalization theory.
- ▶ The $d^2 + dK$ term comes from a metric entropy bound on:

$$\{(A, u_1, \dots, u_K) : ||A||_{\infty} \le 1 \text{ and } ||u_k|| \le 1, \forall k\}.$$

▶ When $K \gg d^2$, the dominating term is $\sqrt{d/m}$.

Weakness of analysis, weakness of naive ERM, or fundamental limit?

Weakness of analysis, weakness of naive ERM, or fundamental limit?

► The generalization approach actually shows:

$$\|\hat{M} - M\|_F^2 + \sum_{k=1}^K \|\hat{\nu}_k - \nu_k\|^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right).$$

Weakness of analysis, weakness of naive ERM, or fundamental limit?

► The generalization approach actually shows:

$$\|\hat{M} - M\|_F^2 + \sum_{k=1}^K \|\hat{\nu}_k - \nu_k\|^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right).$$

ightharpoonup But, we only care about learning the parameters of M.

Weakness of analysis, weakness of naive ERM, or fundamental limit?

► The generalization approach actually shows:

$$\|\hat{M} - M\|_F^2 + \sum_{k=1}^K \|\hat{\nu}_k - \nu_k\|^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right).$$

- ▶ But, we only care about learning the parameters of *M*.
- ▶ This analysis does not seem to allow us to decouple estimating \hat{M} and \hat{v}_k .

Weakness of analysis, weakness of naive ERM, or fundamental limit?

► The generalization approach actually shows:

$$\|\hat{M} - M\|_F^2 + \sum_{k=1}^K \|\hat{\nu}_k - \nu_k\|^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right).$$

- \blacktriangleright But, we only care about learning the parameters of M.
- ▶ This analysis does not seem to allow us to decouple estimating \hat{M} and \hat{v}_k .
- ▶ Is the analysis loose? Is there a better algorithm? Is there a fundamental limit?

Suppose *K* users provide *m* measurements on rank-*r* subspaces.

Suppose *K* users provide *m* measurements on rank-*r* subspaces.

Subspace metric error:

$$\gamma + \varepsilon \leq \mathcal{O}\left(\sqrt{\frac{r^2 + rK}{mK}}\right).$$

Suppose K users provide m measurements on rank-r subspaces.

Subspace metric error:

$$\gamma + \varepsilon \le \mathcal{O}\left(\sqrt{\frac{r^2 + rK}{mK}}\right).$$

Metric error after recombination:

$$\|\hat{M} - M\|_F \le c \cdot \frac{1}{\sigma(\mathcal{V})} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}}\right)$$

Suppose *K* users provide *m* measurements on rank-*r* subspaces.

Subspace metric error:

$$\gamma + \varepsilon \le \mathcal{O}\left(\sqrt{\frac{r^2 + rK}{mK}}\right).$$

Metric error after recombination:

$$\|\hat{M} - M\|_F \leq c \cdot \frac{1}{\sigma(\mathcal{V})} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}} \right)$$

When $K \gg d$, then there are settings with: $\|\hat{M} - M\|_F = \mathcal{O}\left(\sqrt{\frac{r}{m}}\right)$.

Additional open problems

Further questions

Other structure:

- ► Low rank metrics; non-linear representations/kernel extension
- ► Learning with approximate subspace clusters
- ► Learning with structured user sets

Further questions

Other structure:

- ► Low rank metrics; non-linear representations/kernel extension
- ► Learning with approximate subspace clusters
- ► Learning with structured user sets

Inducing structure:

▶ What are good representations for human/crowdsourced labeling?

Further questions

Other structure:

- ► Low rank metrics; non-linear representations/kernel extension
- ► Learning with approximate subspace clusters
- ► Learning with structured user sets

Inducing structure:

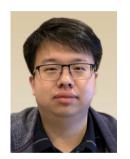
What are good representations for human/crowdsourced labeling?

Statistics:

- ▶ Other noise/preference models (e.g. Bradley-Terry model)
- Semi-parametric estimation
- Robust recovery

Acknowledgments

Collaborators



Zhi Wang UC San Diego

Ramya Korlakai Vinayak UW-Madison

Thank you!

See https://geelon.github.io/ for preprint.

References

- Gregory Canal, Blake Mason, Ramya Korlakai Vinayak, and Robert Nowak. One for all: Simultaneous metric and preference learning over multiple users. *Advances in Neural Information Processing Systems*, 35:4943–4956, 2022.
- Clyde H Coombs. Psychological scaling without a unit of measurement. *Psychological review*, 57(3):145, 1950.
- Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.
- Blake Mason, Lalit Jain, and Robert Nowak. Learning low-dimensional metrics. *Advances in neural information processing systems*, 30, 2017.
- Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation. In *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*, pages 1532–1543, 2014.
- Matthew Schultz and Thorsten Joachims. Learning a distance metric from relative comparisons. *Advances in neural information processing systems*, 16, 2003.
- Nakul Verma and Kristin Branson. Sample complexity of learning mahalanobis distance metrics. *Advances in neural information processing systems*, 28, 2015.
- Zhi Wang, Geelon So, and Ramya Korlakai Vinayak. Metric learning from limited pairwise preference comparisons, 2024.
- Austin Xu and Mark Davenport. Simultaneous preference and metric learning from paired comparisons. *Advances in Neural Information Processing Systems*, 33:454–465, 2020.