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An opinionated member of society

I prefer Blade Runner over Godzilla.

For it is more similar to my
favorite movie The Matrix.
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Metric learning from preferences

Question:
Suppose a lot of people on the internet tell us these sorts of pairwise movie rankings.

▶ Can we learn a metric that captures the similarity of movies in general?
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Metric learning: raison d’être

Distance-based algorithms
▶ nearest neighbor methods

▶ margin-based classification

▶ information retrieval

▶ clustering

▶ etc.

▶ The behavior/performance are often
sensitive to the choice of distance.

▶ Good metrics (e.g. for visual similarity)
are hard to construct by hand.

Goal of metric learning:
Automatically learn a good metric for these downstream tasks

▶ esp. metrics aligning with human values, perception, and preferences.
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The alignment problem

Figure 1: These two images are visually indistinguishable to a human, but
very well-separated under the Euclidean distance (Goodfellow et al., 2014).
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Related work

Metric learning from triplet comparisons

▶ Goal: given a set of items X , learn a metric ρ over the items.

▶ Feedback: “A is more similar to B than to C.”

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

Simultaneous metric and preference learning
▶ Assumption: a user has an ideal item A and prefers items more similar to A.

▶ Goal: given a set of items X , learn ideal item A and metric ρ capturing similarity.
▶ Feedback: “I prefer B over C.”

▶ triplet comparison with a latent comparator (i.e. A is not observed)
▶ much more prevalent form of feedback than triplet comparisons

Xu and Davenport (2020) and Canal et al. (2022)
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Our work in relationship

Let Rd be equipped with an unknown Mahalanobis distance ρM .

What is known:
▶ we can learn ρM using Θ(d2) measurements from a single user
▶ or, using Θ(d) measurements from Ω(d) users

▶ Θ(d) is necessary for simultaneous recovery of metric and ideal points

Limitations:
▶ modern representations of data can be extremely high dimensional

▶ it could be infeasible to obtain Θ(d) measurements per user

Our work: Let’s just give up on trying to learn the ideal points. We ask:
Can we recover the metric using m≪ d measurements per user?
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Preliminaries
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Formal setting
Representation space
Let X be a set of items embedded into Rd .

▶ Assume Rd is equipped with an unknown Mahalanobis distance ρM .

Feedback model
Users provide preference feedback under the ideal point model (Coombs, 1950).

▶ Assume each user has a ideal point u ∈ Rd (which we cannot observe).

▶ The user prefers an item x over x′ whenever:

ρM(u, x) < ρ(u, x′).

▶ We receive measurements from users of the form:

(x, x′, y) where y = 1
{
ρM(u, x) < ρM(u, x′)

}
.
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Mahalanobis distances

A Mahalanobis distance ρM on Rd is a metric of the form:

ρM(x, x′) =
√
(x − x′)⊤M(x − x′) = ∥x − x′∥M ,

where M ∈ Sym(Rd) is a positive-definite (symmetric) matrix.

Geometric interpretation
▶ M = A⊤A for some A ∈ Rd×d since M ≻ 0.
▶ Let Φ(x) = Ax be a new (linear) representation. Then:

ρM(x, x′) = ∥Φ(x)− Φ(x′)∥2.
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A mathematical simplification

A user with ideal point u ∈ Rd can give two types of feedback:

▶ Continuous responses: measurements of the form (x, x′, ψ), where:

ψ ≡ ψM(x, x′; u) = ∥u − x∥2M − ∥u − x′∥2M .

▶ Not realistic form of feedback, but mathematically easy to work with.

▶ Binary responses: measurements of the form (x, x′, y) where:

y = 1
{
ψ < 0

}
.

▶ Later, we consider the setting where labels are binary and noisy.
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A linear reparametrization (Canal et al., 2022)

Let x, x′ ∈ Rd be two items. If a user has ideal point u ∈ Rd , then:

ψM(x, x′; u) =
〈
xx⊤ − x′x′⊤,M

〉︸ ︷︷ ︸
(1)

+
〈
x − x′, v

〉︸ ︷︷ ︸
(2)

, where v = −2Mu︸ ︷︷ ︸
(3)

.

1.
〈
xx⊤ − x′x′⊤,M

〉
is the trace inner product on Sym(Rd), where ⟨A,B⟩ = tr(AB).

2.
〈
x − x′, v

〉
is the standard inner product on Rd .

3. The reparametrization v = −2Mu is called the user’s pseudo-ideal point.

Upshot: Reparametrize (M, u) to (M, v). Then, the following map is linear:

(M, v) 7→ ψM(x, x′; u).
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Design matrices

Let {(xi0 , xi1)}mi=1 be a set of item pairs.

▶ Define the linear map D : Sym(Rd)⊕ Rd → Rm:

Di(A,w) =
〈
xi0x

⊤
i0 − x′i1x

′⊤
i1 ,A

〉
+
〈
xi0 − x′i1 ,w

〉
.

▶ We call D the design matrix induced by the item pairs.
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Metric learning from continuous responses, single user case

Suppose a user provides us with measurements
{
(xi0 , xi1 , ψi)

}m
i=1, where:

ψi = ψM(xi0 , xi1 ; u).

▶ We can recover (M, u) by solving the linear system of equations:

Di(A,w) = ψi.

▶ The pair (M, v) of the Mahalanobis matrix and pseudo-ideal point is a solution.
▶ The ideal point can be computed from the pseudo-ideal point since v = −2Mu.

▶ To recover the metric and ideal point, m = d(d+1)
2 + d measurements is necessary.
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Metric learning from continuous responses, multiple user case

Generalization to multiple users
▶ Suppose K users provide us with measurements (on distinct pairs of items).

▶ Recover the metric and all ideal points by solving a linear system of equations:

D(A,w1, . . . ,wK) = Ψ,

where A ∈ Sym(Rd) and each wk ∈ Rd .

Known results
▶ At least d measurements from each user is necessary to recover ideal points.
▶ Recovering (M, u1, . . . , uK) is possible:

▶ from 2d measurements per user if K = Ω(d)
▶ from d + 1 measurements per user if K = Ω(d2).
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Basic question: metric learning from lazy crowds

We ask: Suppose we can obtain very few m ≪ d measurements per user.
Though ideal points can no longer be learned, is metric learning still possible?

High-level structure:
▶ Matrix sensing problem: learn the parameters of M ∈ Sym(Rd).
▶ We have access to a large pool of sensors (users + items).

▶ Part of the measurement parameters are latent (unknown ideal points).
▶ Previous work: learn latent parameters along with M .

▶ Our regime: too few measurements per user to learn latent parameters.
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An impossibility result
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Setting for impossibility result

Setting.
▶ Let X ⊂ (Rd , ρM) be a countable set of items.

▶ Let user k ∈ N have pseudo-ideal point vk .
▶ We ask m ≤ d pairwise comparisons per user over items in X .

▶ Let D(k) be the design matrix for user k.
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Learning latent parameters is necessary

Theorem (Impossibility result)
For (i) almost all sets X ,

(ii) any set of designs D(k),and (iii) any M ′ ∈ Sym(Rd),there exists
v′k ∈ Rd such that:

D(k)(M, vk) = D(k)(M ′, v′k), ∀k ∈ N.

▶ That is, M ′ is consistent with observed data.

▶ Each user introduces enough degrees of freedom to account for all variation in data.

▶ Not only is recovery impossible, but we learn nothing at all about M .
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Which sets do “almost all” item sets refer to?

Theorem (Impossibility result)
When (i) X has generic pairwise relations, (ii) . . . the impossibility result holds.

▶ We introduce a notion of genericity, slightly stronger than general linear position.

▶ Almost all finite sets are generic in this sense (w.r.t. Lebesgue measure on Rd).

21 / 59



Which sets do “almost all” item sets refer to?

Theorem (Impossibility result)
When (i) X has generic pairwise relations, (ii) . . . the impossibility result holds.

▶ We introduce a notion of genericity, slightly stronger than general linear position.

▶ Almost all finite sets are generic in this sense (w.r.t. Lebesgue measure on Rd).

21 / 59



Which sets do “almost all” item sets refer to?

Theorem (Impossibility result)
When (i) X has generic pairwise relations, (ii) . . . the impossibility result holds.

▶ We introduce a notion of genericity, slightly stronger than general linear position.

▶ Almost all finite sets are generic in this sense (w.r.t. Lebesgue measure on Rd).

21 / 59



General linear position

Definition
A set X ⊂ Rd is in general linear position if the
following is linearly independent:

{xi − x0 : i = 1, . . . , n},

for any distinct x0, x1, . . . , xn ∈ X and n ≤ d.

A set of points X ⊂ Rd .
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General linear position: alternate definition

Definition
A set X ⊂ Rd is in general linear position if for
any star graph G = (V ⊂ X , E) with |E| ≤ d,
the following is linearly independent:

{x − x′ : (x, x′) ∈ E}.

A set of points X ⊂ Rd .
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Generic pairwise relation

Definition
A set X ⊂ Rd has generic pairwise relations if
for any acyclic graph G = (X , E) with |E| ≤ d,
the following is linearly independent:

{x − x′ : (x, x′) ∈ E}.

A set of points X ⊂ Rd .

24 / 59



Generic pairwise relations =⇒ general linear position

Proof.
A star graph with at most d edges is an acyclic graph with at most d edges.
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General linear position ≠⇒ generic pairwise relations

✓ General linear position—no three points are colinear.

× These points do not have generic pairwise relations.
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General takeaway I

(Not) learning from crowd data
▶ Weaker feedback may make data easier/cheaper to collect

▶ e.g. triplet→ binary feedback (with latent comparator)

▶ But we may need to pay for it elsewhere
▶ e.g. new fundamental limits/regimes where data carries no information
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Metric learning with subspace-cluster structure
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Real data often exhibit additional structure

Figure 2: An example of data that approximately does not have
generic pairwise relations (Pennington et al., 2014).
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Subspace-clusterability assumption

Assumption:
There are low-dimensional subspaces of Rd that are ‘rich’ with items.

▶ That is, assume that X lies on a union of low-rank subspaces.

▶ e.g. X is sparsely encodable, in the sense of dictionary learning.
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Divide-and-conquer approach

A natural approach:
1. Learn the metric restricted to each of the item-rich subspaces.

2. Stitch the subspace metrics together.
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Subspace Mahalanobis distances

Definition
Let V ⊂ Rd be a subspace. A metric on V is a subspace Mahalanobis distance if it is the
subspace metric of a Mahalanobis distance ρ on Rd ,

ρ
∣∣
V (x, x

′) = ρ(x, x′), ∀x, x′ ∈ V .
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Why can we divide?

Simple case: both items X and user ideal point u belong to V .

▶ Simply reparametrize problem without the extra dimensions V⊥.

▶ Learn ρ
∣∣
V like before.

General case: we cannot assume the user ideal point u belongs to V .

▶ It turns out for any u ∈ Rd , there exists a phantom ideal point ũ in V such that:

ψM(x, x′; u) = ψM(x, x′; ũ), ∀x, x′ ∈ V .

▶ We can no longer recover u, but we can learn ρ
∣∣
V .
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Why can we recombine?

After dividing, we end up with a collection of subspace metric:

ρ
∣∣
V1
, . . . , ρ

∣∣
Vn
.

Result: As long as the subspaces V1, . . . ,Vn quadratically span Rd , there is a
unique Mahalanobis distance on Rd generating the joint subspace metrics.
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Geometric proof

Figure 3: Unit spheres of Mahalanobis distances are ellipsoids in Rd .
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Geometric proof

For Mahalanobis distances:

▶ Metric learning is equivalent to recovering its unit ellipsoid E .

▶ Learning the subspace metric on V correspond to recovering the slice V ∩ E .

Fact from geometry:
We can reconstruct an ellipsoid given enough low-dimensional slices.
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Quadratic spanning

Definition
The subspaces V1, . . . ,Vn ⊂ Rd quadratically span Rd if the (linear) span satisfies:

Sym(Rd) = span
({

xx⊤ : x ∈ V1 ∪ · · · ∪ Vn
})

.
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Metric learning from lazy crowds (simple math setting)

We asked: Suppose we can obtain very few m≪ d measurements per user.
Though ideal points can no longer be learned, is metric learning still possible?

Answer (continuous response model):
▶ In general, this is not possible.

▶ If X is a union of r-dimensional subspaces (r ≪ d), it is possible with:

number of users d2/r
measurements per user 2r
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General takeaway II

Learning from crowd data
▶ Fundamental limit overcome using additional structural assumptions

▶ e.g. generic pairwise relations→ subspace-cluster structure

▶ These structural assumptions could be (approximately) realistic
▶ we could even enforce the structure upsteam
▶ e.g. generate representations via dictionary learning

39 / 59



General takeaway II

Learning from crowd data
▶ Fundamental limit overcome using additional structural assumptions

▶ e.g. generic pairwise relations→ subspace-cluster structure

▶ These structural assumptions could be (approximately) realistic
▶ we could even enforce the structure upsteam
▶ e.g. generate representations via dictionary learning

39 / 59



Goals of the rest of the talk

Up to now:
▶ Fundamental limits of weak and per-user-budgeted crowdsourced data

▶ Paying for weak feedback if there is additional structure

Rest of the talk:
▶ High-level description of statistical/learning-theoretic techniques

▶ A commonly used model for analyzing preference feedback

▶ A fundamental open question: crowdsourced sensing with latent parameters
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Metric learning from non-idealized data
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Divide-and-conquer for idealized data

Divide step:
For each subspace V1, . . . ,Vn, solve a system of linear equations:

Di(Q̂i,w1, . . . ,wK) = Ψi.

Recombine step:
Define Π(M) = (Q1, . . . ,Qn) to be the linear map:

Π : parameters of Mahalanobis distances 7→ parameters of subspace metrics.

Solve a system of linear equations:

M̂ = Π(Q̂1, . . . , Q̂n).
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From linear systems to regression

Question: What happens in the non-idealized setting?

▶ Feedback is inexact/binary/noisy.

▶ The set of items is only approximately subspace clusterable.

Divide step:
Prior work shows shows metric learning from non-idealized feedback.

▶ If we get binary responses, solve a binary regression problem instead.

Recombine step:
We need to show that we can recombine estimated subspace metrics.

▶ Algorithm: perform linear regression instead, and project onto the PSD cone.
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Setting for recombination recovery guarantee

Setting:
▶ Let Vn = {V1, . . . ,Vn} be a collection of subspaces of Rd .

▶ Let Q1, . . . ,Qn be the true parameters of the subspace metrics.

▶ Let Q̂1, . . . , Q̂n be independent estimators of the subspace metrics.

▶ Let M̂ be the projected ordinary least squares solution (on the PSD cone):

M̂OLS = argmin
A∈Sym(Rd)

n∑
i=1
∥Q̂i −ΠVi(A)∥2

M̂ = argmin
A⪰0

∥M̂OLS − A∥2F .
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Recombination recovery guarantee

Assumptions:
▶ The estimators have low-bias: ∥E[Q̂i]− Qi∥ ≤ γ.
▶ The estimators have bounded spread: ∥Q̂i − E[Q̂i]∥ ≤ ε.

Theorem
There is a constant c > 0 such that for any p ∈ (0, 1], with probability at least 1− p,

∥M̂ −M∥F ≤ c · 1
σ(Vn)

·

(
γ
√
n+ εd

√
log

2d
p

)
,

where σ(V) quantifies the ‘quadratic spread’ of subspaces V1, . . . ,Vn in Sym(Rd).
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Proof sketch

For simplicity, we just show bound for ∥M̂OLS −M∥F .
1. Recall the linear map Π(M) = (Q1, . . . ,Qn).

2. The OLS solution is computed by the Moore-Penrose pseudoinverse:

M̂OLS = Π+(Q̂1, . . . , Q̂n).

3. Since Π+ is linear, we get the bound:

∥M̂OLS −M∥2F = ∥Π+(Q̂1 − Q, . . . , Q̂n − Qn)∥2F ≤ σ2max(Π
+)

n∑
i=1
∥Q̂1 − Qi∥2.

4. A more fine-grained bound by decomposition: Q̂ − Q = Q̂ − E[Q̂]︸ ︷︷ ︸
mean-zero r.v.

+E[Q̂]− Q︸ ︷︷ ︸
bias

.

▶ For independent mean-zero error terms, can apply Chernoff-style concentration.
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Interpretation of the bound

Key quantities: n = number of subspaces; γ, ε = subspace recovery bias/accuracy

∥M̂ −M∥F ≤ c · 1
σ(V)

·

(
γ
√
n+ εd

√
log

2d
p

)

▶ σ(Vn) grows with the number of subspaces,

σ(Vn) = Ω(
√
n) is possible.

As n→∞, the dominating term is possibly the bias term γ.
▶ e.g. if the estimators Q̂ have a systematic constant biases γ > 0.
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A noisy feedback model with recovery guarantee
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Probabilistic model

Generalized linear model:
▶ Continuous response: (x, x′, ψ)

ψ ≡ ψM(x, x′; u) = Dx,x′(M, v).

▶ Noisy response: (x, x′, y)

Pr
[
Y = y

∣∣M, x, x′, u] = f
(
y · Dx,x′(M, v)

)
,

where f is a (non-linear) link function.

▶ The link function is the first (and only) instance of a non-linearity in this work.
▶ When f (z) = 1

1+exp(−z) is the sigmoid function, this leads to a logistic regression.

49 / 59



Probabilistic model

Generalized linear model:
▶ Continuous response: (x, x′, ψ)

ψ ≡ ψM(x, x′; u) = Dx,x′(M, v).

▶ Noisy response: (x, x′, y)

Pr
[
Y = y

∣∣M, x, x′, u] = f
(
y · Dx,x′(M, v)

)
,

where f is a (non-linear) link function.

▶ The link function is the first (and only) instance of a non-linearity in this work.
▶ When f (z) = 1

1+exp(−z) is the sigmoid function, this leads to a logistic regression.

49 / 59



Probabilistic model

Generalized linear model:
▶ Continuous response: (x, x′, ψ)

ψ ≡ ψM(x, x′; u) = Dx,x′(M, v).

▶ Noisy response: (x, x′, y)

Pr
[
Y = y

∣∣M, x, x′, u] = f
(
y · Dx,x′(M, v)

)
,

where f is a (non-linear) link function.
▶ The link function is the first (and only) instance of a non-linearity in this work.

▶ When f (z) = 1
1+exp(−z) is the sigmoid function, this leads to a logistic regression.

49 / 59



Probabilistic model

Generalized linear model:
▶ Continuous response: (x, x′, ψ)

ψ ≡ ψM(x, x′; u) = Dx,x′(M, v).

▶ Noisy response: (x, x′, y)

Pr
[
Y = y

∣∣M, x, x′, u] = f
(
y · Dx,x′(M, v)

)
,

where f is a (non-linear) link function.
▶ The link function is the first (and only) instance of a non-linearity in this work.
▶ When f (z) = 1

1+exp(−z) is the sigmoid function, this leads to a logistic regression.

49 / 59



Setting for subspace metric recovery

Setting:
▶ Assume that user provide measurements (x, x′, Y) where Y ∈ {−1,+1},

Pr
[
Y = y

]
= f
(
− y · Dx,x′(M, v)

)
,

where f is the sigmoid link function.

▶ We can perform maximum likelihood estimation:

(M̂, v̂1, . . . , v̂k)← argmax
(A,w1,...,wK )

∑
k

∑
(x,x′,Y)

log f
(
− Y · Dx,x′(M, vk)

)
.

▶ Assume ∥M∥∞ ≤ 1 and items and ideal points are contained in unit Euclidean ball.
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Analysis via generalization

Theorem (Metric recovery, adapted from Canal et al. (2022))
Let X quadratically span Rd . There exists designs D(k) asking for m responses from each of
K users such that from that data, the maximum likelihood estimator M̂ satisfies w.h.p.:

∥M̂ −M∥2F = O

(√
d2 + dK
mK

)
.

▶ Proof uses standard techniques from generalization theory.

▶ The d2 + dK term comes from a metric entropy bound on:

{(A, u1, . . . , uK) : ∥A∥∞ ≤ 1 and ∥uk∥ ≤ 1,∀k}.

▶ When K ≫ d2, the dominating term is
√
d/m.
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Open question

Weakness of analysis, weakness of naive ERM, or fundamental limit?
▶ The generalization approach actually shows:

∥M̂ −M∥2F +
K∑

k=1

∥v̂k − vk∥2 = O

(√
d2 + dK
mK

)
.

▶ But, we only care about learning the parameters of M .

▶ This analysis does not seem to allow us to decouple estimating M̂ and v̂k .

▶ Is the analysis loose? Is there a better algorithm? Is there a fundamental limit?

52 / 59



Open question

Weakness of analysis, weakness of naive ERM, or fundamental limit?
▶ The generalization approach actually shows:

∥M̂ −M∥2F +
K∑

k=1

∥v̂k − vk∥2 = O

(√
d2 + dK
mK

)
.

▶ But, we only care about learning the parameters of M .

▶ This analysis does not seem to allow us to decouple estimating M̂ and v̂k .

▶ Is the analysis loose? Is there a better algorithm? Is there a fundamental limit?

52 / 59



Implication for metric learning

Suppose K users provide m measurements on rank-r subspaces.

Subspace metric error:

γ + ε ≤ O

(√
r2 + rK
mK

)
.

Metric error after recombination:

∥M̂ −M∥F ≤ c · 1
σ(V)

·

(
γ
√
n+ εd

√
log

2d
p

)

When K ≫ d, then there are settings with: ∥M̂ −M∥F = O
(√

r
m

)
.
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Additional open problems
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Further questions

Other structure:
▶ Low rank metrics; non-linear representations/kernel extension

▶ Learning with approximate subspace clusters

▶ Learning with structured user sets

Inducing structure:
▶ What are good representations for human/crowdsourced labeling?

Statistics:
▶ Other noise/preference models (e.g. Bradley-Terry model)

▶ Semi-parametric estimation

▶ Robust recovery
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Thank you!

See https://geelon.github.io/ for preprint.
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