Metric learning from lazy, opinionated crowds

i.e., from limited pairwise preference comparisons

Geelon So, agso@ucsd.edu EnCORE Student Social – February 26, 2024 An opinionated member of society

An opinionated member of society

I prefer Blade Runner over Godzilla.

An opinionated member of society

I prefer Blade Runner over Godzilla.

For it is more similar to my favorite movie **The Matrix**.

Metric learning from preferences

Question:

Suppose a lot of people on the internet tell us these sorts of pairwise movie rankings.

Metric learning from preferences

Question:

Suppose a lot of people on the internet tell us these sorts of pairwise movie rankings.

• Can we learn a metric that captures the similarity of movies in general?

Background

Distance-based algorithms

- nearest neighbor methods
- margin-based classification
- information retrieval
- clustering
- ► etc.

Distance-based algorithms

- nearest neighbor methods
- margin-based classification
- information retrieval
- clustering
- ► etc.

The behavior/performance are often sensitive to the choice of distance.

Distance-based algorithms

- nearest neighbor methods
- margin-based classification
- information retrieval
- clustering
- ► etc.

- The behavior/performance are often sensitive to the choice of distance.
- ► Good metrics (e.g. for visual similarity) are hard to construct by hand.

Distance-based algorithms

- nearest neighbor methods
- margin-based classification
- information retrieval
- clustering

► etc.

- The behavior/performance are often sensitive to the choice of distance.
- Good metrics (e.g. for visual similarity) are hard to construct by hand.

Goal of metric learning:

Automatically learn a good metric for these downstream tasks

Distance-based algorithms

- nearest neighbor methods
- margin-based classification
- information retrieval
- clustering

► etc.

- The behavior/performance are often sensitive to the choice of distance.
- Good metrics (e.g. for visual similarity) are hard to construct by hand.

Goal of metric learning:

Automatically learn a good metric for these downstream tasks

• esp. metrics aligning with human values, perception, and preferences.

The alignment problem

Figure 1: These two images are visually indistinguishable to a human, but very well-separated under the Euclidean distance (Goodfellow et al., 2014).

Metric learning from triplet comparisons

Metric learning from triplet comparisons

• Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.

Metric learning from triplet comparisons

- Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ▶ Feedback: "*A* is more similar to *B* than to *C*."

Metric learning from triplet comparisons

- Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ▶ Feedback: "A is more similar to B than to C."

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

Metric learning from triplet comparisons

- Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ▶ Feedback: "A is more similar to B than to C."

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

Metric learning from triplet comparisons

- Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ▶ Feedback: "A is more similar to B than to C."

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

Simultaneous metric and preference learning

Assumption: a user has an *ideal item* A and prefers items more similar to A.

Metric learning from triplet comparisons

- Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ▶ Feedback: "A is more similar to B than to C."

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

- Assumption: a user has an *ideal item* A and prefers items more similar to A.
- Goal: given a set of items \mathcal{X} , learn ideal item A and metric ρ capturing similarity.

Metric learning from triplet comparisons

- Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ▶ Feedback: "A is more similar to B than to C."

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

- Assumption: a user has an *ideal item* A and prefers items more similar to A.
- Goal: given a set of items \mathcal{X} , learn ideal item A and metric ρ capturing similarity.
- ► Feedback: "I prefer *B* over *C*."

Metric learning from triplet comparisons

- Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ▶ Feedback: "A is more similar to B than to C."

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

- Assumption: a user has an *ideal item* A and prefers items more similar to A.
- Goal: given a set of items \mathcal{X} , learn ideal item A and metric ρ capturing similarity.
- ► Feedback: "I prefer *B* over *C*."
 - ▶ triplet comparison with a latent comparator (i.e. *A* is not observed)

Metric learning from triplet comparisons

- Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ▶ Feedback: "A is more similar to B than to C."

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

- Assumption: a user has an *ideal item* A and prefers items more similar to A.
- Goal: given a set of items \mathcal{X} , learn ideal item A and metric ρ capturing similarity.
- ► Feedback: "I prefer *B* over *C*."
 - ▶ triplet comparison with a latent comparator (i.e. *A* is not observed)
 - > much more prevalent form of feedback than triplet comparisons

Metric learning from triplet comparisons

- Goal: given a set of items \mathcal{X} , learn a metric ρ over the items.
- ▶ Feedback: "A is more similar to B than to C."

Schultz and Joachims (2003), Verma and Branson (2015), Mason et al. (2017)

Simultaneous metric and preference learning

- Assumption: a user has an *ideal item* A and prefers items more similar to A.
- Goal: given a set of items \mathcal{X} , learn ideal item A and metric ρ capturing similarity.
- ▶ Feedback: "I prefer *B* over *C*."
 - ▶ triplet comparison with a latent comparator (i.e. *A* is not observed)
 - much more prevalent form of feedback than triplet comparisons

Xu and Davenport (2020) and Canal et al. (2022)

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

▶ we can learn ρ_M using $\Theta(d^2)$ measurements from a single user

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

- ▶ we can learn ρ_M using $\Theta(d^2)$ measurements from a single user
- \blacktriangleright or, using $\Theta(d)$ measurements from $\Omega(d)$ users

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

- ▶ we can learn ρ_M using $\Theta(d^2)$ measurements from a single user
- or, using $\Theta(d)$ measurements from $\Omega(d)$ users
 - \blacktriangleright $\Theta(d)$ is necessary for simultaneous recovery of metric and ideal points

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

- we can learn ρ_M using $\Theta(d^2)$ measurements from a single user
- or, using $\Theta(d)$ measurements from $\Omega(d)$ users
 - \blacktriangleright $\Theta(d)$ is necessary for simultaneous recovery of metric and ideal points

Limitations:

> modern representations of data can be extremely high dimensional

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

- we can learn ρ_M using $\Theta(d^2)$ measurements from a single user
- or, using $\Theta(d)$ measurements from $\Omega(d)$ users
 - \blacktriangleright $\Theta(d)$ is necessary for simultaneous recovery of metric and ideal points

Limitations:

- > modern representations of data can be extremely high dimensional
- \blacktriangleright it could be infeasible to obtain $\Theta(d)$ measurements per user

Let \mathbb{R}^d be equipped with an unknown Mahalanobis distance ρ_M .

What is known:

- ▶ we can learn ρ_M using $\Theta(d^2)$ measurements from a single user
- or, using $\Theta(d)$ measurements from $\Omega(d)$ users
 - \blacktriangleright $\Theta(d)$ is necessary for simultaneous recovery of metric and ideal points

Limitations:

- > modern representations of data can be extremely high dimensional
- $\blacktriangleright\,$ it could be infeasible to obtain $\Theta(d)$ measurements per user

Our work: Let's just give up on trying to learn the ideal points. We ask: *Can we recover the metric using m* \ll *d measurements per user?*

Preliminaries

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

• Assume \mathbb{R}^d is equipped with an unknown Mahalanobis distance ρ_M .

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

• Assume \mathbb{R}^d is equipped with an unknown Mahalanobis distance ρ_M .

Feedback model

Users provide preference feedback under the *ideal point model* (Coombs, 1950).

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

• Assume \mathbb{R}^d is equipped with an unknown Mahalanobis distance ρ_M .

Feedback model

Users provide preference feedback under the *ideal point model* (Coombs, 1950).

▶ Assume each user has a ideal point $u \in \mathbb{R}^d$ (which we cannot observe).

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

• Assume \mathbb{R}^d is equipped with an unknown Mahalanobis distance ρ_M .

Feedback model

Users provide preference feedback under the *ideal point model* (Coombs, 1950).

- ▶ Assume each user has a ideal point $u \in \mathbb{R}^d$ (which we cannot observe).
- The user prefers an item x over x' whenever:

 $\rho_M(u,x) < \rho(u,x').$
Formal setting

Representation space

Let \mathcal{X} be a set of items embedded into \mathbb{R}^d .

• Assume \mathbb{R}^d is equipped with an unknown Mahalanobis distance ρ_M .

Feedback model

Users provide preference feedback under the *ideal point model* (Coombs, 1950).

▶ Assume each user has a ideal point $u \in \mathbb{R}^d$ (which we cannot observe).

• The user prefers an item x over x' whenever:

$$\rho_M(u,x) < \rho(u,x').$$

▶ We receive measurements from users of the form:

$$(x, x', y)$$
 where $y = \mathbf{1} \{ \rho_M(u, x) < \rho_M(u, x') \}.$

A *Mahalanobis distance* ρ_M on \mathbb{R}^d is a metric of the form:

$$\rho_M(x, x') = \sqrt{(x - x')^\top M(x - x')} = \|x - x'\|_M,$$

A *Mahalanobis distance* ρ_M on \mathbb{R}^d is a metric of the form:

$$\rho_M(x, x') = \sqrt{(x - x')^\top M(x - x')} = \|x - x'\|_M,$$

where $M \in \text{Sym}(\mathbb{R}^d)$ is a positive-definite (symmetric) matrix.

A *Mahalanobis distance* ρ_M on \mathbb{R}^d is a metric of the form:

$$\rho_M(x, x') = \sqrt{(x - x')^\top M(x - x')} = \|x - x'\|_M,$$

where $M \in \operatorname{Sym}(\mathbb{R}^d)$ is a positive-definite (symmetric) matrix.

Geometric interpretation

▶
$$M = A^{\top}A$$
 for some $A \in \mathbb{R}^{d \times d}$ since $M \succ 0$.

A *Mahalanobis distance* ρ_M on \mathbb{R}^d is a metric of the form:

$$\rho_M(x, x') = \sqrt{(x - x')^\top M(x - x')} = \|x - x'\|_M,$$

where $M \in \operatorname{Sym}(\mathbb{R}^d)$ is a positive-definite (symmetric) matrix.

Geometric interpretation

•
$$M = A^{\top}A$$
 for some $A \in \mathbb{R}^{d \times d}$ since $M \succ 0$.

• Let $\Phi(x) = Ax$ be a new (linear) representation. Then:

$$\rho_M(x, x') = \|\Phi(x) - \Phi(x')\|_2.$$

A mathematical simplification

A user with ideal point $u \in \mathbb{R}^d$ can give two types of feedback:

A mathematical simplification

A user with ideal point $u \in \mathbb{R}^d$ can give two types of feedback:

Continuous responses: measurements of the form (x, x', ψ) , where:

$$\psi \equiv \psi_M(x, x'; u) = \|u - x\|_M^2 - \|u - x'\|_M^2$$

> Not realistic form of feedback, but mathematically easy to work with.

A mathematical simplification

A user with ideal point $u \in \mathbb{R}^d$ can give two types of feedback:

Continuous responses: measurements of the form (x, x', ψ) , where:

$$\psi \equiv \psi_M(x, x'; u) = \|u - x\|_M^2 - \|u - x'\|_M^2$$

> Not realistic form of feedback, but mathematically easy to work with.

Binary responses: measurements of the form (x, x', y) where:

$$y=\mathbf{1}\big\{\psi<0\big\}.$$

A linear reparametrization (Canal et al., 2022)

Let $x, x' \in \mathbb{R}^d$ be two items. If a user has ideal point $u \in \mathbb{R}^d$, then:

$$\psi_M(x, x'; u) = \underbrace{\langle xx^\top - x'x'^\top, M \rangle}_{(1)} + \underbrace{\langle x - x', v \rangle}_{(2)}, \quad \text{where } \underbrace{v = -2Mu}_{(3)}.$$

A linear reparametrization (Canal et al., 2022)

Let $x, x' \in \mathbb{R}^d$ be two items. If a user has ideal point $u \in \mathbb{R}^d$, then:

$$\psi_M(x, x'; u) = \underbrace{\langle xx^\top - x'x'^\top, M \rangle}_{(1)} + \underbrace{\langle x - x', v \rangle}_{(2)}, \quad \text{where } \underbrace{v = -2Mu}_{(3)}.$$

- (xx^T − x'x'^T, M) is the trace inner product on Sym(ℝ^d), where (A, B) = tr(AB).
 (x − x', v) is the standard inner product on ℝ^d.
- 3. The reparametrization v = -2Mu is called the user's *pseudo-ideal point*.

A linear reparametrization (Canal et al., 2022)

Let $x, x' \in \mathbb{R}^d$ be two items. If a user has ideal point $u \in \mathbb{R}^d$, then:

$$\psi_M(x, x'; u) = \underbrace{\langle xx^\top - x'x'^\top, M \rangle}_{(1)} + \underbrace{\langle x - x', v \rangle}_{(2)}, \quad \text{where } \underbrace{v = -2Mu}_{(3)}.$$

- (xx^T − x'x'^T, M) is the trace inner product on Sym(ℝ^d), where (A, B) = tr(AB).
 (x − x', v) is the standard inner product on ℝ^d.
- 3. The reparametrization v = -2Mu is called the user's *pseudo-ideal point*.

Upshot: Reparametrize (M, u) to (M, v). Then, the following map is linear:

 $(M, v) \mapsto \psi_M(x, x'; u).$

Design matrices

Let $\{(x_{i_0}, x_{i_1})\}_{i=1}^m$ be a set of item pairs.

• Define the linear map $D : \operatorname{Sym}(\mathbb{R}^d) \oplus \mathbb{R}^d \to \mathbb{R}^m$:

$$D_i(A,w) = ig\langle x_{i_0}x_{i_0}^ op - x_{i_1}'x_{i_1}'^ op, Aig
angle + ig\langle x_{i_0} - x_{i_1}',wig
angle.$$

▶ We call *D* the **design matrix** induced by the item pairs.

Suppose a user provides us with measurements $\{(x_{i_0}, x_{i_1}, \psi_i)\}_{i=1}^m$, where:

 $\psi_i = \psi_M(x_{i_0}, x_{i_1}; u).$

Suppose a user provides us with measurements $\{(x_{i_0}, x_{i_1}, \psi_i)\}_{i=1}^m$, where:

 $\psi_i = \psi_M(x_{i_0}, x_{i_1}; u).$

• We can recover (M, u) by solving the linear system of equations:

 $D_i(A, w) = \psi_i.$

Suppose a user provides us with measurements $\{(x_{i_0}, x_{i_1}, \psi_i)\}_{i=1}^m$, where:

 $\psi_i = \psi_M(x_{i_0}, x_{i_1}; u).$

• We can recover (M, u) by solving the linear system of equations:

 $D_i(A, w) = \psi_i.$

• The pair (M, v) of the Mahalanobis matrix and pseudo-ideal point is a solution.

Suppose a user provides us with measurements $\{(x_{i_0}, x_{i_1}, \psi_i)\}_{i=1}^m$, where:

 $\psi_i = \psi_M(x_{i_0}, x_{i_1}; u).$

• We can recover (M, u) by solving the linear system of equations:

$$D_i(A, w) = \psi_i.$$

▶ The pair (M, v) of the Mahalanobis matrix and pseudo-ideal point is a solution.
 ▶ The ideal point can be computed from the pseudo-ideal point since v = -2Mu.

Suppose a user provides us with measurements $\{(x_{i_0}, x_{i_1}, \psi_i)\}_{i=1}^m$, where:

 $\psi_i = \psi_M(x_{i_0}, x_{i_1}; u).$

• We can recover (M, u) by solving the linear system of equations:

$$D_i(A, w) = \psi_i$$

▶ The pair (M, v) of the Mahalanobis matrix and pseudo-ideal point is a solution.
 ▶ The ideal point can be computed from the pseudo-ideal point since v = -2Mu.
 ▶ To recover the metric and ideal point, m = d(d+1)/2 + d measurements is necessary.

Generalization to multiple users

Suppose *K* users provide us with measurements (on distinct pairs of items).

Generalization to multiple users

- ▶ Suppose *K* users provide us with measurements (on distinct pairs of items).
- ▶ Recover the metric and all ideal points by solving a linear system of equations:

$$\mathbf{D}(A, w_1, \ldots, w_K) = \Psi,$$

where $A \in \text{Sym}(\mathbb{R}^d)$ and each $w_k \in \mathbb{R}^d$.

Generalization to multiple users

- ▶ Suppose *K* users provide us with measurements (on distinct pairs of items).
- ▶ Recover the metric and all ideal points by solving a linear system of equations:

$$\mathbf{D}(A, w_1, \ldots, w_K) = \Psi,$$

where
$$A \in \text{Sym}(\mathbb{R}^d)$$
 and each $w_k \in \mathbb{R}^d$.

Known results

▶ At least *d* measurements from each user is necessary to recover ideal points.

Generalization to multiple users

- ▶ Suppose *K* users provide us with measurements (on distinct pairs of items).
- ▶ Recover the metric and all ideal points by solving a linear system of equations:

$$\mathbf{D}(A, w_1, \ldots, w_K) = \Psi,$$

where
$$A \in \text{Sym}(\mathbb{R}^d)$$
 and each $w_k \in \mathbb{R}^d$.

Known results

▶ At least *d* measurements from each user is necessary to recover ideal points.

- Recovering (M, u_1, \ldots, u_K) is possible:
 - From 2*d* measurements per user if $K = \Omega(d)$

Generalization to multiple users

- ▶ Suppose *K* users provide us with measurements (on distinct pairs of items).
- ▶ Recover the metric and all ideal points by solving a linear system of equations:

$$\mathbf{D}(A, w_1, \ldots, w_K) = \Psi,$$

where
$$A \in \text{Sym}(\mathbb{R}^d)$$
 and each $w_k \in \mathbb{R}^d$.

Known results

- ► At least *d* measurements from each user is necessary to recover ideal points.
- Recovering (M, u_1, \ldots, u_K) is possible:
 - From 2*d* measurements per user if $K = \Omega(d)$
 - From d + 1 measurements per user if $K = \Omega(d^2)$.

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

High-level structure:

• Matrix sensing problem: learn the parameters of $M \in \text{Sym}(\mathbb{R}^d)$.

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

- Matrix sensing problem: learn the parameters of $M \in \text{Sym}(\mathbb{R}^d)$.
- ▶ We have access to a large pool of sensors (users + items).

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

- Matrix sensing problem: learn the parameters of $M \in \text{Sym}(\mathbb{R}^d)$.
- ▶ We have access to a large pool of sensors (users + items).
 - > Part of the measurement parameters are latent (unknown ideal points).

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

- Matrix sensing problem: learn the parameters of $M \in \text{Sym}(\mathbb{R}^d)$.
- ▶ We have access to a large pool of sensors (users + items).
 - > Part of the measurement parameters are latent (unknown ideal points).
 - > Previous work: learn latent parameters along with *M*.

We ask: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

- Matrix sensing problem: learn the parameters of $M \in \text{Sym}(\mathbb{R}^d)$.
- ▶ We have access to a large pool of sensors (users + items).
 - > Part of the measurement parameters are latent (unknown ideal points).
 - ▶ Previous work: learn latent parameters along with *M*.
- Our regime: too few measurements per user to learn latent parameters.

An impossibility result

Setting for impossibility result

Setting.

- Let $\mathcal{X} \subset (\mathbb{R}^d, \rho_M)$ be a countable set of items.
- Let user $k \in \mathbb{N}$ have pseudo-ideal point v_k .
- We ask $m \leq d$ pairwise comparisons per user over items in \mathcal{X} .
 - Let $D^{(k)}$ be the design matrix for user k.

Theorem (Impossibility result)

For (i) almost all sets X,

Theorem (Impossibility result)

For (i) almost all sets \mathcal{X} ,(ii) any set of designs $D^{(k)}$,

Theorem (Impossibility result)

For (i) almost all sets \mathcal{X} ,(ii) any set of designs $D^{(k)}$, and (iii) any $M' \in \text{Sym}(\mathbb{R}^d)$,

Theorem (Impossibility result)

For (i) almost all sets \mathcal{X} ,(ii) any set of designs $D^{(k)}$,and (iii) any $M' \in \text{Sym}(\mathbb{R}^d)$,there exists $v'_k \in \mathbb{R}^d$ such that:

$$D^{(k)}(M, v_k) = D^{(k)}(M', v'_k), \qquad \forall k \in \mathbb{N}.$$

• That is, M' is consistent with observed data.

Theorem (Impossibility result)

For (i) almost all sets \mathcal{X} ,(ii) any set of designs $D^{(k)}$,and (iii) any $M' \in \text{Sym}(\mathbb{R}^d)$,there exists $v'_k \in \mathbb{R}^d$ such that:

$$D^{(k)}(M, v_k) = D^{(k)}(M', v'_k), \qquad \forall k \in \mathbb{N}.$$

- That is, M' is consistent with observed data.
- Each user introduces enough degrees of freedom to account for all variation in data.

Theorem (Impossibility result)

For (i) almost all sets \mathcal{X} ,(ii) any set of designs $D^{(k)}$,and (iii) any $M' \in \text{Sym}(\mathbb{R}^d)$,there exists $v'_k \in \mathbb{R}^d$ such that:

$$D^{(k)}(M, v_k) = D^{(k)}(M', v'_k), \qquad \forall k \in \mathbb{N}.$$

- That is, M' is consistent with observed data.
- Each user introduces enough degrees of freedom to account for all variation in data.
- ▶ Not only is recovery impossible, but we learn nothing at all about *M*.
Which sets do "almost all" item sets refer to?

Theorem (Impossibility result)

When (i) \mathcal{X} has generic pairwise relations, (ii) ... the impossibility result holds.

Which sets do "almost all" item sets refer to?

Theorem (Impossibility result)

When (i) \mathcal{X} has generic pairwise relations, (ii) ... the impossibility result holds.

▶ We introduce a notion of genericity, slightly stronger than *general linear position*.

Which sets do "almost all" item sets refer to?

Theorem (Impossibility result)

When (i) \mathcal{X} has generic pairwise relations, (ii) . . . the impossibility result holds.

▶ We introduce a notion of genericity, slightly stronger than *general linear position*.

Almost all finite sets are generic in this sense (w.r.t. Lebesgue measure on \mathbb{R}^d).

General linear position

Definition

A set $\mathcal{X} \subset \mathbb{R}^d$ is in general linear position if the following is linearly independent:

$$\{x_i-x_0: i=1,\ldots,n\},\$$

for any distinct $x_0, x_1, \ldots, x_n \in \mathcal{X}$ and $n \leq d$.

A set of points $\mathcal{X} \subset \mathbb{R}^d$.

General linear position: alternate definition

Definition

A set $\mathcal{X} \subset \mathbb{R}^d$ is in general linear position if for any star graph $G = (V \subset \mathcal{X}, E)$ with $|E| \leq d$, the following is linearly independent:

$${x - x' : (x, x') \in E}.$$

A set of points $\mathcal{X} \subset \mathbb{R}^d$.

Generic pairwise relation

Definition

A set $\mathcal{X} \subset \mathbb{R}^d$ has generic pairwise relations if for any acyclic graph $G = (\mathcal{X}, E)$ with $|E| \leq d$, the following is linearly independent:

$${x-x':(x,x')\in E}.$$

A set of points $\mathcal{X} \subset \mathbb{R}^d$.

Generic pairwise relations \implies general linear position

Proof.

A star graph with at most d edges is an acyclic graph with at most d edges.

General linear position \Rightarrow generic pairwise relations

- ✓ General linear position—no three points are colinear.
- × These points do not have generic pairwise relations.

General takeaway I

(Not) learning from crowd data

- ▶ Weaker feedback may make data easier/cheaper to collect
 - \blacktriangleright e.g. triplet \rightarrow binary feedback (with latent comparator)

General takeaway I

(Not) learning from crowd data

- ▶ Weaker feedback may make data easier/cheaper to collect
 - \blacktriangleright e.g. triplet \rightarrow binary feedback (with latent comparator)
- But we may need to pay for it elsewhere
 - ▶ e.g. new fundamental limits/regimes where data carries no information

Metric learning with subspace-cluster structure

Real data often exhibit additional structure

Figure 2: An example of data that approximately *does not have* generic pairwise relations (Pennington et al., 2014).

Subspace-clusterability assumption

Assumption:

There are low-dimensional subspaces of \mathbb{R}^d that are 'rich' with items.

 \blacktriangleright That is, assume that \mathcal{X} lies on a union of low-rank subspaces.

Subspace-clusterability assumption

Assumption:

There are low-dimensional subspaces of \mathbb{R}^d that are 'rich' with items.

- \blacktriangleright That is, assume that \mathcal{X} lies on a union of low-rank subspaces.
- e.g. \mathcal{X} is *sparsely encodable*, in the sense of dictionary learning.

Divide-and-conquer approach

A natural approach:

- 1. Learn the metric restricted to each of the item-rich subspaces.
- 2. Stitch the subspace metrics together.

Subspace Mahalanobis distances

Definition

Let $V \subset \mathbb{R}^d$ be a subspace. A metric on V is a subspace Mahalanobis distance if it is the subspace metric of a Mahalanobis distance ρ on \mathbb{R}^d ,

$$\rho|_V(x,x') = \rho(x,x'), \qquad \forall x,x' \in V.$$

Simple case: both items \mathcal{X} and user ideal point *u* belong to *V*.

Simple case: both items \mathcal{X} and user ideal point *u* belong to *V*.

- Simply reparametrize problem without the extra dimensions V^{\perp} .
- Learn $\rho|_V$ like before.

Simple case: both items \mathcal{X} and user ideal point *u* belong to *V*.

- Simply reparametrize problem without the extra dimensions V^{\perp} .
- Learn $\rho|_V$ like before.

General case: we cannot assume the user ideal point *u* belongs to *V*.

Simple case: both items \mathcal{X} and user ideal point *u* belong to *V*.

- Simply reparametrize problem without the extra dimensions V^{\perp} .
- Learn $\rho|_V$ like before.

General case: we cannot assume the user ideal point u belongs to V.

▶ It turns out for any $u \in \mathbb{R}^d$, there exists a **phantom ideal point** \tilde{u} in *V* such that:

$$\psi_M(x,x';u)=\psi_M(x,x'; ilde{u}), \qquad orall x,x'\in V \ .$$

Simple case: both items \mathcal{X} and user ideal point *u* belong to *V*.

- Simply reparametrize problem without the extra dimensions V^{\perp} .
- Learn $\rho|_V$ like before.

General case: we cannot assume the user ideal point u belongs to V.

▶ It turns out for any $u \in \mathbb{R}^d$, there exists a **phantom ideal point** \tilde{u} in *V* such that:

$$\psi_M(x,x';u) = \psi_M(x,x';\tilde{u}), \qquad orall x,x' \in V \ .$$

• We can no longer recover u, but we can learn $\rho|_{V}$.

After dividing, we end up with a collection of subspace metric:

$$\rho\big|_{V_1},\ldots,\rho\big|_{V_n}.$$

After dividing, we end up with a collection of subspace metric:

$$o|_{V_1},\ldots,\rho|_{V_n}.$$

Result: As long as the subspaces V_1, \ldots, V_n quadratically span \mathbb{R}^d , there is a unique Mahalanobis distance on \mathbb{R}^d generating the joint subspace metrics.

Figure 3: Unit spheres of Mahalanobis distances are ellipsoids in \mathbb{R}^d .

For Mahalanobis distances:

• Metric learning is equivalent to recovering its unit ellipsoid \mathcal{E} .

For Mahalanobis distances:

- Metric learning is equivalent to recovering its unit ellipsoid \mathcal{E} .
- Learning the subspace metric on V correspond to recovering the slice $V \cap \mathcal{E}$.

For Mahalanobis distances:

- Metric learning is equivalent to recovering its unit ellipsoid \mathcal{E} .
- Learning the subspace metric on V correspond to recovering the slice $V \cap \mathcal{E}$.

Fact from geometry:

We can reconstruct an ellipsoid given enough low-dimensional slices.

Quadratic spanning

Definition

The subspaces $V_1, \ldots, V_n \subset \mathbb{R}^d$ quadratically span \mathbb{R}^d if the (linear) span satisfies:

$$\operatorname{Sym}(\mathbb{R}^d) = \operatorname{span}\left(\left\{xx^\top : x \in V_1 \cup \cdots \cup V_n\right\}\right).$$

Metric learning from lazy crowds (simple math setting)

We asked: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

Metric learning from lazy crowds (simple math setting)

We asked: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

Answer (continuous response model):

► In general, this is not possible.

Metric learning from lazy crowds (simple math setting)

We asked: Suppose we can obtain very few $m \ll d$ measurements per user. Though ideal points can no longer be learned, is metric learning still possible?

Answer (continuous response model):

- ► In general, this is not possible.
- ▶ If X is a union of *r*-dimensional subspaces ($r \ll d$), it is possible with:

number of users	d^2/r
measurements per user	2r

General takeaway II

Learning from crowd data

- ▶ Fundamental limit overcome using additional structural assumptions
 - \blacktriangleright e.g. generic pairwise relations \rightarrow subspace-cluster structure

Learning from crowd data

- ▶ Fundamental limit overcome using additional structural assumptions
 - $\blacktriangleright\,$ e.g. generic pairwise relations \rightarrow subspace-cluster structure
- ▶ These structural assumptions could be (approximately) realistic
 - ▶ we could even enforce the structure upsteam
 - e.g. generate representations via dictionary learning

Goals of the rest of the talk

Up to now:

- Fundamental limits of weak and per-user-budgeted crowdsourced data
- > Paying for weak feedback if there is additional structure

Goals of the rest of the talk

Up to now:

- Fundamental limits of weak and per-user-budgeted crowdsourced data
- > Paying for weak feedback if there is additional structure

Rest of the talk:

- ▶ High-level description of statistical/learning-theoretic techniques
- ► A commonly used model for analyzing preference feedback
- ► A fundamental open question: crowdsourced sensing with latent parameters

Metric learning from non-idealized data
Divide-and-conquer for idealized data

Divide step: For each subspace V_1, \ldots, V_n , solve a system of linear equations:

 $\mathbf{D}_i(\hat{Q}_i, w_1, \ldots, w_K) = \Psi_i.$

Recombine step: Define $\Pi(M) = (Q_1, \dots, Q_n)$ to be the linear map:

 Π : parameters of Mahalanobis distances \mapsto parameters of subspace metrics.

Solve a system of linear equations:

$$\hat{M} = \Pi(\hat{Q}_1, \ldots, \hat{Q}_n).$$

Question: What happens in the non-idealized setting?

Question: What happens in the non-idealized setting?

- ► Feedback is inexact/binary/noisy.
- ► The set of items is only approximately subspace clusterable.

Question: What happens in the non-idealized setting?

- ► Feedback is inexact/binary/noisy.
- ► The set of items is only approximately subspace clusterable.

Divide step: Prior work shows metric learning from non-idealized feedback.

▶ If we get binary responses, solve a **binary regression** problem instead.

Question: What happens in the non-idealized setting?

- ► Feedback is inexact/binary/noisy.
- ► The set of items is only approximately subspace clusterable.

Divide step:

Prior work shows shows metric learning from non-idealized feedback.

▶ If we get binary responses, solve a binary regression problem instead.

Recombine step:

We need to show that we can recombine estimated subspace metrics.

► Algorithm: perform linear regression instead, and project onto the PSD cone.

• Let
$$\mathcal{V}_n = \{V_1, \ldots, V_n\}$$
 be a collection of subspaces of \mathbb{R}^d .

- Let $\mathcal{V}_n = \{V_1, \ldots, V_n\}$ be a collection of subspaces of \mathbb{R}^d .
- Let Q_1, \ldots, Q_n be the **true parameters** of the subspace metrics.

- Let $\mathcal{V}_n = \{V_1, \ldots, V_n\}$ be a collection of subspaces of \mathbb{R}^d .
- Let Q_1, \ldots, Q_n be the **true parameters** of the subspace metrics.
- Let $\hat{Q}_1, \ldots, \hat{Q}_n$ be independent estimators of the subspace metrics.

- Let $\mathcal{V}_n = \{V_1, \ldots, V_n\}$ be a collection of subspaces of \mathbb{R}^d .
- Let Q_1, \ldots, Q_n be the **true parameters** of the subspace metrics.
- Let $\hat{Q}_1, \ldots, \hat{Q}_n$ be independent estimators of the subspace metrics.
- Let \hat{M} be the projected ordinary least squares solution (on the PSD cone):

$$\hat{M}_{\text{OLS}} = \operatorname*{arg\,min}_{A \in \operatorname{Sym}(\mathbb{R}^d)} \sum_{i=1}^n \|\hat{Q}_i - \Pi_{V_i}(A)\|^2$$
$$\hat{M} = \operatorname*{arg\,min}_{A \succeq 0} \|\hat{M}_{\text{OLS}} - A\|_F^2.$$

Recombination recovery guarantee

Assumptions:

- The estimators have low-bias: $\|\mathbb{E}[\hat{Q}_i] Q_i\| \leq \gamma$.
- The estimators have bounded spread: $\|\hat{Q}_i \mathbb{E}[\hat{Q}_i]\| \leq \varepsilon$.

Recombination recovery guarantee

Assumptions:

- The estimators have low-bias: $\|\mathbb{E}[\hat{Q}_i] Q_i\| \leq \gamma$.
- The estimators have bounded spread: $\|\hat{Q}_i \mathbb{E}[\hat{Q}_i]\| \leq \varepsilon$.

Theorem

There is a constant c > 0 *such that for any* $p \in (0, 1]$ *, with probability at least* 1 - p*,*

$$\|\hat{M} - M\|_F \le c \cdot rac{1}{\sigma(\mathcal{V}_n)} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log rac{2d}{p}}\right),$$

where $\sigma(\mathcal{V})$ quantifies the 'quadratic spread' of subspaces V_1, \ldots, V_n in Sym (\mathbb{R}^d) .

For simplicity, we just show bound for $\|\hat{M}_{OLS} - M\|_F$.

1. Recall the linear map $\Pi(M) = (Q_1, \ldots, Q_n)$.

For simplicity, we just show bound for $\|\hat{M}_{OLS} - M\|_F$.

- 1. Recall the linear map $\Pi(M) = (Q_1, \ldots, Q_n)$.
- 2. The OLS solution is computed by the Moore-Penrose pseudoinverse:

$$\hat{M}_{\text{OLS}} = \Pi^+(\hat{Q}_1, \ldots, \hat{Q}_n).$$

For simplicity, we just show bound for $\|\hat{M}_{OLS} - M\|_F$.

- 1. Recall the linear map $\Pi(M) = (Q_1, \ldots, Q_n)$.
- 2. The OLS solution is computed by the Moore-Penrose pseudoinverse:

$$\hat{M}_{\text{OLS}} = \Pi^+(\hat{Q}_1, \ldots, \hat{Q}_n).$$

3. Since Π^+ is linear, we get the bound:

$$\|\hat{M}_{\text{OLS}} - M\|_F^2 = \|\Pi^+(\hat{Q}_1 - Q, \dots, \hat{Q}_n - Q_n)\|_F^2 \le \sigma_{\max}^2(\Pi^+) \sum_{i=1}^n \|\hat{Q}_1 - Q_i\|^2.$$

For simplicity, we just show bound for $\|\hat{M}_{OLS} - M\|_F$.

- 1. Recall the linear map $\Pi(M) = (Q_1, \ldots, Q_n)$.
- 2. The OLS solution is computed by the Moore-Penrose pseudoinverse:

$$\hat{M}_{\text{OLS}} = \Pi^+(\hat{Q}_1, \ldots, \hat{Q}_n).$$

3. Since Π^+ is linear, we get the bound:

$$\|\hat{M}_{\text{OLS}} - M\|_F^2 = \|\Pi^+(\hat{Q}_1 - Q, \dots, \hat{Q}_n - Q_n)\|_F^2 \le \sigma_{\max}^2(\Pi^+) \sum_{i=1}^n \|\hat{Q}_1 - Q_i\|^2.$$

4. A more fine-grained bound by decomposition: $\hat{Q} - Q = \underbrace{\hat{Q} - \mathbb{E}[\hat{Q}]}_{\text{mean-zero r.v.}} + \underbrace{\mathbb{E}[\hat{Q}] - Q}_{\text{bias}}.$

For simplicity, we just show bound for $\|\hat{M}_{OLS} - M\|_F$.

- 1. Recall the linear map $\Pi(M) = (Q_1, \ldots, Q_n)$.
- 2. The OLS solution is computed by the Moore-Penrose pseudoinverse:

$$\hat{M}_{\text{OLS}} = \Pi^+(\hat{Q}_1, \ldots, \hat{Q}_n).$$

3. Since Π^+ is linear, we get the bound:

$$\|\hat{M}_{\text{OLS}} - M\|_F^2 = \|\Pi^+(\hat{Q}_1 - Q, \dots, \hat{Q}_n - Q_n)\|_F^2 \le \sigma_{\max}^2(\Pi^+) \sum_{i=1}^n \|\hat{Q}_1 - Q_i\|^2.$$

4. A more fine-grained bound by decomposition: $\hat{Q} - Q = \underbrace{\hat{Q} - \mathbb{E}[\hat{Q}]}_{\text{mean-zero r.v.}} + \underbrace{\mathbb{E}[\hat{Q}] - Q}_{\text{bias}}$.

▶ For independent mean-zero error terms, can apply Chernoff-style concentration.

Interpretation of the bound

Key quantities: n = number of subspaces; $\gamma, \varepsilon =$ subspace recovery bias/accuracy

$$\|\hat{M} - M\|_F \le c \cdot \frac{1}{\sigma(\mathcal{V})} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}}\right)$$

Interpretation of the bound

Key quantities: n = number of subspaces; $\gamma, \varepsilon =$ subspace recovery bias/accuracy

$$\|\hat{M} - M\|_F \le c \cdot \frac{1}{\sigma(\mathcal{V})} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}}\right)$$

• $\sigma(\mathcal{V}_n)$ grows with the number of subspaces,

$$\sigma(\mathcal{V}_n) = \Omega(\sqrt{n})$$
 is possible.

Interpretation of the bound

Key quantities: n = number of subspaces; $\gamma, \varepsilon =$ subspace recovery bias/accuracy

$$\|\hat{M} - M\|_F \le c \cdot \frac{1}{\sigma(\mathcal{V})} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}}\right)$$

• $\sigma(\mathcal{V}_n)$ grows with the number of subspaces,

 $\sigma(\mathcal{V}_n) = \Omega(\sqrt{n})$ is possible.

As n→∞, the dominating term is possibly the bias term γ.
▶ e.g. if the estimators Q̂ have a systematic constant biases γ > 0.

A noisy feedback model with recovery guarantee

Generalized linear model:

Continuous response: (x, x', ψ)

$$\psi \equiv \psi_M(x, x'; u) = D_{x, x'}(M, v).$$

Generalized linear model:

► Continuous response: (x, x', ψ)

$$\psi \equiv \psi_M(x, x'; u) = D_{x,x'}(M, v).$$

► Noisy response: (x, x', y)

$$\Pr\left[Y=y\,\big|\,M,x,x',u\right]=f\left(y\cdot D_{x,x'}(M,v)\right),$$

where f is a (non-linear) *link function*.

Generalized linear model:

► Continuous response: (x, x', ψ)

$$\psi \equiv \psi_M(x, x'; u) = D_{x,x'}(M, v).$$

► Noisy response: (x, x', y)

$$\Pr\left[Y=y\,\big|\,M,x,x',u\right]=f\big(y\cdot D_{x,x'}(M,v)\big),$$

where f is a (non-linear) *link function*.

> The link function is the first (and only) instance of a non-linearity in this work.

Generalized linear model:

► Continuous response: (x, x', ψ)

$$\psi \equiv \psi_M(x, x'; u) = D_{x,x'}(M, v).$$

► Noisy response: (x, x', y)

$$\Pr\left[Y=y\,\big|\,M,x,x',u\right]=f\big(y\cdot D_{x,x'}(M,v)\big),$$

where f is a (non-linear) *link function*.

- > The link function is the first (and only) instance of a non-linearity in this work.
- When $f(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function, this leads to a logistic regression.

Setting for subspace metric recovery

Setting:

▶ Assume that user provide measurements (x, x', Y) where $Y \in \{-1, +1\}$,

$$\Pr\left[Y=y\right] = f\left(-y \cdot D_{x,x'}(M,\nu)\right),$$

where f is the sigmoid link function.

Setting for subspace metric recovery

Setting:

▶ Assume that user provide measurements (x, x', Y) where $Y \in \{-1, +1\}$,

$$\Pr\left[Y=y\right] = f\left(-y \cdot D_{x,x'}(M,\nu)\right),$$

where f is the sigmoid link function.

▶ We can perform maximum likelihood estimation:

$$(\hat{M}, \hat{v}_1, \dots, \hat{v}_k) \leftarrow \operatorname*{arg\,max}_{(A, w_1, \dots, w_K)} \sum_k \sum_{(x, x', Y)} \log f \big(- Y \cdot D_{x, x'}(M, v_k) \big).$$

Setting for subspace metric recovery

Setting:

▶ Assume that user provide measurements (x, x', Y) where $Y \in \{-1, +1\}$,

$$\Pr[Y = y] = f(-y \cdot D_{x,x'}(M, v)),$$

where f is the sigmoid link function.

▶ We can perform maximum likelihood estimation:

$$(\hat{M}, \hat{\nu}_1, \dots, \hat{\nu}_k) \leftarrow \operatorname*{arg\,max}_{(A, w_1, \dots, w_K)} \sum_k \sum_{(x, x', Y)} \log f \big(- Y \cdot D_{x, x'}(M, \nu_k) \big).$$

▶ Assume $||M||_{\infty} \leq 1$ and items and ideal points are contained in unit Euclidean ball.

Analysis via generalization

Theorem (Metric recovery, adapted from Canal et al. (2022))

Let \mathcal{X} quadratically span \mathbb{R}^d . There exists designs $D^{(k)}$ asking for *m* responses from each of *K* users such that from that data, the maximum likelihood estimator \hat{M} satisfies w.h.p.:

$$\|\hat{M} - M\|_F^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right)$$

Analysis via generalization

Theorem (Metric recovery, adapted from Canal et al. (2022))

Let \mathcal{X} quadratically span \mathbb{R}^d . There exists designs $D^{(k)}$ asking for **m** responses from each of *K* users such that from that data, the maximum likelihood estimator \hat{M} satisfies w.h.p.:

$$\|\hat{M} - M\|_F^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right)$$

- > Proof uses standard techniques from generalization theory.
- The $d^2 + dK$ term comes from a metric entropy bound on:

 $\{(A, u_1, \dots, u_K) : \|A\|_{\infty} \le 1 \text{ and } \|u_k\| \le 1, \forall k\}.$

• When $K \gg d^2$, the dominating term is $\sqrt{d/m}$.

Open question

Weakness of analysis, weakness of naive ERM, or fundamental limit?

► The generalization approach actually shows:

$$\|\hat{M} - M\|_F^2 + \sum_{k=1}^K \|\hat{\nu}_k - \nu_k\|^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right).$$

▶ But, we only care about learning the parameters of *M*.

Open question

Weakness of analysis, weakness of naive ERM, or fundamental limit?

► The generalization approach actually shows:

$$\|\hat{M} - M\|_F^2 + \sum_{k=1}^K \|\hat{\nu}_k - \nu_k\|^2 = \mathcal{O}\left(\sqrt{\frac{d^2 + dK}{mK}}\right).$$

- ▶ But, we only care about learning the parameters of *M*.
- This analysis does not seem to allow us to decouple estimating \hat{M} and \hat{v}_k .
- ▶ Is the analysis loose? Is there a better algorithm? Is there a fundamental limit?

Implication for metric learning

Suppose *K* users provide *m* measurements on rank-*r* subspaces.

Subspace metric error:

$$\gamma + \varepsilon \le \mathcal{O}\left(\sqrt{\frac{r^2 + rK}{mK}}\right)$$

Metric error after recombination:

$$\|\hat{M} - M\|_F \le c \cdot \frac{1}{\sigma(\mathcal{V})} \cdot \left(\gamma \sqrt{n} + \varepsilon d \sqrt{\log \frac{2d}{p}}\right)$$

When $K \gg d$, then there are settings with: $\|\hat{M} - M\|_F = \mathcal{O}\left(\sqrt{\frac{r}{m}}\right)$.

Additional open problems

Further questions

Other structure:

- ▶ Low rank metrics; non-linear representations/kernel extension
- Learning with approximate subspace clusters
- Learning with structured user sets

Inducing structure:

▶ What are good representations for human/crowdsourced labeling?

Statistics:

- > Other noise/preference models (e.g. Bradley-Terry model)
- Semi-parametric estimation
- Robust recovery

Acknowledgments

Collaborators

Zhi Wang UC San Diego

Ramya Korlakai Vinayak UW-Madison
Thank you!

See https://geelon.github.io/ for preprint.

References

- Gregory Canal, Blake Mason, Ramya Korlakai Vinayak, and Robert Nowak. One for all: Simultaneous metric and preference learning over multiple users. *Advances in Neural Information Processing Systems*, 35:4943–4956, 2022.
- Clyde H Coombs. Psychological scaling without a unit of measurement. *Psychological review*, 57(3):145, 1950.
- Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.
- Blake Mason, Lalit Jain, and Robert Nowak. Learning low-dimensional metrics. *Advances in neural information processing systems*, 30, 2017.
- Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation. In *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*, pages 1532–1543, 2014.
- Matthew Schultz and Thorsten Joachims. Learning a distance metric from relative comparisons. *Advances in neural information processing systems*, 16, 2003.
- Nakul Verma and Kristin Branson. Sample complexity of learning mahalanobis distance metrics. *Advances in neural information processing systems*, 28, 2015.
- Zhi Wang, Geelon So, and Ramya Korlakai Vinayak. Metric learning from limited pairwise preference comparisons, 2024.
- Austin Xu and Mark Davenport. Simultaneous preference and metric learning from paired comparisons. *Advances in Neural Information Processing Systems*, 33:454–465, 2020.