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Learning in strategic settings

Question
If players play a game repeatedly, how do their beliefs and behaviors evolve over time?
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Game setting

Alice and Bob repeatedly play a two-player game

▶ Let S = S(A) × S(B) be the set of pure-strategy profiles

▶ Let Σ = Σ(A) × Σ(B) be the set of mixed-strategy profiles

▶ Let u = (u(A), u(B)) be their utilities
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A model of learning and behavior

Suppose that ζT = (s1, . . . , sT ) is a history of observed plays st ∈ S(A) × S(B).

▶ assessment rule: Alice predicts that Bob will play according to:

µ
(A)
T ≡ µ(A)(ζT ) ∈ Σ(B).

▶ behavior rule: Alice makes a play according to:

ϕ
(A)
T ≡ ϕ(A)(ζT ) ∈ Σ(A).

Alice can also have a subjective belief about how Bob learns and behaves.
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Fictitious play
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Fictitious play: a simple model of learning and behavior

Suppose Bob has K pure strategies.

▶ Alice initializes K counters: N1, . . . ,NK ← 1
▶ For round t = 1, 2, . . .

▶ Alice computes empirical mixed strategy µt :

(t + K) · µt = (N1, . . . ,NK).

▶ Alice plays the best response to assessment µt :

ϕt = argmax
σ∈Σ(A)

u(A)(σ, µt).

▶ Alice observes Bob’s actual play s, and updates the counter for s:

Ns ← Ns + 1.
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Connection to Bayesian players

The assessments µt are consistent with a Bayesian model:

▶ Alice believes that Bob is playing by drawing i.i.d. from a fixed strategy σ∗ ∈ Σ(B),

▶ Alice’s prior over assessments is a Dirichlet distribution.

Remark. Alice believes that Bob is non-adaptive, and therefore plays myopically.

▶ This belief justifies maximizing immediate utility.
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Strict Nash equilibria are absorbing states

Proposition
Let s1, s2, . . . be a history generated by fictitious play.

▶ Strict Nash equilibria are absorbing states.
▶ If st is a strict Nash equilibrium, then:

st′ = st , for all t′ ≥ t.

▶ Absorbing states are Nash equilibria.
▶ If the above equation holds, then st is a Nash equilibrium.
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Convergence toward mixed Nash equilibrium

Proposition
Suppose that in some history generated by fictitious play, the empirical frequencies
converge to some mixed strategy profile. Then, that strategy profile is a Nash equilibrium.

Remark. The convergence of empirical frequencies is not guaranteed.

▶ Shapley (1964) gives the first nontrivial example; rock–paper–scissors.

▶ Convergence is guaranteed for zero-sum games (Robinson, 1951) and two-by-two
games (Miyasawa, 1961).
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Extensions of fictitious play
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Myopic behavior

Definition
Let µ be the assessment rule for Alice. Her behavior rule ϕ is myopic relative to µ if:

ϕ(ζt) = argmax
σ∈Σ(A)

u(A)
(
σ, µ(ζt)

)
.

That is, she maximizes her immediate payoff with respect to her assessment µ(ζt) at time t.

▶ The behavior rule of fictitious play is myopic.

▶ We can weaken myopia to an asymptotic notion.

11 / 24



Myopic behavior

Definition
Let µ be the assessment rule for Alice. Her behavior rule ϕ is myopic relative to µ if:

ϕ(ζt) = argmax
σ∈Σ(A)

u(A)
(
σ, µ(ζt)

)
.

That is, she maximizes her immediate payoff with respect to her assessment µ(ζt) at time t.

▶ The behavior rule of fictitious play is myopic.

▶ We can weaken myopia to an asymptotic notion.

11 / 24



Asymptotic myopia
Definition
At each time step, let the optimal expected utility with respect to the assessment µ(ζt) be:

u∗t = max
σ∈Σ(A)

u(A)
(
σ, µ(ζt)

)
.

▶ ϕ is asymptotically myopic if:

lim
t→∞

(
u∗t − u(A)

(
ϕ(ζt), µ(ζt)

))
= 0.

▶ ϕ is strongly asymptotically myopic if:

lim
t→∞

(
u∗t − min

s∈supp(ϕ(ζt))
u(A)

(
s, µ(ζt)

))
= 0.
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Settings where myopia may be justified

Suppose there are two large indistinguishable population of Alices and Bobs.

1. Two are randomly drawn to play the game, which is broadcasted.

2. Alices and Bobs are randomly matched, the population game statistics are shared.

3. Alices and Bobs are randomly matched, and only know their own histories.

Justifications. In (1), players play very infrequently, and so the future is highly
discounted. In (2) and (3), the players may believe that their actions will have little
influence, so that the other population is essentially non-adaptive.
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Adaptive assessments

Definition
Alice’s assessment rule µ is adaptive if for every ε > 0 and t, if Bob did not play a set of
pure strategies S′ during times t to t′, then Alice’s assessment of this strategy set is small:

ϕ
(A)
t′ (S′) < ε,

as long as t′ > T(ε, t) is sufficiently large.

▶ That is, if Bob stops playing some strategy, then Alice’s assessment that that
strategy will be played converges to zero.

▶ The empirical assessment from fictitious play is adaptive.

▶ This is a fairly weak condition.
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Absorbing states are Nash equilibria

Proposition
Let Alice and Bob be strongly asymptotically myopic players with adaptive assessment
rules. If s1, s2, . . . is their sequence of plays and st = s∗ for all t ≥ T , then s∗ is a Nash
equilibrium of the game.
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Proof: absorbing states are Nash equilibria
Proof by contradiction.

1. Suppose that s∗ is not a Nash equilibrium. WLOG, Alice has a best response ŝ:

u(A)
(
ŝ, s(B)∗

)
> u(A)

(
s∗
)
.

2. Because Alice’s assessment is adaptive, ϕt becomes arbitrarily close to δs∗ , the delta
distribution on s∗. Thus:

lim
t→∞

u(A)(ϕt) = u(A)(s∗).

3. Because Alice is strongly asymptotically myopic, given enough time, she plays
arbitrarily near-optimal responses to ϕ(A)

t , which must be nearly as good as ŝ.

But then, st does not remain on s∗ for all time.
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Convergence to mixed strategies
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Empirical frequencies

Definition
Let s1, s2, . . . be the sequence of plays. Their sequence of empirical frequencies
σt ∈ Σ(A) × Σ(B), where σt is the empirical distribution over plays by time t.

▶ Note that σt is not necessarily a product distribution.

▶ If the marginal frequencies have limits, lim
t→∞

σ
(A)
t = σ

(A)
∗ and lim

t→∞
σ
(B)
t = σ

(B)
∗ exist,

define the product distribution:

σ⊗
∗ = σ

(A)
∗ ⊗ σ

(B)
∗ .
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Convergence implies Nash equilibrium?

Question. What sort of learners do Alice and Bob need to be so that we can obtain the
guarantee that if σ⊗

∗ exists, then it is a mixed Nash equilibrium?
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Asymptotically empirical assessments

Definition
Alice’s assessment rule µ is asymptotically empirical if:

lim
t→∞

∥∥∥µt − σ
(B)
t

∥∥∥ = 0.

That is, her assessment converges to Bob’s empirical frequencies of play.
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Convergence implies mixed Nash equilibrium

Proposition
Let Alice and Bob be strongly asymptotically myopic players with asymptotically empirical
assessment rules. If σ⊗

∗ exists, then it is a Nash equilibrium.

Proof.
Analogous to proof for convergence to pure Nash equilibria.
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Non-convergence in behavior

Convergence of the empirical marginal frequencies does not imply convergence of
behavior to a Nash equilibrium.

▶ Often, in fictitious play, players jump from pure strategies to another, typically in
cycles of increasing lengths (e.g. rock–paper–scissors).
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Non-convergence of rock–paper–scissors

R
P
S
R
P W
S

Table 1: Non-convergence of behavior; the players cycle between pure strategies.
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