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Abstract
At a high level, learning is the process of extracting knowledge, skills, and

useful behaviors out of past experience. To give machines the capability

to learn, we need to operationalize this definition. The learning theorist

offers two general models: statistical learning and online learning.

In this talk, I’ll introduce these two classical frameworks and discuss some

of their central questions, technical ideas, and limitations.
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Learning from experience

A general schematic of learning:

An : (Z1, . . . ,Zn) 7→ θ̂n.

▶ (Z1, . . . ,Zn), data/experience

▶ θ̂n, knowledge/decision

Goal: derive better knowledge/decisions from more data/experience
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Classical statistics

Question: how to infer population-level knowledge from individual samples?

▶ hypothesis testing

▶ parameter estimation

Example setting: making business decisions based on population statistics
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Parameter estimation

We aim to learn some parameter θ∗ about a population.

▶ The true parameter may be too costly or impossible to measure.

▶ Instead, we construct an estimate from data:

θ̂n ≡ An(Z1, . . . ,Zn).

▶ Questions in statistics and experimental design:

▶ unbiasedness: is the estimator correct in expectation?

▶ consistency: does the estimator converge to the true parameter with more data?

▶ efficiency: how well does the estimator recover information about θ∗ in data?

▶ robustness: how sensitive is the estimator to outliers?
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Mean estimation

Example. Let p be a distribution over [0, 1].

▶ Goal: estimate the mean θ∗ = E
Z∼p

[Z ].

▶ Sample mean estimator:

θ̂n(Z1, . . . ,Zn) :=
1
n

n∑
i=1

Zi,

where Z1, . . . ,Zn
i.i.d.∼ p.

▶ Law of large numbers:

θ̂n → θ∗.
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Concentration of measure phenomenon

Hoeffding’s inequality. Let θ̂n be as before. Then:

Pr

(∣∣θ̂n − θ∗
∣∣ < ε

)
≥ 1− δn,

where δn = 2 exp
(
− 2nε2

)
.

▶ A finite-sample version of the law of large numbers.
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Statistical learning theory
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Artificial intelligence

Question: can machines perform tasks that traditionally require human cognition?

▶ Hard: figuring out the mechanism of human cognition

▶ Easier: approximating human cognition functionally

f : X → Y

▶ X is the set of problem/task instances

▶ Y is the set of possible decisions/responses
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Learning from examples

Supervised learning paradigm.

Teach a machine by giving it examples (training data):

(X1, Y1), . . . , (Xn, Yn),

where ideally each Yi = f (Xi) is an example of how to perform task Xi.

▶ Specify a loss function:

ℓ(x, y, y′) = how much worse the response y′ is than y for the instance x.

▶ Specify a class of functions that could perform task: F ≡
{
fθ : θ ∈ Θ

}
.

▶ Solve the optimization problem: θ̂n ← argmin
fθ∈F

n∑
i=1

ℓ
(
Xi, Yi, fθ(Xi)

)
.
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Learning from examples

A new goal: generalize well to previously unseen tasks not in training data

(X1, Y1) (X3, Y3)

(X2, Y2)

(X4,X4)

(X5, Y5)

f

Intuitive justification of optimization approach: the model that performs best on

the train set will also perform best overall.

▶ Possible justification: extension of method of least squares
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Theoretical justification: empirical risk minimization

Why should good performance on the train set lead to good overall performance?

▶ Statistical assumption: each training example and future tasks are drawn i.i.d. from

the same distribution p over X × Y
▶ This allows us to use tools from classical statistics to justify approach.

▶ In some sense, very general: no further assumptions on p.
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Risk minimization

What is being optimized?
▶ Define the risk of fθ as its average (population) loss:

R(fθ) := E
(X ,Y)∼p

[
ℓ(X , Y , fθ(X))

]
.

▶ Natural goal: find fθ ∈ F minimizing risk.

▶ Suppose we only have access to p through samples.

▶ Estimate this statistical quantity using samples:

R̂n(fθ) :=
1
n

n∑
i=1

ℓ
(
Xi, Yi, fθ(Xi)

)
.

We call this the empirical risk (note: this is a random variable).

▶ The function fθ̂n minimizing R̂n is called the empirical risk minimizer (ERM).
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Sketch of empirical risk minimization

▶ Because of the i.i.d. assumption, the empirical risk exhibits concentration:

Pr

(∣∣R̂n(fθ)− R(fθ)
∣∣ < ε

)
> 1− δ.

▶ Suppose that there are N functions F = {fθ1 , . . . , fθN }; by union bound,

Pr

(
max
fθ∈F

∣∣R̂n(fθ)− R(fθ)
∣∣ < ε

)
> 1− Nδ.

▶ If the event in the probability holds, then the empirical risk minimizer satisfies:

R(fθ̂n) < min
fθ∈F

R(fθ) + 2ε.

▶ The ERM cannot be much worse than the best-in-class function.
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Sketch of empirical risk minimization

0 1

R̂(fθ2)
R̂(fθ1)

R̂(fθ3)

R̂(fθ4)
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Model capacity

Notice that the union bound is only meaningful if ε is sufficiently large so that Nδ ≪ 1

Pr

(
max
fθ∈F

∣∣R̂n(fθ)− R(fθ)
∣∣ < ε

)
> 1− Nδ.

Since N is the size of the model F , this leads to the classic bias-variance tradeoff:

R(fθ̂n) < min
fθ∈F

R(fθ)︸ ︷︷ ︸
bias

+ 2ε︸︷︷︸
variance

,

where the bias term decreases (expressivity increases) when N increases, but the

variance term increases with N .
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Bias-variance tradeoff

Intuition: how the bias of F relates to the capacity of F .

▶ Small capacity: if F cannot perform many tasks, none might be well-suited for

the task at hand. This leads to a large bias term.

▶ Large capacity: if the examples can correspond to many different tasks in F ,
which is the right one? This leads to a large variance term.
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Classic generalization result

Generalization theory tends to give us bounds on the estimation error term so that:

R(fθ̂) ≤

√
capacity of the model

number of training examples
+ bias of the model.

18 / 37



Overall logic

▶ Computationally: learning as an optimization problem

▶ finding the model that best fits training data

▶ Theoretically: learning as a parameter estimation problem

▶ introduce statistical assumption

19 / 37



Overall logic

▶ Computationally: learning as an optimization problem

▶ finding the model that best fits training data

▶ Theoretically: learning as a parameter estimation problem

▶ introduce statistical assumption

19 / 37



Overall logic

▶ Computationally: learning as an optimization problem

▶ finding the model that best fits training data

▶ Theoretically: learning as a parameter estimation problem

▶ introduce statistical assumption

19 / 37



Overall logic

▶ Computationally: learning as an optimization problem

▶ finding the model that best fits training data

▶ Theoretically: learning as a parameter estimation problem

▶ introduce statistical assumption

19 / 37



Limitations of classical statistical learning theory

▶ Standard supervised learning framed as learning from examples

▶ What are other modes of learning?

▶ It imposes a strong distributional assumption

▶ How do we think about learning problems that are not naturally statistical?

▶ It does not seem to explain the successes of deep learning
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Online learning
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Online learning framework

Setting. For t = 1, 2, . . .

▶ receive instance Xt ∈ X
▶ make prediction Ŷt ∈ Y
▶ receive label Yt
▶ incur loss ℓ(Xt , Yt , Ŷt)

View this as a repeated zero-sum game against Nature.

▶ To learn means being able to exploit a suboptimal strategy.

▶ Goal: if Nature plays (Xt , Yt)
i.i.d.∼ p, learner should be able to recover results from

statistical setting.
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Online learning framework

Difference with statistical learning
▶ There is no test-train split.

▶ There is no statistical assumptions, e.g. (Xt , Yt) could be arbitrary.

▶ The goal is regret minimization instead of risk minimization.
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Goal in online learning

The cumulative loss at time T :

LT =

T∑
t=1

ℓ(Xt , Yt , Ŷt).

Goal: we would like to minimize the cumulative loss, but this is an extremely tall order

▶ regret analysis: compare against some restricted class of predictors

▶ regret: looking back in hindsight and realizing there was a simple strategy
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Prediction with experts

We can think of F as a set of experts.

▶ Each round, the expert θ recommends predicting Ŷt = fθ(Xt).

▶ Each expert incurs cumulative loss:

LT ;θ =
T∑
t=1

ℓ
(
Xt , Yt , fθ(Xt)

)
.

▶ The regret of deciding to predict (Ŷt)t instead is defined:

RT =
T∑
t=1

ℓ
(
Xt , Yt , Ŷt

)
− min

fθ∈F

T∑
t=1

ℓ
(
Xt , Yt , fθ(Xt)

)
︸ ︷︷ ︸

LT ;θ

.

▶ In hindsight, this is the regret for not listening to the best expert.
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)
− min

fθ∈F

T∑
t=1

ℓ
(
Xt , Yt , fθ(Xt)

)
︸ ︷︷ ︸

LT ;θ

.

▶ In hindsight, this is the regret for not listening to the best expert.

25 / 37



Prediction with experts

We can think of F as a set of experts.

▶ Each round, the expert θ recommends predicting Ŷt = fθ(Xt).
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Meaning of achieving low regret

In online learning, the aim is sublinear regret RT = o(T),

lim
T→∞

1
T

(
T∑
t=1

ℓ
(
Xt , Yt , Ŷt

)
− min

fθ∈F

T∑
t=1

ℓ
(
Xt , Yt , fθ(Xt)

))
︸ ︷︷ ︸

RT

≤ 0.

▶ In the i.i.d. case, this means:

lim
T→∞

1
T

T∑
t=1

ℓ(Xt , Yt , Ŷt) ≤ min
fθ∈F

R(fθ).

▶ Regret minimization is meaningful when the best expert achieves low loss.
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Follow the leader algorithm

At round t, follow the advice of the expert who made the fewest mistakes so far:

listen to expert θ∗t = argmin
θ

Lt−1;θ,

breaking ties arbitrarily.

▶ This is the natural extension of empirical risk minimization to the online setting.

▶ An adversary can force this algorithm to make a mistake almost every round.

▶ On the other hand, the best expert is correct at least on average 1/N of times.
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Hedge algorithm

At round t, follow a random expert’s advice:

probability of listening to expert θ ∝ exp (−ηLt−1;θ) .

If there are N experts and η =
√

logN
8T , then this achieves sublinear regret:

RT ≤
√

T logN
2

.

▶ This turns out to be optimal, with matching lower bound.
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Online convex optimization (OCO)

Setting. Let K ⊂ RN
be a convex, compact set.

For t = 1, 2, . . .
▶ make decision zt ∈ K ⊂ RN

▶ receive convex loss function ℓt : K → R
▶ incur loss ℓt(zt)

Goal. Minimize regret:

RT =

T∑
t=1

ℓt(zt)− inf
z∈K

T∑
t=1

ℓt(z).
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Meaning of low regret in OCO

In the case that ℓt ≡ ℓ is a fixed convex loss function:

▶ Let zT = 1
T
∑

zi be the average iterate.

▶ Let z∗ = argmin ℓ(z).

Jensen’s inequality implies:

ℓ(zT )− ℓ(z∗) ≤ 1
T

T∑
t=1

ℓ(zt)− ℓ(z∗) ≤ RT
T
.
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Prediction with experts as OCO

Let K = ∆N−1
be the probability simplex over the N experts F = {fθ1 , . . . , fθ2}.

▶ Define the linear loss ℓt generated by Xt , Yt by:

ℓt(z) :=
N∑
i=1

zi · ℓ
(
Xt , Yt , fθi(Xt)

)
▶ This is the expected loss incurred by choosing to listen to a random expert, where the

probability of listening to expert θi is zi.

▶ By convexity, the cumulative loss is achieved on a vertex of the simplex:

min
i∈[N ]

T∑
t=1

ℓ
(
Xt , Yt , fθi(Xt)

)
= min

z∈K

T∑
t=1

ℓt(z).

▶ Hedge is equivalent to online mirror descent.

31 / 37



Negative result for online learning

Consider learning a threshold function on the interval [0, 1],

fθ(x) = 1{x ≥ θ}.

▶ Realizable setting: adversary may select any (Xt , Yt)t as long as some θ∗ satisfies:

Yt = fθ∗(Xt), ∀t.

▶ Negative result: no online learner achieves sublinear regret in the worst case.
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Construction of hard case

X1 X2X3 X4 X5X6

X7X8X9

binary search sampling algorithm

For t = 1, 2, . . .

▶ X− ← max negative data point in data set

▶ X+ ← min positive data point in data set

▶ Xt+1 ← mean(X−,X+) and Yt+1 ∼ Ber( 12)
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Learning thresholds: statistical vs. online

There’s a big gap in hardness of learning thresholds:

▶ statistical setting: R(fθ̂n) ≍
1
n

▶ worst-case online setting:
1
T RT ≍

1
2
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Limitations of online learning model

▶ The worst-case online setting is too hard.

▶ Reality may be much more average case or structured.

▶ In certain settings, the theory may not help us design/understand learning algorithms.
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Some contributions of these frameworks

▶ Tools for learning problems with a statistical component

▶ Tools for learning problems with an adversarial component
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Recap

▶ Statistical learning and online learning empirically very successful

▶ Much of learning left unsaid by these frameworks

▶ Much of learning cannot be approached by these frameworks

▶ What’s next?
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