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Entropy of a general random variable

Definition (Entropy)

Let ®(x) = xlog x where 0log 0 = 0. Let Y be a nonnegative, integrable random variable,
so that E[Y] < co. The entropy of Y is the Jensen’s gap:

Ent(Y) = E®(Y) — B(EY).
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Subadditivity of entropy

Theorem
Let Xi, ..., X, be independent and Z = f(Xi, ..., X,) be a nonnegative measurable
function so that ®(Z) is integrable. Then:

I

Ent(Z) < E [Z Ent')(2)

where Ent(i)(Z) = E(i)<I>(Zz) _ @(E(i)Z),
» E() is expectation conditioned on X() = (X1, .o, Xic1, Xig1y - -5 Xn)-
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Concentration on the binary hypercube
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The binary hypercube

» Let Q, = {—1,+1}" be the n-dimensional binary hypercube
» Let X € Q, be a vertex drawn uniformly at random

» Let f: O, — R be any function
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The binary hypercube (cont.)

» Let Ent(f) = Ent(f(X)) = E[f(X)log f(X)] — Ef(X) log Ef (X).
> Let £(f) = %E S (F(X) — FXD))?
i=1
X replaces the ith coordinate X; of X with a fresh draw X.
Efron-Stein inequality: Var(f(X)) < £(f).

6/29



Calculus on Q,

We can define the discrete gradient of f at x € Q, by:

fED) — fx)

Vif(x) =
2

> where X\ = (X1,...,—Xi,...,Xp) flips the sign of the ith coordinate
» read: rate of change in f while crossing the ith edge at x

It follows that:

n

E() = B |3 (F(X) — (X))’

i=1

. EE [Z (FX) — FXN))? | = BIVFX)|%

i=1
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A log-Sobolev inequality

Theorem
Letf : Q, — R and X is uniform over Q,. Then:

Ent(f?) < 2&(f).

» We can also write this as Ent(f?) < 2E [[|Vf(X)|].
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As a generalization of the edge-isopermetric inequality

If f = 14 for A C Qy, then Ent(f?) < 2E(f) is the edge-isoperimetric inequality:

2P(A) log

- (IA) < I(A).

Let |A| be size of A and |OgA| be size of edge set E(A, A°).

» P(A) = |A]/2"
» I(A) = |0pA|/2" ! is the influence of A

1(4) = Y Pr(f(x) # fX")
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As a generalization of Efron-Stein on hypercube

Problem (Problem 5.1)
If g is nonnegative, then Var(g(X)) < Ent(g?).

Problem (Problem 5.2)
Combining Problem 5.1 and the log-Sobolev inequality implies for any f : O, — R,

Var(f) < E(f).
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Proof of log-Sobolev inequality, Ent(f?) < 2£(f)

Claim: it suffices to show one-dimensional version.

» Recall that: £(f) = ZE{ ()))2} :

» Let Z = f(X). Subadditivity of entropy:

Ent(Z%) <

Z Ent() (Z?)

where Ent(?) (Z2%) = E(i)CI>(Z2) — @(E(i)z).
» Suffices to show:

Ent()(Z72) <

11/29



Proof of log-Sobolev inequality, one-dimensional version

Let f(—1) = aand f(1) = b. Want to show:

2 bz 2 b2 2 bZ 1
%logaz—i—?logbz— ¢ —; loga —; Si(a—b)z.

» Assume WLOGa>b>0
(a— D)%

DN | =

1
by symmetry and 5(|a| — b))% <

» Inequality holds:
fix b > 0 and set hy(a) = Ent(f?) — 2E(f)
hy(b) = 0 and hj(b) =0

hy is concave on [b, 00).
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Tightness of log-Sobolev inequality

Problem (Problem 5.3)
Let f : Qn — R and X uniform over Q,. Then

Ent(f?) < c&(f)

does not hold for any ¢ < 2.
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A more general log-Sobolev inequality

Theorem
Letf:Q, — Rand X = (Xi,...,X,) where X; ~ Ber(p). Then:
Ent(f?) < c(p)E(f),
1 1-—
where ¢(p) = % log ) P s optimal.'

'Proof relegated to section 14.3.
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Herbst’s argument: concentration from log-Sobolev inequality

Theorem
Let f : Q, — R and X uniformly distributed on Q. Let v > 0 so that for all x € Q:

> (fe - fED) <v.

i=1
Then for all t > 0, the random variable Z = f(X) satisfies:

Pr(Z>EZ+1t)<e ™/ and Pr(Z<EZ-1t)<e /"

» C.f. Efron-Stein: Var(Z) < v/2. This theorem states that Z — EZ is subgaussian.

Here, we need pointwise control > (f(x) ff(f(i))i while E-F just in expectation.
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Herbst’s argument: key ideas

» Recall that to show concentration, we would like to bound the log-MGF 1)z, since:

Pr(Z>EZ+1t) < ir;% exp (¥z(X) — AEZ — At)
:/i\r;% eXp{)\ (wzi/\)—EZ— t)}
¥z(A) = log E[exp(AZ)]

similar expression for left-tail bound

» Idea: bound the derivative of ©z(\)/A,

vz(N)Y' B E[e* log e**] — E[e*] log E[e*] B Ent(e)
( A > B A2E[eM] — M2E[eM]’

» Log-Sobolev inequality implies upper bound Ent(e¥) < "T’\Z)E[e)‘z].
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Proof of concentration
» Log-Sobolev inequality implies:

Ent(eV) < 26(eM/?)

! Z E [( M(X0)/2 _ Af(x"')>/z)2]
_ ; E [(ekf(X)/Z - exf(W)/z) i]

> Apply convexity of exponential function: z > y implies e*/2 — €%/ < 1(z — y)e*/2,

2612 < Xk [; > (- 7x9) eAf<X>] ]
i=1 +
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Proof of concentration (cont.)
» Combining everything:
)\2
Ent(e") < VTE[e’\Z].

» This implies:

%
< —.
4

(d)g()x))' B Ent(e)
A ~ \2E[eM]

» For A > 0, integrating implies:

¢Z>E)\) < lim ¢Z}Eh) n &

hlo 4

» Apply 'Hospital and fact ¢%,(0) = E[Z] to obtain:

A

Vz(N) < ME[Z] + T
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Proof of concentration (cont.)

The upper bound ¢z(\) < AE[Z] + % implies:

Pr(Z > EZ +t) < inf exp {)\ (¢Z()\) —EZ — t)}
A>0 A

2
< inf exp {M — )\t}
A>0 4

which is optimized at A = 2t/v so the RHS is e /v, O

19/29



Hoeffding’s as a variant of Herbst’s

Problem (Problem 5.5)
Let f : Qn — R and X uniformly distributed on Q,. Let v > 0 so that for all x € Qp,

5 (0 - M) < v

i=1

Then for all t > 0, the random variable Z = f(X) satisfies:

Pr(Z > EZ+1) < e /",

» Note: this time, v bounds not merely the squared positive parts.

> Hint: prove for all z > y that (e*/2 — (33’/2)2 < (Z;Sy)z(ez + e).
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General technique

» Use log-Sobolev inequalities to prove a differential inequality:

<1/JZ>E)\)>/ < h\).

» Combine with Cramér-Chernoff bound:

Pr(Z >EZ+1t) < ir;% exp {)\ <¢Z;/\) —EZ — t>}
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Concentration for Gaussians
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A log-Sobolev inequality for Gaussians

Theorem
Let X = (Xq,...Xyn) ~N(0,I) and f : R" — R be continuously differentiable. Then:

Ent(f) < 2E [||VF(X)]]

» Let’s see an application before proving this.
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Obtaining Gaussian concentration from log-Sobolev inequality

Theorem (Gaussian concentration inequality)
Let X = (Xq,...Xy) ~N(0,I) and f : R" — R be L-Lipschitz. Then, for all t > 0,

Pr{f(X) — Ef(X) >t} < e ©/2,
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Proof of Gaussian concentration

» If fis L-Lipschitz, then f is differentiable with ||V f|| < L almost everywhere.

» Claim: log-Sobolev inequality implies differential inequality:

¥z(A\)\'  Ent(eM)  I?
( ZA > = NP S 7

» Combine with Cramér-Chernoff to obtain result.

Proof of claim. The log-Sobolev inequality states:

Ent(eM) < 2E [HHVeAf(X)/ZHZ}

2 2712
= ZE[MW vl < 2B,
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Application of Gaussian concentration

Let X = (Xi,...,X,) ~N(0,%).
» There exists linear map f : R" — R" such that X =4 f(Y) where Y ~ N(0,1).

» The map f has bounded operator norm,

L=fllop= sup [lAy[l,-
Iyllz=1

» Gaussian concentration implies:

Pr{[|Xl, > E|X]|, + t} < e /2,
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Proof of Gaussian log-Sobolev inequality, Ent(f*) < 2E[||Vf(X)]?]

» It suffices to prove the one-dimensional version (c.f. argument for Q, using
subadditivity of entropy).
» Apply similar technique as proof of Gaussian—Poincaré inequality:
X ~ N(0,1) by sequence Y,, = X

1 m
Y= — 5
m ﬁ; m, k>

where €, i are independent Rademacher r.v.s (i.e. €, x = £1 uniformly)
Central limit theorem implies:

lim Ent [f(Ym)Z] = Ent [f(X)z}

m— 00

for f continuous and uniformly bounded.
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Proof of Gaussian log-Sobolev inequality (cont.)

» The log-Sobolev inequality on Q,, implies:

f(tn) - f (1~ )

f(Ym) _f<Ym + Z/W)
Vm/2

|
s
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