Log-Sobolev inequalities and concentration

Sections 5.1, 5.2, 5.3, 5.4 from Boucheron et al. (2013)

Geelon So, agso@eng.ucsd.edu Concentration inequalities reading group — April 21, 2021

Entropy of a general random variable

Definition (Entropy)

Let $\Phi(x) = x \log x$ where $0 \log 0 \equiv 0$. Let *Y* be a nonnegative, integrable random variable, so that $E[Y] < \infty$. The **entropy** of *Y* is the Jensen's gap:

$$\operatorname{Ent}(Y) = E\Phi(Y) - \Phi(EY).$$

Subadditivity of entropy

Theorem

Let X_1, \ldots, X_n be independent and $Z = f(X_1, \ldots, X_n)$ be a nonnegative measurable function so that $\Phi(Z)$ is integrable. Then:

$$\operatorname{Ent}(Z) \leq E\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}(Z)\right],$$

where $\operatorname{Ent}^{(i)}(Z) = E^{(i)}\Phi(Z^2) - \Phi(E^{(i)}Z).$

• $E^{(i)}$ is expectation conditioned on $X^{(i)} = (X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n)$.

Concentration on the binary hypercube

The binary hypercube

- Let Q_n = {−1, +1}ⁿ be the *n*-dimensional binary hypercube
 Let X ∈ Q_n be a vertex drawn uniformly at random
- ▶ Let $f : Q_n \to \mathbb{R}$ be any function

The binary hypercube (cont.)

Calculus on Q_n

We can define the **discrete gradient** of f at $x \in Q_n$ by:

$$\nabla_i f(x) = \frac{f(\overline{x}^{(i)}) - f(x)}{2}$$

where X
⁽ⁱ⁾ = (X₁,...,-X_i,...,X_n) flips the sign of the *i*th coordinate *read: rate of change in f while crossing the ith edge at x*

It follows that:

$$\mathcal{E}(f) = \frac{1}{2}E\left[\sum_{i=1}^{n} \left(f(X) - f(\tilde{X}^{(i)})\right)^{2}\right] = \frac{1}{4}E\left[\sum_{i=1}^{n} \left(f(X) - f(\overline{X}^{(i)})\right)^{2}\right] = E\|\nabla f(X)\|^{2}$$

A log-Sobolev inequality

Theorem

Let $f : Q_n \to \mathbb{R}$ and X is uniform over Q_n . Then:

 $\operatorname{Ent}(f^2) \leq 2 \mathcal{E}(f).$

• We can also write this as $\operatorname{Ent}(f^2) \leq 2E \left[\|\nabla f(X)\|^2 \right]$.

As a generalization of the edge-isopermetric inequality

If $f = \mathbf{1}_A$ for $A \subset Q_n$, then $\operatorname{Ent}(f^2) \leq 2\mathcal{E}(f)$ is the **edge-isoperimetric inequality**:

$$2P(A)\log\frac{1}{P(A)} \le I(A).$$

Let |A| be size of A and $|\partial_E A|$ be size of edge set $E(A, A^c)$.

▶
$$P(A) = |A|/2^n$$

▶ $I(A) = |\partial_E A|/2^{n-1}$ is the **influence** of A
▶ $I(A) = \sum_{i=1}^n \Pr\left(f(X) \neq f(\overline{X}^{(i)})\right)$

As a generalization of Efron-Stein on hypercube

Problem (Problem 5.1)

If g is nonnegative, then $\operatorname{Var}(g(X)) \leq \operatorname{Ent}(g^2)$.

Problem (Problem 5.2)

Combining Problem 5.1 and the log-Sobolev inequality implies for any $f : Q_n \to \mathbb{R}$ *,*

 $\operatorname{Var}(f) \leq \mathcal{E}(f).$

Proof of log-Sobolev inequality, $\mathrm{Ent}(f^2) \leq 2\mathcal{E}(f)$

Claim: it suffices to show one-dimensional version.

• Recall that:
$$\mathcal{E}(f) = \frac{1}{4} \sum_{i=1}^{n} E\left[\left(f(X) - f(\overline{X}^{(i)})\right)^2\right].$$

• Let Z = f(X). Subadditivity of entropy:

$$\operatorname{Ent}(Z^2) \le E\left[\sum_{i=1}^n \operatorname{Ent}^{(i)}(Z^2)\right],$$

where $\operatorname{Ent}^{(i)}(Z^2) = E^{(i)}\Phi(Z^2) - \Phi(E^{(i)}Z).$

Suffices to show:

$$\operatorname{Ent}^{(i)}(Z^2) \leq \frac{1}{2} E^{(i)} \left[\left(f(X) - f(\overline{X}^{(i)}) \right)^2 \right].$$

Proof of log-Sobolev inequality, one-dimensional version

Let f(-1) = a and f(1) = b. Want to show:

$$\frac{a^2}{2}\log a^2 + \frac{b^2}{2}\log b^2 - \frac{a^2 + b^2}{2}\log \frac{a^2 + b^2}{2} \le \frac{1}{2}(a-b)^2.$$

Tightness of log-Sobolev inequality

Problem (Problem 5.3)

Let $f : Q_n \to \mathbb{R}$ and X uniform over Q_n . Then

 $\operatorname{Ent}(f^2) \leq c\mathcal{E}(f)$

does not hold for any c < 2.

A more general log-Sobolev inequality

Theorem

Let $f : Q_n \to \mathbb{R}$ and $X = (X_1, \dots, X_n)$ where $X_i \sim \text{Ber}(p)$. Then: $\text{Ent}(f^2) \le c(p)\mathcal{E}(f),$

where
$$c(p) = \frac{1}{1-2p} \log \frac{1-p}{p}$$
 is optimal.¹

¹Proof relegated to section 14.3.

Herbst's argument: concentration from log-Sobolev inequality

Theorem

Let $f : Q_n \to \mathbb{R}$ and X uniformly distributed on Q_n . Let v > 0 so that for all $x \in Q_n$:

$$\sum_{i=1}^{n} \left(f(x) - f(\overline{x}^{(i)}) \right)_{+}^{2} \leq v$$

Then for all t > 0, the random variable Z = f(X) satisfies:

$$\Pr\left(Z > EZ + t\right) \le e^{-t^2/\nu}$$
 and $\Pr\left(Z < EZ - t\right) \le e^{-t^2/\nu}$.

► C.f. Efron-Stein: $Var(Z) \le v/2$. This theorem states that Z - EZ is subgaussian. Here, we need pointwise control $\sum (f(x) - f(\overline{x}^{(i)})_{\perp}^2)$ while E-F just in expectation.

Herbst's argument: key ideas

• Recall that to show concentration, we would like to bound the log-MGF ψ_Z , since:

$$\Pr(Z > EZ + t) \le \inf_{\lambda > 0} \exp\left(\psi_Z(\lambda) - \lambda EZ - \lambda t\right)$$
$$= \inf_{\lambda > 0} \exp\left\{\lambda\left(\frac{\psi_Z(\lambda)}{\lambda} - EZ - t\right)\right\}$$

ψ_Z(λ) = log E[exp(λZ)]
 similar expression for left-tail bound

► Idea: bound the derivative of $\psi_Z(\lambda)/\lambda$,

$$\left(\frac{\psi_Z(\lambda)}{\lambda}\right)' = \frac{E\left[e^{\lambda Z}\log e^{\lambda Z}\right] - E\left[e^{\lambda Z}\right]\log E\left[e^{\lambda Z}\right]}{\lambda^2 E[e^{\lambda Z}]} = \frac{\operatorname{Ent}(e^{\lambda f})}{\lambda^2 E[e^{\lambda Z}]}.$$

► Log-Sobolev inequality implies upper bound $\operatorname{Ent}(e^{\lambda f}) \leq \frac{\nu \lambda^2}{4} E[e^{\lambda Z}].$

Proof of concentration

► Log-Sobolev inequality implies:

E

$$\operatorname{nt}(e^{\lambda f}) \leq 2\mathcal{E}(e^{\lambda f/2})$$
$$= \frac{1}{2} \sum_{i=1}^{n} E\left[\left(e^{\lambda f(X)/2} - e^{\lambda f(\overline{X}^{(i)})/2}\right)^{2}\right]$$
$$= \sum_{i=1}^{n} E\left[\left(e^{\lambda f(X)/2} - e^{\lambda f(\overline{X}^{(i)})/2}\right)^{2}\right]$$

• Apply convexity of exponential function: z > y implies $e^{z/2} - e^{y/2} \le \frac{1}{2}(z-y)e^{z/2}$,

$$2\mathcal{E}(e^{\lambda f/2}) \leq \frac{\lambda^2}{2} E\left[\frac{1}{2} \sum_{i=1}^n \left(f(X) - f(\overline{X}^{(i)})\right)_+^2 \cdot e^{\lambda f(X)}\right] \leq \frac{\nu \lambda^2}{4} E[e^{\lambda Z}]$$

Proof of concentration (cont.)

► Combining everything:

$$\operatorname{Ent}(e^{\lambda f}) \leq \frac{\nu \lambda^2}{4} E[e^{\lambda Z}].$$

► This implies:

$$\left(rac{\psi_Z(\lambda)}{\lambda}
ight)' = rac{\mathrm{Ent}(e^{\lambda f})}{\lambda^2 E[e^{\lambda Z}]} \leq rac{
u}{4}.$$

▶ For $\lambda > 0$, integrating implies:

$$rac{\psi_Z(\lambda)}{\lambda} \leq \lim_{h\downarrow 0} rac{\psi_Z(h)}{h} + rac{\lambda
u}{4}.$$

▶ Apply l'Hospital and fact $\psi'_Z(0) = E[Z]$ to obtain:

$$\psi_Z(\lambda) \leq \lambda E[Z] + \frac{\lambda \nu}{4}.$$

Proof of concentration (cont.)

The upper bound $\psi_Z(\lambda) \leq \lambda E[Z] + \frac{\lambda v}{4}$ implies:

$$\Pr(Z > EZ + t) \le \inf_{\lambda > 0} \exp\left\{\lambda\left(\frac{\psi_Z(\lambda)}{\lambda} - EZ - t\right)\right\}$$
$$\le \inf_{\lambda > 0} \exp\left\{\frac{\lambda^2 \nu}{4} - \lambda t\right\}$$

which is optimized at $\lambda = 2t/v$ so the RHS is $e^{-t^2/v}$.

Hoeffding's as a variant of Herbst's

Problem (Problem 5.5)

Let $f : Q_n \to \mathbb{R}$ and X uniformly distributed on Q_n . Let v > 0 so that for all $x \in Q_n$,

$$\sum_{i=1}^n \left(f(x) - f(\overline{x}^{(i)}) \right)^2 \le v$$

Then for all t > 0, the random variable Z = f(X) satisfies:

$$\Pr(Z > EZ + t) \le e^{-2t^2/\nu}$$

▶ Note: this time, *v* bounds not merely the squared positive parts.

• Hint: prove for all
$$z \ge y$$
 that $\left(e^{z/2} - e^{y/2}\right)^2 \le \frac{(z-y)^2}{8}(e^z + e^y)$.

General technique

▶ Use log-Sobolev inequalities to prove a differential inequality:

$$\left(\frac{\psi_Z(\lambda)}{\lambda}\right)' \le h(\lambda).$$

Combine with Cramér-Chernoff bound:

$$\Pr(Z > EZ + t) \le \inf_{\lambda > 0} \exp\left\{\lambda\left(\frac{\psi_Z(\lambda)}{\lambda} - EZ - t\right)\right\}$$

Concentration for Gaussians

A log-Sobolev inequality for Gaussians

Theorem

Let $X = (X_1, ..., X_n) \sim \mathcal{N}(0, I)$ and $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Then: $\operatorname{Ent}(f^2) \leq 2E \left[\|\nabla f(X)\|^2 \right].$

► Let's see an application before proving this.

Obtaining Gaussian concentration from log-Sobolev inequality

Theorem (Gaussian concentration inequality)

Let $X = (X_1, \ldots X_n) \sim \mathcal{N}(0, I)$ and $f : \mathbb{R}^n \to \mathbb{R}$ be L-Lipschitz. Then, for all t > 0,

$$\Pr\left\{f(X) - Ef(X) \ge t\right\} \le e^{-t^2/2L^2}.$$

Proof of Gaussian concentration

▶ If f is L-Lipschitz, then f is differentiable with ||∇f|| ≤ L almost everywhere.
 ▶ Claim: log-Sobolev inequality implies differential inequality:

$$\left(\frac{\psi_Z(\lambda)}{\lambda}\right)' = rac{\mathrm{Ent}(e^{\lambda f})}{\lambda^2 E[e^{\lambda Z}]} \leq rac{L^2}{2}.$$

Combine with Cramér-Chernoff to obtain result.
 Proof of claim. The log-Sobolev inequality states:

$$\operatorname{Ent}(e^{\lambda f}) \leq 2E \left[\| \| \nabla e^{\lambda f(X)/2} \|^2 \right]$$
$$= \frac{\lambda^2}{2} E \left[e^{\lambda f(X)} \cdot \| \nabla f(X) \|^2 \right] \leq \frac{\lambda^2 L^2}{2} E[e^{\lambda Z}]$$

Application of Gaussian concentration

Let $X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Sigma).$

▶ There exists linear map $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $X =_d f(Y)$ where $Y \sim \mathcal{N}(0, I)$.

• The map f has bounded operator norm,

$$L = ||f||_{\text{op}} = \sup_{\|y\|_2 = 1} ||Ay||_p.$$

► Gaussian concentration implies:

$$\Pr\left\{\|X\|_p > E\|X\|_p + t\right\} \le e^{-t^2/2L^2}$$

Proof of Gaussian log-Sobolev inequality, $Ent(f^2) \le 2E[\|\nabla f(X)\|^2]$

- ▶ It suffices to prove the one-dimensional version (c.f. argument for *Q_n* using subadditivity of entropy).
- ► Apply similar technique as proof of Gaussian–Poincaré inequality:

▶ $X \sim \mathcal{N}(0, 1)$ by sequence $Y_m \Rightarrow X$

$$Y_m = \frac{1}{\sqrt{m}} \sum_{k=1}^m \varepsilon_{m,k},$$

where $\varepsilon_{m,k}$ are independent Rademacher r.v.s (i.e. $\varepsilon_{m,k} = \pm 1$ uniformly) Central limit theorem implies:

$$\lim_{m \to \infty} \operatorname{Ent} \left[f(Y_m)^2 \right] = \operatorname{Ent} \left[f(X)^2 \right]$$

for f continuous and uniformly bounded.

Proof of Gaussian log-Sobolev inequality (cont.)

► The log-Sobolev inequality on *Q_m* implies:

$$\operatorname{Ent}\left[f(Y_m)^2\right] \leq \frac{1}{2}E\left[\sum_{k=1}^m \left|f(Y_m) - f\left(Y_m - \frac{2\varepsilon_{m,k}}{\sqrt{m}}\right)\right|^2\right]$$
$$= \frac{m}{2} \cdot E\left[\left|\frac{f(Y_m) - f(Y_m \pm 2/\sqrt{m})}{\sqrt{m/2}}\right|^2 \cdot \frac{4}{m}\right]$$

▶ Taking the limit $m \to \infty$,

$$\operatorname{Ent}\left[f(X)^{2}\right] \leq 2E\left[|f'(X)|^{2}\right].$$

References

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration inequalities: A nonasymptotic theory of independence*. Oxford university press, 2013.