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Entropy of a general random variable

Definition (Entropy)
Let Φ(x) = x log x where 0 log 0 ≡ 0. Let Y be a nonnegative, integrable random variable,
so that E[Y ] <∞. The entropy of Y is the Jensen’s gap:

Ent(Y) = EΦ(Y)− Φ(EY).
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Subadditivity of entropy

Theorem
Let X1, . . . ,Xn be independent and Z = f (X1, . . . ,Xn) be a nonnegative measurable
function so that Φ(Z) is integrable. Then:

Ent(Z) ≤ E

[
n∑

i=1
Ent(i)(Z)

]
,

where Ent(i)(Z) = E(i)Φ(Z2)− Φ(E(i)Z).

I E(i) is expectation conditioned on X (i) = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn).

3 / 29



Concentration on the binary hypercube
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The binary hypercube

I Let Qn = {−1,+1}n be the n-dimensional binary hypercube

I Let X ∈ Qn be a vertex drawn uniformly at random

I Let f : Qn → R be any function
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The binary hypercube (cont.)

I Let Ent(f ) = Ent(f (X)) = E
[
f (X) log f (X)

]
− Ef (X) log Ef (X).

I Let E(f ) =
1
2
E

[
n∑

i=1

(
f (X)− f (X̃ (i))

)2]
I X̃ (i) replaces the ith coordinate Xi of X with a fresh draw X ′

i .
I Efron–Stein inequality: Var

(
f (X)

)
≤ E(f ).
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Calculus on Qn

We can define the discrete gradient of f at x ∈ Qn by:

∇if (x) =
f (x(i))− f (x)

2

I where X (i)
= (X1, . . . ,−Xi, . . . ,Xn) flips the sign of the ith coordinate

I read: rate of change in f while crossing the ith edge at x

It follows that:

E(f ) =
1
2
E

[
n∑

i=1

(
f (X)− f (X̃ (i))

)2]
=

1
4
E

[
n∑

i=1

(
f (X)− f (X (i)

)
)2]

= E‖∇f (X)‖2.
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A log-Sobolev inequality

Theorem
Let f : Qn → R and X is uniform over Qn. Then:

Ent(f 2) ≤ 2E(f ).

I We can also write this as Ent(f 2) ≤ 2E
[
‖∇f (X)‖2

]
.
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As a generalization of the edge-isopermetric inequality

If f = 1A for A ⊂ Qn, then Ent(f 2) ≤ 2E(f ) is the edge-isoperimetric inequality:

2P(A) log
1

P(A)
≤ I(A).

Let |A| be size of A and |∂EA| be size of edge set E(A,Ac).

I P(A) = |A|/2n

I I(A) = |∂EA|/2n−1 is the influence of A

I I(A) =

n∑
i=1

Pr
(
f (X) 6= f (X

(i)
)
)
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As a generalization of Efron-Stein on hypercube

Problem (Problem 5.1)
If g is nonnegative, then Var

(
g(X)

)
≤ Ent(g2).

Problem (Problem 5.2)
Combining Problem 5.1 and the log-Sobolev inequality implies for any f : Qn → R,

Var(f ) ≤ E(f ).
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Proof of log-Sobolev inequality, Ent(f 2) ≤ 2E(f )

Claim: it su�ices to show one-dimensional version.

I Recall that: E(f ) =
1
4

n∑
i=1

E
[(
f (X)− f (X (i)

)
)2]

.

I Let Z = f (X). Subadditivity of entropy:

Ent(Z2) ≤ E

[
n∑

i=1
Ent(i)(Z2)

]
,

where Ent(i)(Z2) = E(i)Φ(Z2)− Φ(E(i)Z).

I Su�ices to show:
Ent(i)(Z2) ≤ 1

2
E(i)

[(
f (X)− f (X (i)

)
)2]

.
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Proof of log-Sobolev inequality, one-dimensional version

Let f (−1) = a and f (1) = b. Want to show:

a2

2
log a2 +

b2

2
log b2 − a2 + b2

2
log

a2 + b2

2
≤ 1

2
(a− b)2.

I Assume WLOG a ≥ b ≥ 0
I by symmetry and

1
2

(|a| − |b|)2 ≤ 1
2

(a− b)2.

I Inequality holds:
I fix b ≥ 0 and set hb(a) = Ent(f 2)− 2E(f )
I hb(b) = 0 and h′b(b) = 0
I hb is concave on [b,∞).
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Tightness of log-Sobolev inequality

Problem (Problem 5.3)
Let f : Qn → R and X uniform over Qn. Then

Ent(f 2) ≤ cE(f )

does not hold for any c < 2.
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A more general log-Sobolev inequality

Theorem
Let f : Qn → R and X = (X1, . . . ,Xn) where Xi ∼ Ber(p). Then:

Ent(f 2) ≤ c(p)E(f ),

where c(p) =
1

1− 2p
log

1− p
p

is optimal.1

1Proof relegated to section 14.3.
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Herbst’s argument: concentration from log-Sobolev inequality

Theorem
Let f : Qn → R and X uniformly distributed on Qn. Let v > 0 so that for all x ∈ Qn:

n∑
i=1

(
f (x)− f (x(i))

)2
+
≤ v.

Then for all t > 0, the random variable Z = f (X) satisfies:

Pr
(
Z > EZ + t

)
≤ e−t

2/v and Pr
(
Z < EZ − t

)
≤ e−t

2/v.

I C.f. Efron–Stein: Var(Z) ≤ v/2. This theorem states that Z − EZ is subgaussian.
Here, we need pointwise control

∑(
f (x)− f (x(i)

)2
+

while E-F just in expectation.
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Herbst’s argument: key ideas

I Recall that to show concentration, we would like to bound the log-MGF ψZ , since:

Pr(Z > EZ + t) ≤ inf
λ>0

exp
(
ψZ(λ)− λEZ − λt

)
= inf

λ>0
exp

{
λ

(
ψZ(λ)

λ
− EZ − t

)}

I ψZ (λ) = log E[exp(λZ)]
I similar expression for le�-tail bound

I Idea: bound the derivative of ψZ(λ)/λ,(
ψZ(λ)

λ

)′
=

E
[
eλZ log eλZ

]
− E
[
eλZ
]

log E
[
eλZ
]

λ2E[eλZ ]
=

Ent(eλf )
λ2E[eλZ ]

.

I Log-Sobolev inequality implies upper bound Ent(eλf ) ≤ vλ2
4 E[eλZ ].
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Proof of concentration

I Log-Sobolev inequality implies:

Ent(eλf ) ≤ 2E(eλf /2)

=
1
2

n∑
i=1

E
[(

eλf (X)/2 − eλf (X
(i)

)/2
)2]

=

n∑
i=1

E
[(

eλf (X)/2 − eλf (X
(i)

)/2
)2
+

]

I Apply convexity of exponential function: z > y implies ez/2 − ey/2 ≤ 1
2(z − y)ez/2,

2E(eλf /2) ≤ λ2

2
E

[
1
2

n∑
i=1

(
f (X)− f (X (i)

)

)2

+

· eλf (X)
]
≤ vλ2

4
E[eλZ ].
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Proof of concentration (cont.)
I Combining everything:

Ent(eλf ) ≤ vλ2

4
E[eλZ ].

I This implies: (
ψZ(λ)

λ

)′
=

Ent(eλf )
λ2E[eλZ ]

≤ v
4
.

I For λ > 0, integrating implies:

ψZ(λ)

λ
≤ lim

h↓0

ψZ(h)

h
+
λv
4
.

I Apply l’Hospital and fact ψ′Z(0) = E[Z ] to obtain:

ψZ(λ) ≤ λE[Z ] +
λv
4
.
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Proof of concentration (cont.)

The upper bound ψZ(λ) ≤ λE[Z ] + λv
4 implies:

Pr(Z > EZ + t) ≤ inf
λ>0

exp

{
λ

(
ψZ(λ)

λ
− EZ − t

)}
≤ inf

λ>0
exp

{
λ2v
4
− λt

}
which is optimized at λ = 2t/v so the RHS is e−t

2/v .
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Hoe�ding’s as a variant of Herbst’s

Problem (Problem 5.5)
Let f : Qn → R and X uniformly distributed on Qn. Let v > 0 so that for all x ∈ Qn,

n∑
i=1

(
f (x)− f (x(i))

)2
≤ v.

Then for all t > 0, the random variable Z = f (X) satisfies:

Pr(Z > EZ + t) ≤ e−2t
2/v.

I Note: this time, v bounds not merely the squared positive parts.

I Hint: prove for all z ≥ y that
(
ez/2 − ey/2

)2 ≤ (z−y)2
8 (ez + ey).
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General technique

I Use log-Sobolev inequalities to prove a di�erential inequality:(
ψZ(λ)

λ

)′
≤ h(λ).

I Combine with Cramér-Cherno� bound:

Pr(Z > EZ + t) ≤ inf
λ>0

exp

{
λ

(
ψZ(λ)

λ
− EZ − t

)}
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Concentration for Gaussians
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A log-Sobolev inequality for Gaussians

Theorem
Let X = (X1, . . .Xn) ∼ N (0, I) and f : Rn → R be continuously di�erentiable. Then:

Ent(f 2) ≤ 2E
[
‖∇f (X)‖2

]
.

I Let’s see an application before proving this.
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Obtaining Gaussian concentration from log-Sobolev inequality

Theorem (Gaussian concentration inequality)
Let X = (X1, . . .Xn) ∼ N (0, I) and f : Rn → R be L-Lipschitz. Then, for all t > 0,

Pr
{
f (X)− Ef (X) ≥ t

}
≤ e−t

2/2L2 .
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Proof of Gaussian concentration

I If f is L-Lipschitz, then f is di�erentiable with ‖∇f ‖ ≤ L almost everywhere.

I Claim: log-Sobolev inequality implies di�erential inequality:(
ψZ(λ)

λ

)′
=

Ent(eλf )
λ2E[eλZ ]

≤ L2

2
.

I Combine with Cramér-Cherno� to obtain result.

Proof of claim. The log-Sobolev inequality states:

Ent(eλf ) ≤ 2E
[
‖
∥∥∇eλf (X)/2∥∥2]

=
λ2

2
E
[
eλf (X) · ‖∇f (X)‖2

]
≤ λ2L2

2
E[eλZ ].
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Application of Gaussian concentration

Let X = (X1, . . . ,Xn) ∼ N (0,Σ).

I There exists linear map f : Rn → Rn such that X =d f (Y) where Y ∼ N (0, I).

I The map f has bounded operator norm,

L = ‖f ‖op = sup
‖y‖2=1

‖Ay‖p.

I Gaussian concentration implies:

Pr
{
‖X‖p > E‖X‖p + t

}
≤ e−t

2/2L2 .
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Proof of Gaussian log-Sobolev inequality, Ent(f 2) ≤ 2E[‖∇f (X)‖2]

I It su�ices to prove the one-dimensional version (c.f. argument for Qn using
subadditivity of entropy).

I Apply similar technique as proof of Gaussian–Poincaré inequality:
I X ∼ N (0, 1) by sequence Ym ⇒ X

Ym =
1√
m

m∑
k=1

εm,k,

where εm,k are independent Rademacher r.v.s (i.e. εm,k = ±1 uniformly)
I Central limit theorem implies:

lim
m→∞

Ent
[
f (Ym)2

]
= Ent

[
f (X)2

]
for f continuous and uniformly bounded.
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Proof of Gaussian log-Sobolev inequality (cont.)

I The log-Sobolev inequality on Qm implies:

Ent
[
f (Ym)2

]
≤ 1

2
E

[
m∑

k=1

∣∣∣∣f (Ym)− f
(
Ym −

2εm,k√
m

)∣∣∣∣2
]

=
m
2
· E

[∣∣∣∣ f (Ym)− f (Ym ± 2/
√
m)√

m/2

∣∣∣∣2 · 4m
]

I Taking the limit m→∞,

Ent
[
f (X)2

]
≤ 2E

[
|f ′(X)|2

]
.
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