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Linear dynamical system

Consider a linear time-invariant (LTI) dynamical systems (X0,X1, . . . ,XT ) where:

Xt+1 = A⋆Xt + ηt .

▶ Xt ∈ Rd is the state at time t

▶ A⋆ ∈ Rd×d is the system dynamics
▶ ηt ∈ Rd is an i.i.d. noise vector from µ a noise distribution
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Linear system identification

Problem (System identification)
Estimate A⋆ from a single trajectory (X0, . . . ,XT ) from the linear dynamical system:

Xt+1 = A⋆Xt + ηt , where ηt
i.i.d.∼ µ.
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Offline setting: OLS is nearly optimal

The ordinary least squares (OLS) estimator is:

Â = argmin
A

T−1∑
t=0

∥Xt+1 − AXt∥2.

The OLS estimator is nearly optimal (Simchowitz et al., 2018; Sarkar and Rakhlin, 2019):

∥∥Â− A⋆

∥∥2
op = O

(
d
T

)
.
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Streaming setting

In the streaming setting, the data Xt comes sequentially in a stream.

▶ It is possible to compute OLS in a stream (see the Woodbury-Sherman-Morrison
formula to compute matrix inverses in a stream).

▶ However, this streaming algorithm is specific to OLS and does not extend to related
settings (e.g. generalized linear models, nonlinear dynamical systems).

5 / 19



Streaming setting

In the streaming setting, the data Xt comes sequentially in a stream.

▶ It is possible to compute OLS in a stream (see the Woodbury-Sherman-Morrison
formula to compute matrix inverses in a stream).

▶ However, this streaming algorithm is specific to OLS and does not extend to related
settings (e.g. generalized linear models, nonlinear dynamical systems).

5 / 19



Streaming setting

In the streaming setting, the data Xt comes sequentially in a stream.

▶ It is possible to compute OLS in a stream (see the Woodbury-Sherman-Morrison
formula to compute matrix inverses in a stream).

▶ However, this streaming algorithm is specific to OLS and does not extend to related
settings (e.g. generalized linear models, nonlinear dynamical systems).

5 / 19



Streaming with a first-order gradient oracle

Question: can a SGD-style algorithm making updates achieve similarly optimal rates?

▶ Kowshik et al. (2021b) introduces stochastic gradient descent with reverse experience
replay achieving this. The ideas are more general:
▶ Extends to learning certain non-linear dynamical systems (Kowshik et al., 2021a)
▶ Extends to Q-learning tabular MDPs (Agarwal et al., 2021)
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An SGD update

Let X ′ = A⋆X + η. Then the loss on this example (X ,X ′) is given by:

ℓ(A;X ,X ′) =
∥∥AX − X ′∥∥2 = ∥∥(A− A⋆)X − η

∥∥2

Thus, the gradient is:

∇ℓ(A;X ,X ′) = 2
(
A− A⋆

)
XX⊤ − 2ηX⊤.

And the SGD update using the (stochastic) example (X ,X ′) with learning rate γ is:

Aupdate = A− 2γ
(
A− A⋆

)
XX⊤ − 2γηX⊤.

▶ Rewrite as: Aupdate − A⋆ =
(
A− A⋆

) (
I− 2γXX⊤)︸ ︷︷ ︸
contraction factor

− 2γηX⊤︸ ︷︷ ︸
expectation zero

.
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Uncorrelated noise and update transform

At+1 − A⋆ =
(
At − A⋆

)(
I− 2γXtX⊤

t
)︸ ︷︷ ︸

contracting term

− 2γηtX⊤
t︸ ︷︷ ︸

noise

.

Let’s unroll two steps of SGD:

At+2 − A⋆

=
(
At+1 − A⋆

)(
I− 2γXt+1X⊤

t+1
)
− 2γηt+1X⊤

t+1

=
{ (

At − A⋆

)(
I− 2γXtX⊤

t
)
− 2γηtX⊤

t

}(
I− 2γXt+1X⊤

t+1
)
− 2γηt+1X⊤

t+1

=
(
At − A⋆

)(
I− 2γXtX⊤

t
)(
I− 2γXt+1X⊤

t+1
)
− 2γηtX⊤

t
(
I− 2γXt+1X⊤

t+1
)
− 2γηt+1X⊤

t+1

If ηt is independent of Xt and Xt+1, then the transformed noise term is mean-zero if ηt is.
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Problem: independence does not hold

Xt Xt+1 Xt+2

ηt ηt+1 ηt+2

Figure 1: Recall the transformed noise term: 2γηtX⊤
t

(
I− 2γXt+1X⊤

t+1
)
. The past

noise ηt and the SGD transformation (I− 2γXt+1X⊤
t+1) are not independent.
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Unrolled noise term

Unrolling the whole sequence of SGD on (X0,X1, . . . ,XT ) all the way:

AT − A⋆ =
(
A0 − A∗

) T−1∏
τ=0

(
I− 2γXτ+1X⊤

τ+1
)
+

T−1∑
t=0

Nt

where Nt is the noise term originating at iteration t.

It undergoes T − t rounds updates:

Nt = −2γηtX⊤
t

T−1∏
τ=t

(
I− 2γXτ+1X⊤

τ+1
)
,

where −2γηtX⊤
t was the original noise introduced at time t.

▶ Issue: SGD transforms the noise ηt by updates (Xt+1, . . .XT ) that depend on ηt .
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SGD: noise is transformed by correlated data

Xt Xt+1 Xt+2

ηt ηt+1 ηt+2

Figure 2: After running SGD, the noise term ηt is transformed updates generated
by Xt+1, . . . ,XT , leading to noise that is not mean zero.
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Reverse experience replay (RER)

Idea: apply SGD on the reversed stream (XT ,XT − 1, . . . ,X0).

Xt Xt+1 Xt+2

ηt ηt+1 ηt+2

Figure 3: In SGD with reverse experience replay, the noise term is transformed by
updates generated by past data it is independent of.
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Reverse experience replay (RER) update

SGD update:
At+1 − A⋆ =

(
At − A⋆

)(
I− 2γXtX⊤

t
)
− 2γηtX⊤

t .

SGD with RER update:

At+1 − A⋆ =
(
At − A⋆

)(
I− 2γX−tX⊤

−t
)
− 2γη−tX⊤

−t ,

where X−t := X(T−1)−t and η−t = η(T−1)−t .
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Empirical comparison

Figure 4: Comparison between SGD (forward traversal), SGD–RER (reverse traversal), SGD
with experience replay (random traversal), and OLS (full gradient descent).
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Streaming algorithm

Reverse traversal requires the whole stream to be stored.

▶ This intuitive description of SGD–RER is not a streaming algorithm, which
generally assumes we don’t have enough memory to store the whole stream.

Idea: given memory buffer size B, we can process the stream in pieces, where we replay
the small batch of data in reverse order.

▶ To maintain near-independence across buffers, we can throw away a small amount
of data in between pieces.
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SGD – RER with memory buffer

Figure 5: Given a memory buffer, we can store pieces of the stream,
and perform SGD on each piece in reverse order.
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Convergence result

Theorem (Informal, Kowshik et al. (2021b))
Assume that ∥A⋆∥op < 1 (stable dynamics), the noise η is ν2-sub-Gaussian, and X0 is drawn
from the stationary distribution of the LTI. Let Σ = E[X0X

⊤
0 ]. With an appropriate γ, w.h.p.,

∥∥Â− A⋆

∥∥2
op = O

(
ν2

σmin(Σ)

d + log T
T

)
.

▶ Read σmin(Σ)/ν
2 as the signal-to-noise ratio.
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Nearly matching lower bound

Theorem (Informal, Simchowitz et al. (2018))
Let ρ < 1 and µ = N (0, ν2I). For any estimator, there exists A⋆ such that ∥A⋆∥op = ρ such
that with probability at least δ,

∥∥Â− A⋆

∥∥2
op = Ω

(
(1− ρ) · d + log 1/δ

T

)
.

▶ It turns out that A⋆ can be chosen so that the covariance Σ of the associated
stationary distribution is ν2/(1− ρ2), so we have:

ν2

σmin(Σ)
∼ 1− ρ.

▶ Thus, SGD – RER convergence matches the minimax bound up to a factor of log T .
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