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Motivating example: self-driving car

Goal: train a model for a self-driving car.


What we might care about:

• Safety for riders

• Fuel efficiency

• Comfort

• [many more]



Single-objective risk minimization

min
h∈ℋ

R(h)
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Single-objective risk minimization

“Under situation , the car should do .” x y

“This is the expected fuel efficiency of  on highways.”h

The learning problem 
Directly optimizing  is not possible 
since we only have sample access to it.

R
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Motivating example: self-driving car

Goal: train a model for a self-driving car.


What we might care about:

• Safety

• Efficiency

• Comfort

• [many more]



Multi-objective risk minimization
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Multi-objective risk minimization

• It is not usually possible to minimize all risks simultaneously.

min
h∈ℋ

R(h) ≡ (R1(h), …, RK(h))
Now, we care about many types of risks .R(h)



The statistical learning setting
Let  be a data space. For each objective :


• Let  measure the risk of a standard supervised learning task:


•   a data distribution


•   measures the loss of predicting  when correct answer is 





•  is the Bayes-optimal model minimizing 

X × Y k ∈ [K]

Rk

Pk

ℓk(y, ̂y) ̂y y

Rk( f ) = 𝔼Pk[ℓk(y, f(x))]
f ⋆
k Rk
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I. Background



Question: what does it even mean to minimize ?R(h)



Solution concept: Pareto optimality

A model is Pareto optimal if improving one 
objective must come at a cost of another.



Visualization: Pareto front
SAFETY VIOLATIONS

TRAVEL TIME

More aggressive policy

More conservative policy



Visualization: Pareto front
SAFETY VIOLATIONS

TRAVEL TIME

More aggressive policy

More conservative policy

Better



Which trade-off to pick?

• Preference may depend on the Pareto set itself.

SAFETY VIOLATIONS

TRAVEL TIME

The specific type of trade-of that is 
preferred is not usually known beforehand.



Main goal: learn all Pareto-optimal models
(Allows for downstream user preferences to dictate which one to deploy). 



Question: how do you find Pareto-optimal models?



Scalarization

Pareto-optimal models often corresponds 
to solutions of scalarized objectives.

Examples: 

      or     min
h∈ℋ

1
K ∑

k∈[K]

Rk(h) min
h∈ℋ

max
k∈[K]

Rk(h) .

Minimize task-averaged risk

Minimize worst risk



The s-trade-off solutions

• Let  be a scalarizer. 


• The -trade-off solution minimizes:


.


• The Pareto set can be parameterized 
by a family 

s : ℝK → ℝ

s

hs = arg min
h∈ℋ

s(R(h))

{hs : s ∈ 𝒮}
hs



What learning the Pareto set means

s(R(ĥs)) < min
h∈ℋ

s(R(h)) + ε .

• Return -optimal model for each -trade-off where .
ε s s ∈ 𝒮



What learning the Pareto set means

Pr(∀s ∈ 𝒮, s(R(ĥs)) < min
h∈ℋ

s(R(h)) + ε) > 1 − δ .

• Return -optimal model for each -trade-off where .


• Succeed on the whole Pareto set with high probability.

ε s s ∈ 𝒮



Question: How much data is needed to learn all Pareto optimal models?



Sample Complexity Bounds

Supervised multi-objective learning 

C. Cortes, M. Mohri, J. Gonzalvo, and D. Storcheus. Agnostic learning with 
multiple objectives. NeurIPS 2020.


P. Súkeník and C. Lampert. Generalization in multi-objective machine learning. 
Neural Computing and Applications 2024.
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Informal Theorem (Súkeník & Lampert 2024). Let  be a model class. 
To -learn all Pareto optimal models in , we need:
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Sample Complexity Bounds
Informal Theorem (Súkeník & Lampert 2024). Let  be a model class. 
To -learn all Pareto optimal models in , we need:


 samples,


where  is the number of tasks. 

ℋ
ε ℋ

Θ̃ ( VC(ℋ) ⋅ K
ε2 )

K

Tight because solving each task alone costs:  samples.Ω ( VC(ℋ)
ε2 )

Is this really where the statistical hardness is coming from?



II. Multi-objective learning for simple tasks?



Even if individual tasks are easy to learn

Task 1



Even if individual tasks are easy to learn

Task 2



Joint tasks may require more complex classes

TASK 1 & 2



From individual to joint model classes

ParetoFront(ℋ1)

ParetoFront(ℋ2)

R1

R2 Generally, models good for one 
task may not work well for others.



From individual to joint model classes

ParetoFront(𝒢)

R1

R2 Classes with good trade-offs  
may be much harder to learn.

𝒢

ParetoFront(ℋ1)

ParetoFront(ℋ2)



Question: is paying the full supervised cost in the more complex class needed?



Question: is paying the full supervised cost in the more complex class needed?
or, can we break up a complex multi-objective task into many simple ones?



Question: is paying the full supervised cost in the more complex class needed?
or, can we break up a complex multi-objective task into many simple ones?

We want the best of both worlds:


- low statistical cost to learn


- efficient trade-offs across risks



Semi-supervised setting

Assumptions:


• We have access to simple model classes  for each task .


• These classes are guaranteed to perform well individually. In fact,
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f ⋆
k ∈ ℋk

Pk
X



A negative result

Theorem. Let  be a model class. To -learn all Pareto optimal models, we need:


 samples,


even if we know  and have unlimited unlabeled data from  for each .

𝒢 ε

Θ̃ ( VC(𝒢) ⋅ K
ε2 )

f ⋆
k Pk k ∈ [K]
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A negative result

Theorem. Let  be a model class. To -learn all Pareto optimal models, we need:


 samples,


even if we know  and have infinite unlabeled data from  for each .

𝒢 ε

Θ̃ ( VC(𝒢) ⋅ K
ε2 )

f ⋆
k Pk k ∈ [K]

Implication: learning trade-offs can be arbitrarily harder than solving individual tasks.

Intuition: ability to drive fast + ability to be safe     ability to drive fast safely.⇏
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Proof idea

Task 1: predict outcome of flip of Coin 1 (optimal prediction = H)


Task 2: predict outcome of flip of Coin 2 (optimal prediction = T)


Multi-objective task: predict the majority vote (requires learning bias of coins)

Promise: 

• The Bernoulli parameters  of the coins satisfy:
(p1, p2)

p1 ∈ { 1
2

,
1
2

+ ε} and p2 ∈ { 1
2

− ε,
1
2 } .



Problem: loss functions such as the zero-one loss can be “uninformative”.



II. Multi-objective learning with nice losses



Semi-supervised setting
Assumptions:


• We have access to simple model classes  for each task .


• These classes are guaranteed to perform well individually. In fact,





• We also have access to unlabeled data from .


• We have nice losses .

ℋk k ∈ [K]

f ⋆
k ∈ ℋk

Pk
X

ℓk
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Bregman losses
There are standard losses that are much nicer than the zero-one loss:


• Square loss


• Logistic loss/cross-entropy loss


• etc.

Risk Decomposition for Bregman Losses 

R(h) = 𝔼[ℓ(Y, f ⋆(X))] + 𝔼[ℓ( f ⋆(X), h(X))]

This expectation is only over unlabeled data PX



Risk functional estimation
Risk Decomposition for Bregman Losses 

R(h) = 𝔼[ℓ(Y, f ⋆(X))] + 𝔼[ℓ( f ⋆(X), h(X))]
 knowledge of the risk minimizer  tells us a lot about the risk . ⟹ f ⋆ R



Risk functional estimation
Risk Decomposition for Bregman Losses 
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A plug-in estimator 
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A pseudo-labeling algorithm 

For each task : 

• Use labeled data to approximately recover  from .


• Generate a lot of pseudo-label data  to estimate .

k ∈ [K]

f ⋆
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A pseudo-labeling algorithm 

For each task : 

• Use labeled data to approximately recover  from .


• Generate a lot of pseudo-label data  to estimate .

k ∈ [K]

f ⋆
k ℋk

(X, ̂fk(X)) R̂k

This only requires additional unlabeled data from Pk
X .
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A positive result
Theorem. Let  be a joint model class, and let  be model class that 
contains the Bayes-optimal model. If the losses  are Bregman losses:


 labeled samples,     unlabeled samples


are enough to -learn all Pareto-optimal models.  
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A positive result
Theorem. Let  be a joint model class, and let  be model class that 
contains the Bayes-optimal model. If the losses  are Bregman losses:


 labeled samples,     unlabeled samples


are enough to -learn all Pareto-optimal models.  

𝒢 ℋk ∋ f ⋆
k

ℓk

O (
∑k VC(ℋk)

ε4 ) O ( VC(𝒢)
ε2 )

ε

Importantly, the label sample complexity does not the complexity of the joint 
class  in which the good trade-offs are possible.𝒢

Tighter, data-dependent bounds are also possible. See paper/poster.



Takeaways

• Multi-objective learning (MOL) problems are ubiquitous in practice, but subtle.


• Learning good trade-offs can be much harder than solving the individual tasks.


• Structure in loss/feedback important for efficient multi-objective generalization.



Thanks! 

On the sample complexity of semi-supervised  
multi-objective learning (NeurIPS 2025) 

https://arxiv.org/abs/2508.17152

https://arxiv.org/abs/2508.17152

