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Motivating example: self-driving car

Goal: train a model for a self-driving car.
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Single-objective risk minimization

R(h) measures the population risk of the model A

/ “This is the expected fuel efficiency of 4 on highways.”

min R(h)
heA The learning problem
Directly optimizing R is not possible
since we only have sample access to it.
h : X — Yis a model from a model class #

“Under situation x, the car should do y.”



Motivating example: self-driving car

Goal: train a model for a self-driving car.

What we might care about:
o Safety
» Efficiency

 Comfort
* [many more]



Multi-objective risk minimization
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Multi-objective risk minimization

min R(h) = (R,(h), ..., Rg(h))
he#

Now, we care about many types of risks R(4).

* |t is not usually possible to minimize all risks simultaneously.
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The statistical learning setting

Let X X Y be a data space. For each objective k € [K]:

 Let R;, measure the risk of a standard supervised learning task:
» P, adata distribution

7 (y,y) measures the loss of predicting y when correct answer is y

Ri(h) = Ep,|£4(3.h0)

. f7 is the Bayes-optimal model minimizing R,




|. Background



Question: what does it even mean to minimize R(/)?



Solution concept: Pareto optimality

SAFETY

COST /\ COMFORT
/ A model is Pareto optimal if improving one
L/ / objective must come at a cost of another.
LEGALITY SPEED

EFFICIENCY
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Visualization: Pareto front

SAFETY VIOLATIONS

/ More aggressive policy
/ More conservative policy

TRAVEL TIME

Better



Which trade-off to pick?

SAFETY VIOLATIONS

The specific type of trade-off that is
preferred is not usually known beforehand.

* Preference may depend on the Pareto set itself.

TRAVEL TIME



Main goal: learn all Pareto-optimal models

(Allows for downstream user preferences to dictate which one to deploy).



Question: how do you find Pareto-optimal models”?



Scalarization

Pareto-optimal models often corresponds
to solutions of scalarized objectives.

Examples:

1
min — Z R, (h) or minmax R.(h).
he# kelK]

Minimize task-averaged risk

Minimize worst risk



The s-trade-off solutions

e Lets : R® - R be a scalarizer.

e The s-trade-off solution minimizes:

h, = arg min S(R(h)).
heA

h, * The Pareto set can be parameterized
by a family {h,: s € &'}



What learning the Pareto set means

s(R(hy)) < min s(R(h)) + €.

» Return e-optimal model for each s-trade-off where s € &'.



What learning the Pareto set means

Pr(‘v’s e d, S(R(lAzS)) < ing} S(R(h)) + 8) >1-9.

» Return e-optimal model for each s-trade-off where s € &'.

* Succeed on the whole Pareto set with high probabillity.



Question: How much data is needed to learn all Pareto optimal models?



Sample Complexity Bounds

Supervised multi-objective learning

C. Cortes, M. Mohri, J. Gonzalvo, and D. Storcheus. Agnostic learning with
multiple objectives. NeurlPS 2020.

P. Sukenik and C. Lampert. Generalization in multi-objective machine learning.
Neural Computing and Applications 2024.
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Sample Complexity Bounds

Informal Theorem (Sukenik & Lampert 2024). Let /7 be a model class.
To e-learn all Pareto optimal models in #, we need:

3 (VC(%)-K)
G, — samples,
£

where K is the number of tasks.

Tight because solving each task alone costs: €2

AN

( VC(AZ)

) samples.
c2

Is this really where the statistical hardness is coming from?



ll. Multi-objective learning for simple tasks?
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Joint tasks may require more complex classes
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TASK 1 & 2



From individual to joint model classes

R, Generally, models good for one
task may not work well for others.



From individual to joint model classes

R, Classes with good trade-offs &
may be much harder to learn.

ParetoFront(%)
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Question: is paying the full supervised cost in the more complex class needed?
or, can we break up a complex multi-objective task into many simple ones?

We want the best of both worlds:
- low statistical cost to learn

- efficient trade-offs across risks
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Semi-supervised setting

Assumptions:

 We have access to simple model classes # ;, for each task k € [K].

 These classes are guaranteed to perform well individually. In fact,
frex,

« We also have access to unlabeled data from P§.
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A negative result

Theorem. Let & be a model class. To e-learn all Pareto optimal models, we need:
. [ VC(®)- K
Q, —— samples,
E

even if we know f,f and have infinite unlabeled data from P, for each k € | K].

Intuition: ability to drive fast + abllity to be safe # abillity to drive fast safely.

Implication: learning trade-offs can be arbitrarily harder than solving individual tasks.
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Proof idea

Task 1: predict outcome of flip of Coin 1 (optimal prediction = H)
Task 2: predict outcome of flip of Coin 2 (optimal prediction = T)

Multi-objective task: predict the majority vote (requires learning bias of coins)

Promise:

 The Bernoulli parameters (p, p,) of the coins satisfy:

= : 1+ d = : :
—, —+ &£ an — & — (-
P1 5’ P> 5 5



Problem: loss functions such as the zero-one loss can be “uninformative”.



ll. Multi-objective learning with nice losses



Semi-supervised setting

Assumptions:

» We have access to simple model classes # ', for each task k € [K].

* These classes are guaranteed to perform well individually. In fact,
frex,
« We also have access to unlabeled data from P§.

» We have nice losses ;.
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Bregman losses

There are standard losses that are much nicer than the zero-one loss:
e Square loss
* Logistic loss/cross-entropy loss

e etcC.

Risk Decomposition for Bregman Losses

R(h) = E[£(Y.f*(X))] + E[£(f*(X). h(X)]

This expectation is only over unlabeled data Py



Risk functional estimation

Risk Decomposition for Bregman Losses

R(h) = E|Z(Y,f*(X)| + E|£(f*(X), (X)),

—> knowledge of the risk minimizer f* tells us a lot about the risk R.
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Risk Decomposition for Bregman Losses
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Risk functional estimation

Risk Decomposition for Bregman Losses

R(h) = E|Z(Y,f*(X)| + E|£(f*(X), (X)),

A plug-in estimator

. f < argmin E[£(Y, h(X))|
he#H

. R(h) =

Vo A\

- [2(v, 70| + E[£(F(X), h(X))]
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A pseudo-labeling algorithm

For each task k € [K|:

« Use labeled data to approximately recover f,f from A .

e Generate a lot of pseudo-label data (X, fk(X)) to estimate ﬁk

For each s € & (parametrizing the Pareto set):

e Solve the optimization problem:

g, < arg min S(IA{(g)) .
geEG
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A positive result

Theorem. Let € be a joint model class, and let ', 3 f;* be model class that
contains the Bayes-optimal model. If the losses £, are Bregman losses:

> VC())

4

VC(¥)

g2

O labeled samples, O ( )unlabeled samples

are enough to &-learn all Pareto-optimal models.

Importantly, the label sample complexity does not the complexity of the joint
class (& in which the good trade-offs are possible.

Tighter, data-dependent bounds are also possible. See paper/poster.



Takeaways

* Multi-objective learning (MOL) problems are ubiquitous in practice, but subtle.
* | earning good trade-offs can be much harder than solving the individual tasks.

o Structure in loss/feedback important for efficient multi-objective generalization.



Thanks!

On the sample complexity of semi-supervised
multi-objective learning (NeurlPS 2025)

https://arxiv.org/abs/2508.17152
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