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Motivating example: self-driving car

Goal: train a model for a self-driving car.


What we might care about:

• Safety for riders

• Fuel efficiency

• Comfort

• [many more]
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 is a model from a model class f : X → Y ℱ
“Under situation , the car should do .” x y

 measures the population risk of the model  R( f ) f
“This is the expected fuel efficiency of  on highways.”f

The learning problem 
Directly optimizing  is not possible 
since we only have sample access to it.

R



Motivating example: self-driving car

Goal: train a model for a self-driving car.


What we might care about:

• Safety

• Efficiency

• Comfort

• [many more]



Multi-objective risk minimization

min
f∈ℱ

R( f ) ≡ (R1( f ), …, RK( f ))
Now, we care about many types of risks .R( f )
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Solution concept: Pareto optimality

A model is Pareto optimal if improving one 
objective must come at a cost of another.

• The specific type of trade-off is not 
usually known beforehand.
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Question: How much data is needed to learn all Pareto optimal models?


•  What if we already know something about how to solve the individual tasks?



The statistical learning setting
Let  be a data space. For each objective :


• Let  measure the risk of a standard supervised learning task:


•   a data distribution


•   measures the loss of predicting  when correct answer is 





•  is the Bayes-optimal model minimizing 

X × Y k ∈ [K]

Rk
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ℓk(y, ̂y) ̂y y

Rk( f ) = 𝔼Pk[ℓk(y, f(x))]
f ⋆
k Rk
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A negative result

Theorem. Let  be a model class. To -learn all Pareto optimal models, we need:


 samples,


even if we know  and have unlimited unlabeled data from  for each .

ℱ ε

Θ̃ ( VC(ℱ) ⋅ K
ε2 )
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A negative result

Theorem. Let  be a model class. To -learn all Pareto optimal models, we need:


 samples,


even if we know  and have unlimited unlabeled data from  for each .

ℱ ε

Θ̃ ( VC(ℱ) ⋅ K
ε2 )

f ⋆
k Pk k ∈ [K]

Intuition: ability to drive fast + ability to be safe     ability to drive fast safely⇏
Problem: loss functions such as the zero-one loss can be “uninformative”.



A positive result
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Importantly, the label sample complexity does not the complexity of the joint 
class  in which the good trade-offs are possible.ℱ



Takeaways

• Multi-objective learning (MOL) problems are ubiquitous in practice.


• Learning good trade-offs can be much harder than solving the individual tasks.


• Structure in loss/feedback important for efficient multi-objective generalization.



Thanks! 

On the sample complexity of semi-supervised  
multi-objective learning 

https://arxiv.org/abs/2508.17152
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