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Motivating example: self-driving car
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Single-objective risk minimization

R(f) measures the population risk of the model f

/ “This is the expected fuel efficiency of f on highways.”

min R(f)

.
f EF The learning problem
Directly optimizing R is not possible
since we only have sample access to it.
f: X — Yis amodel from a model class #

“Under situation x, the car should do y.”



Motivating example: self-driving car

Goal: train a model for a self-driving car.

What we might care about:
o Safety
» Efficiency

 Comfort
* [many more]



Multi-objective risk minimization

min R(f) = (R,(f), ..., Re(/))

fes#

Now, we care about many types of risks R(f).



Solution concept: Pareto optimality
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Solution concept: Pareto optimality

Safety

Comfort

A model is Pareto optimal if improving one
objective must come at a cost of another.
* The specific type of trade-off is not
usually known beforehand.

Conservative (Pareto)
Aggressive (Pareto)
— Eco (Pareto)

Efficiency e Baseline (dominated)
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 What if we already know something about how to solve the individual tasks?
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The statistical learning setting

Let X X Y be a data space. For each objective k € [K]:

 Let R;, measure the risk of a standard supervised learning task:
» P, adata distribution

7 (y,y) measures the loss of predicting y when correct answer is y

R(f) = Ep, |£4(3.f)|

. f7 is the Bayes-optimal model minimizing R,




A negative result

Theorem. Let & be a model class. To e-learn all Pareto optimal models, we need:
_ (VC(PZ) . K
O —~

) samples,
o2



A negative result

Theorem. Let & be a model class. To e-learn all Pareto optimal models, we need:
- (VC(F)-K
Q, Ea— samples,
E

even if we know f,f and have unlimited unlabeled data from P, for each k € [K]|.



A negative result

Theorem. Let & be a model class. To e-learn all Pareto optimal models, we need:
_ (VC(PZ) . K
O —~

) samples,
o2

even if we know f,f and have unlimited unlabeled data from P, for each k € [K]|.

Intuition: ability to drive fast + ability to be safe # abillity to drive fast safely



A negative result

Theorem. Let & be a model class. To e-learn all Pareto optimal models, we need:
- (VC(F)-K
Q, Ea— samples,
E

even if we know f,f and have unlimited unlabeled data from P, for each k € [K]|.

Intuition: ability to drive fast + ability to be safe # abillity to drive fast safely

Problem: loss functions such as the zero-one loss can be “uninformative”.
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A positive result

Theorem. Let & be a joint model class, and let 7, 3 f;* be model class that
contains the Bayes-optimal model. If the losses £, are Bregman losses:

> VC())

4

VC(F)

2

O labeled samples, O ( )unlabeled samples

are enough to &-learn all Pareto-optimal models.

Importantly, the label sample complexity does not the complexity of the joint
class & in which the good trade-offs are possible.



Takeaways

* Multi-objective learning (MOL) problems are ubiquitous in practice.
* | earning good trade-offs can be much harder than solving the individual tasks.

o Structure in loss/feedback important for efficient multi-objective generalization.



Thanks!

On the sample complexity of semi-supervised
multi-objective learning

https://arxiv.org/abs/2508.17152
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