Toward a theory of multi-objective learning

Tobias Wegel

Junhyung Park

Fanny Yang

Motivating example: self-driving car

Goal: train a model for a self-driving car.

$$\min_{f \in \mathscr{F}} R(f)$$

$$\min_{f \in \mathcal{F}} R(f)$$

 $f: X \to Y$ is a **model** from a model class \mathscr{F}

"Under situation x, the car should do y."

R(f) measures the **population risk** of the model f

"This is the expected fuel efficiency of f on highways."

 $f: X \to Y$ is a **model** from a model class \mathscr{F}

"Under situation x, the car should do y."

R(f) measures the **population risk** of the model f

"This is the expected fuel efficiency of f on highways."

The learning problem

Directly optimizing R is not possible since we only have sample access to it.

 $f: X \to Y$ is a **model** from a model class \mathscr{F}

"Under situation x, the car should do y."

Motivating example: self-driving car

Goal: train a model for a self-driving car.

What we might care about:

- Safety
- Efficiency
- Comfort
- [many more]

Multi-objective risk minimization

$$\min_{f \in \mathscr{F}} \mathbf{R}(f) \equiv \left(R_1(f), \dots, R_K(f) \right)$$

Now, we care about many types of risks $\mathbf{R}(f)$.

Solution concept: Pareto optimality

Solution concept: Pareto optimality

A model is **Pareto optimal** if improving one objective must come at a cost of another.

Solution concept: Pareto optimality

A model is **Pareto optimal** if improving one objective must come at a cost of another.

• The specific type of *trade-off* is not usually known beforehand.

Question: How much data is needed to learn all Pareto optimal models?	

Question: How much data is needed to learn all Pareto optimal models?
 What if we already know something about how to solve the individual tasks?

Let $X \times Y$ be a data space.

Let $X \times Y$ be a data space. For each objective $k \in [K]$:

• Let R_k measure the risk of a standard supervised learning task:

Let $X \times Y$ be a data space. For each objective $k \in [K]$:

- Let R_k measure the risk of a standard supervised learning task:
 - P_k a data distribution

Let $X \times Y$ be a data space. For each objective $k \in [K]$:

- Let R_k measure the risk of a standard supervised learning task:
 - P_k a data distribution
 - $\ell_k(y,\hat{y})$ measures the loss of predicting \hat{y} when correct answer is y

$$R_k(f) = \mathbb{E}_{P_k} \left[\mathcal{C}_k \big(y, f(x) \big) \right]$$

Let $X \times Y$ be a data space. For each objective $k \in [K]$:

- Let R_k measure the risk of a standard supervised learning task:
 - P_k a data distribution
 - $\ell_k(y,\hat{y})$ measures the loss of predicting \hat{y} when correct answer is y

$$R_k(f) = \mathbb{E}_{P_k} \left[\mathcal{C}_k \big(y, f(x) \big) \right]$$

• f_k^{\star} is the Bayes-optimal model minimizing R_k

Theorem. Let \mathcal{F} be a model class. To ε -learn all Pareto optimal models, we need:

$$\tilde{\Theta}\left(\frac{\mathrm{VC}(\mathcal{F})\cdot K}{\varepsilon^2}\right) \text{ samples,}$$

Theorem. Let \mathscr{F} be a model class. To ε -learn all Pareto optimal models, we need:

$$\tilde{\Theta}\left(\frac{\mathrm{VC}(\mathcal{F})\cdot K}{\varepsilon^2}\right) \text{ samples,}$$

even if we know f_k^* and have unlimited unlabeled data from P_k for each $k \in [K]$.

Theorem. Let \mathcal{F} be a model class. To ε -learn all Pareto optimal models, we need:

$$\tilde{\Theta}\left(\frac{\mathrm{VC}(\mathcal{F})\cdot K}{\varepsilon^2}\right) \text{ samples,}$$

even if we know f_k^{\star} and have unlimited unlabeled data from P_k for each $k \in [K]$.

Intuition: ability to drive fast + ability to be safe \Rightarrow ability to drive fast safely

Theorem. Let \mathscr{F} be a model class. To ε -learn all Pareto optimal models, we need:

$$\tilde{\Theta}\left(\frac{\mathrm{VC}(\mathcal{F})\cdot K}{\varepsilon^2}\right) \text{ samples,}$$

even if we know f_k^* and have unlimited unlabeled data from P_k for each $k \in [K]$.

Intuition: ability to drive fast + ability to be safe \Rightarrow ability to drive fast safely

Problem: loss functions such as the zero-one loss can be "uninformative".

Theorem. Let \mathcal{F} be a joint model class,

Theorem. Let \mathscr{F} be a joint model class, and let $\mathscr{H}_k \ni f_k^*$ be model class that contains the Bayes-optimal model.

Theorem. Let \mathscr{F} be a joint model class, and let $\mathscr{H}_k \ni f_k^{\star}$ be model class that contains the Bayes-optimal model. If the losses ℓ_k are Bregman losses:

Theorem. Let \mathscr{F} be a joint model class, and let $\mathscr{H}_k \ni f_k^*$ be model class that contains the Bayes-optimal model. If the losses \mathscr{C}_k are Bregman losses:

$$O\left(rac{\sum_k \mathrm{VC}(\mathscr{H}_k)}{arepsilon^4}
ight)$$
 labeled samples, $O\left(rac{\mathrm{VC}(\mathscr{F})}{arepsilon^2}
ight)$ unlabeled samples

are enough to ε -learn all Pareto-optimal models.

Theorem. Let \mathscr{F} be a joint model class, and let $\mathscr{H}_k \ni f_k^{\star}$ be model class that contains the Bayes-optimal model. If the losses \mathscr{C}_k are Bregman losses:

$$O\left(\frac{\sum_k \mathrm{VC}(\mathcal{H}_k)}{\varepsilon^4}\right)$$
 labeled samples, $O\left(\frac{\mathrm{VC}(\mathcal{F})}{\varepsilon^2}\right)$ unlabeled samples

are enough to ε -learn all Pareto-optimal models.

Importantly, the label sample complexity does not the complexity of the joint class \mathcal{F} in which the good trade-offs are possible.

Takeaways

- Multi-objective learning (MOL) problems are ubiquitous in practice.
- Learning good trade-offs can be much harder than solving the individual tasks.
- Structure in loss/feedback important for efficient multi-objective generalization.

Thanks!

On the sample complexity of semi-supervised multi-objective learning

https://arxiv.org/abs/2508.17152