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Problem

Aligning multiple views of data: given two views of data (X1,X2), learn separate but
coordinated representations (X̃1, X̃2) of the data with maximal linear correlation.
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Canonical correlation analysis
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Canonical correlation analysis (CCA, Hotelling (1936))

Given: let (X1,X2) ∈ Rd1 × Rd2 be a pair of random variables with covariance Σ.

Problem: find linear projections wi ∈ Rdi for i = 1, 2 maximizing the correlation:

(w∗
1 ,w

∗
2 ) : = argmax

w1,w2
corr(w⊤

1 X1,w⊤
2 X2)

= argmax
w1,w2

w⊤
1 Σ12w2√

w⊤
1 Σ11w1w⊤

2 Σ22w2
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Canonical correlation analysis (CCA)

Solution:
▶ Without loss of generality, we may assume Σ11 and Σ22 are identity matrices.

▶ Otherwise, we just need to whiten the data:

X1 7→ Σ
−1/2
11 X1 and X2 7→ Σ

−1/2
22 X2.

▶ We can rewrite the CCA problem:

(w∗
1 ,w

∗
2 ) = argmax

∥w1∥2=∥w2∥2=1
w⊤
1 Σ12w2.

▶ This is now a familiar problem with familiar solution:
▶ w1 and w2 are the left and right singular vectors for the top singular value of Σ12.
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CCA with k dimensions

Generalizing, we aim to find projections Ai ∈ Rdi×k into k dimensions:

(A∗
1 ,A

∗
2) := argmax

A⊤
1 Σ11A1=A⊤

2 Σ22A2=I
tr
(
A⊤
1 Σ12A2

)
.

▶ This again is solved by applying SVD to Σ−1/2
11 Σ12Σ

−1/2
22 .

▶ Aside: this problem and solution is amenable to a kernelized approach (KCCA).
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CCA Projection

Definition
We say that {U (j)

1 } and {U (j′)
2 } are canonical coordinate systems for X1 and X2 if they

are a pair of orthonormal bases and satisfy:

corr
(
U (j)
1 X1,U

(j′)
2 X2

)
=

{
λj j = j′

0 j ̸= j′.

Without loss of generality, assume 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ 0.

▶ A k-dimensional CCA projects onto first k basis vectors of {U (j)
i }.
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Theory of CCA for regression
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CCA for linear regression

Linear regression in the CCA subspace:

1. Given unlabeled data {X (j) ≡ (X (j)
1 ,X (j)

2 )}, learn CCA projections Π ≡ (Π1,Π2).

2. Given (possibly distinct) labeled data {(X (j), Y (j))} perform least squares on:

{(ΠX (j), Y (j))}.
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Theoretical result

Theorem (Informal, Foster et al. (2008))
Under either (i) redundancy or (ii) conditional independence assumptions, dimensionality
reduction via CCA does not lose predictive power for linear regression.

▶ By performing a lower dimensional linear regression, the gain is in the reduction of
sample complexity.
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R2, coefficient of determination

Recall that the coefficient of determination for the linear regression problem (X , Y) is
the maximal correlation achievable by a linear estimator:

R2X ;Y = max
β

corr(βX , Y).

It is also equal to the fraction of explained variation in Y ,

R2X ;Y = max
β

(
1− loss(β)

var(Y)

)
,

where loss(β) is the sum of the squared residuals ∥βX − Y∥2.
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Redundancy assumption

Assumption (ε-redundancy)
Assume that the best linear predictor from each view is roughly as good as the best linear
predictor from the joint views. More precisely,

R2Xi;Y ≥ R2X ;Y − ε, i = 1, 2.
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CCA projection Πλ

Recall that CCA finds canonical coordinate systems {U (j)
1 } and {U (j)

2 } so that:

corr
(
U (j)
1 X1,U

(j′)
2 X2

)
=

{
λj j = j′

0 j ̸= j′,

and 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ 0. We can define a projection onto directions that achieve a
minimum threshold correlation:

Πλ projects X onto subspaces spanned by U (j)
i if λj > λ.

13 / 33



Theoretical result: with redundancy assumption

Theorem
Suppose the ε-redundancy assumption holds for (X1,X2, Y) where Y ∈ R. For all λ ∈ [0, 1],

R2ΠλXi;Y ≥ R2Xi;Y − 4ε
1− λ

.
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Proof sketch

By a change of basis, assume that X1,X2, Y are isotropic (i.e. identity covariances). Let’s
consider X1 (the case for X2 is analogous).

1. Let βCCA and β1 be the best linear predictors for ΠλX1 and X1, respectively.

2. This means that βCCA is simply the projection of β1 onto the CCA subspace:

βCCA = β1Πλ.

3. Note that in the canonical coordinate system, we can write:

∥β1 − βCCA∥2 =
∑
j:λj<λ

(
[β1]j

)2
,

where [β1]j = β1U
(j)
1 is the jth coordinate in the {U (j)

1 } basis.
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Proof sketch (cont.)

4. Since X1 and Y are isotropic (e.g. var(Y) = 1), this is precisely the amount of
unexplained variation not captured by βCCA when compared to β1:

R2X1;Y − R2ΠλX1;Y = loss(βCCA)− loss(β1) = ∥β1 − βCCA∥2.

5. Claim: ∥β1 − βCCA∥2 < 4ε
1−λ .

▶ By ε-redundancy, both X1 and X2 are almost predictive of Y as X ≡ (X1,X2). Thus:

E
[(
β1X1 − β2X2

)2] ≤ 4ε.

▶ This implies that [β1]j cannot be very large if λj < λ. Otherwise, β1 would be much
more predictive than β2. Analytically, we get a bound:∑

j

(1− λj)
(
[β1]j

)2 ≤ 4ε.
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Conditional (non)-correlation condition

Assumption
We say that H is a hidden state for (X1,X2, Y) if conditional on H , the triple is uncorrelated.
Assume that there is a linear hidden state H such that both X1 and X2 are non-trivially
predictive of H . Formally, for all directions w,

R2Xi;wH > 0
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Theoretical result: with conditional non-correlation assumption

Theorem
Assume that there is a k-dimensional linear hidden state H for (X1,X2, Y). Then
ΠCCA ≡ Π0 is precisely a linear projection onto a k-dimensional subspace, and:

(i) the best linear predictor of Y with Xi is equal to the best linear predictor with ΠCCAXi,

(ii) the best linear predictor for Y with X is equal to the best linear predictor with
ΠCCA(X1,X2).
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Deep canonical correlation analysis

19 / 33



Deep CCA (Andrew et al., 2013)

Deep canonical correlation analysis (DCCA): learn deep representations

fi( · ; θi) : Rdi → Rdo , i = 1, 2,

so that the representation of the two views of data have maximal correlation. Thus:

(θ∗1 , θ
∗
2 ) := argmax

θ1,θ2

corr
(
f1(X1), f2(X2)

)
.
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Training for DCCA
Andrew et al. (2013) consider fully-connected MLPs fi( · ; θi) with hidden layers:

h(j)i = σ
(
W (j)

i h(j−1)
i + b(j)i

)
.

▶ Each hidden layer has the same dimension as the input, h(j)i ∈ Rdi .

▶ The parameters θi = (W (j)
i , b(j)i ) are initialized with a denoising autoencoder:

▶ Given input data X ∈ Rn×d , generate noisy data X̃ ∈ Rn×d by adding Gaussian noise.
▶ Solve for parameters W , b by optimizing:

min ∥X̂ − X∥2F + λ
(
∥W∥2F + ∥b∥2

)
,

where X̂ = σ(WX̃ + b).
▶ Sequentially generate W (j), b(j), where the next layer builds on the previous layer.

▶ Train using gradient-based optimization; however, the objective is not a sum over
individual training data, so it is not amenable to mini-batches.
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Experiment: MNIST digits

Views: X1 is the left-half and X2 is the right-half of an MNIST image.

corr CCA KCCA DCCA
dev 28.1 33.5 39.4
test 28.0 33.0 39.7

Table 1: Total correlation tr(Σ12Σ21) of learned representation.
Here, KCCA uses an RBF kernel.
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Experiment: articulatory speech data

Views: X1 is articulatory data (positional tracking of pellets attached to a speaker’s
mouth, lips, tongue, and jaw; X2 is auditory data (MFCC encoding) of sound.

corr CCA KCCA (rbf) KCCA (poly) DCCA
fold 1 16.8 29.2 32.3 39.2
fold 2 15.8 25.3 29.1 34.1
fold 3 16.9 30.8 34.0 39.4
fold 4 16.6 28.6 32.4 37.1
fold 5 16.2 26.2 29.9 34.0

Table 2: Total correlation tr(Σ12Σ21) of learned representation; 5 independent folds of data.
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Applications
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Multi-model emotional recognition (Liu et al., 2019)

Problem. Emotional recognition from multi-modal datasets:

▶ SEED: EEG + eye movement

▶ DEAP: EEG + peripheral physiological signals (EOG, EMG, GSR, respiration belt,
and plethysmograph)

▶ DREAMER: two-channel ECG
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Multi-model emotional recognition (Liu et al., 2019)

Approach.
1. Apply DCCA to learn representations for both signals

2. Construct joint representation via a convex combination of the learned
representation

3. Apply SVM for downstream classification task
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Experimental results: accuracy

Method Accuracy Std.
Concatenation 83.70 –
MAX 81.71 –
FuzzyIntegral 87.59 19.87
BDAE 91.01 8.91
DGCNN 90.40 8.49
Bimodal-LSTM 93.97 7.03
DCCA 93.58 6.16

Table 3: Comparison of methods on SEED.
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Experimental results: noise robustness

Figure 1: They compare noise robustness of DCCA with that of existing methods when adding
various amounts of noise to the SEED-V dataset.
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Related work
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Related work: co-training

Blum and Mitchell (1998) introduces the co-training framework:

▶ supervised learning problem: learn (X , Y) with two views of X ≡ (X1,X2)

▶ there is a joint concept class f ≡ (f1, f2) ∈ C1 × C2

▶ realizability assumption: there is some f ∗ such that:

f1(X1) = f2(X2) = Y

for all instances (X , Y) generated by nature
▶ they prove PAC-style results under the redundancy assumption:

▶ it is possible to learn Y by observing only X1 or only X2
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Related work: multi-view redundancy for contrastive learning

Tosh et al. (2021) show similar results for the contrastive learning setting:

▶ supervised learning problem: learn (X , Y) with two views of X ≡ (X1,X2)

▶ first solve the contrastive estimation problem:
▶ construct supervised learning task from unlabeled data of the form

(X1,X2,+1) and (X1, X̃2,−1),

where (X1,X2) and (X̃1, X̃2) are i.i.d. draws from X

▶ sample a set of landmarks X (1)
2 , . . . ,X (m)

2 to generate landmark embeddings g∗(x1)

g∗(x1)j =
p(x1|X (j)

2 )

p(x1)

▶ they prove that if a redundancy assumption is satisfied, the linear functions on
landmark embeddings can perform well
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Questions

▶ If views are produced by randomly masking subsets of features, is there a
relationship to dropout?

▶ When are situations where DCCA would not be helpful?

▶ Could we learn representations where many tasks correspond to a different linear
view of the data?

▶ Does introducing noise contrastive estimation help? Minimize correlation across
unrelated views?
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