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Weather prediction problem

On each day n = 1, 2, . . .
▶ Obtain weather measurements/signals Xn

▶ Predict whether it will rain or shine the next day Ŷn
▶ Observe ground-truth outcome Yn
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What’s a good prediction rule?

A prediction rule decides how past experiences are incorporated into future predictions.

▶ We would like predictions to improve over time.
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One qualitative notion of learning

Definition (Consistency)
A prediction rule is consistent if its mistake rate vanishes:

lim sup
N→∞

1
N

N∑
n=1

1
{
Ŷn ̸= Yn

}
︸ ︷︷ ︸

average mistake rate

= 0.

▶ Let’s work in the realizable setting, in which making no mistakes is possible.

▶ Perhaps Xn is a “sufficient set” of signals so that Yn = η(Xn) is a function of Xn.

4 / 66



One qualitative notion of learning

Definition (Consistency)
A prediction rule is consistent if its mistake rate vanishes:

lim sup
N→∞

1
N

N∑
n=1

1
{
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When is consistency possible?
▶ Conversely, what makes learning hard?
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Classical results

Realizable online classification (“Littlestone setting”)

▶ The sequence X = (Xn)n may be arbitrary/worst-case.

▶ Learning requires strong inductive biases on η.

Theorem (Littlestone (1988); Bousquet et al. (2021); etc.)
Consistency is possible⇐⇒ there are only finitely many things to learn about η.
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Classical results

Example (Threshold functions are not online learnable)
Let Fthreshold be the class of threshold functions on the unit interval X = [0, 1].

0 1c

ηc(x) = 1
{
x ≥ c

}

▶ There is no consistent learner for this function class over arbitrary sequences.

▶ Informal reason: specifying c requires infinite precision.
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Learning in the worst-case setting is hard
▶ Even with very strong and correct inductive biases, consistency may be impossible.

▶ The vast majority of learning theory works in settings where learning is ‘easy’.
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Classical results

Statistical learning (i.i.d. setting)

▶ Strong statistical assumption imposed on X = (Xn)n such as Xn
i.i.d.∼ ν.

▶ Learning is possible even over the class of all measurable functions η.

Theorem (Devroye et al. (2013); Bousquet et al. (2021); etc.)
There are consistent learners in the statistical learning setting.
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What made the statistical setting easier?
▶ And, what sort of trade offs can be made between the hardness of X and η?
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Trading off between sequence class and function class

hardness of X

complexity of η

these settings are too hard

Figure 1: Classical results have largely focused on the extremal
settings. Far less is known about what happens in between.
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Where does the weather prediction problem fall?
▶ Weather does not seem to be an i.i.d. nor worst-case phenomenon.

▶ Learning to predict the weather does not seem to be impossible.
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Learning under non-worst case conditions

i.i.d. sequences arbitrary sequences

too restrictive /
unrealistic too pessimistic

smoothed sequences learnable sequences

Figure 2: As classical learning theory often does not capture learning settings in practice, this
has motivated the area of non-worst case analysis or smoothed analysis of online learning.
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This talk
▶ Discuss learning through the lens of the nearest neighbor rule

▶ Introduce some classes of non-worst case sequences and their trade offs

14 / 66



Outline of remainder of talk

1. The nearest neighbor rule

2. Consistency on nice functions

3. Consistency on all functions

4. Takeaways and open problems

15 / 66



The nearest neighbor rule
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The realizable online setting

Setup. Let X be an instance space and Y be a finite label
space. Let η : X → Y be the target classifier.

Online classification loop.
For n = 1, 2, . . .
▶ A test instance Xn is generated.

▶ The learner makes prediction Ŷn.

▶ The answer Yn = η(Xn) is revealed.

Consistency of learner: lim sup
N→∞

1
N

N∑
n=1

1
{
Ŷn ̸= Yn

}
= 0.
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The nearest neighbor rule Fix and Hodges (1951)

▶ Memorize all data points as they come.

▶ Predict using the label of the most similar instance in memory.
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Nearest neighbor process

Let X = (Xn)n≥0 be a process on a metric space (X , ρ).

Definition
A nearest neighbor process is a sequence X̃ = (X̃n)n>0 satisfying

X̃n = argmin
x∈X<n

ρ(Xn, x).

▶ The nearest neighbor rule: Ŷn = η(X̃n).
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Behavior of the nearest neighbor rule in the i.i.d. setting.
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I.I.D. sequence

Time 0
Mistake counter 0
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Consistent settings for 1-nearest neighbor

i.i.d.

Cover and Hart (1967)

η has negligible boundary
X is separable

arbitrary
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Behavior of the nearest neighbor rule in the worst-case setting.
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Worst-case sequence
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Question. When is the nearest neighbor rule consistent in the worst case?

Answer. When different classes have positive separation.
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A worst-case negative result

Let (X , ρ) be a totally bounded metric space.

Proposition
There exists a sequence X on which the nearest neighbor rule is not consistent on (X, η)
if and only if the classes are not separated:

inf
η(x)̸=η(x′)

ρ(x, x′) = 0.

▶ The nearest neighbor version of having only finitely many things to learn.
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Consistent settings for 1-nearest neighbor

i.i.d.

Cover and Hart (1967)

η has negligible boundary
X is separable

arbitrary

Kulkarni and Posner (1995)

η has separated classes
X is totally bounded
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Question. How pathological are these worst-case sequences?

Answer. Extremely. Under mild conditions, they almost never occur.
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Consistency for functions with negligible boundaries
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Inductive bias of the nearest neighbor rule
Each point, once zoomed in enough, is surrounded by points of the same label.

This section.
Consistency when the inductive bias is correct almost everywhere.

↱ for functions with negligible boundaries
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Metric measure space

Let X be a space with a separable metric ρ and a finite Borel measure ν.

▶ Separable: every open cover has a countable subcover.

▶ Borel: we can measure the mass of balls.
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Classification margin

Definition
The margin of x with respect to η is given by:

marginη(x) = inf
η(x) ̸=η(x′)

ρ(x, x′).
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Functions with negligible boundaries

Definition
A function η has negligible boundary if
ν-almost all points have positive margin.

Example
Let X be Euclidean space with the Lebesgue
measure. Let η have smooth decision boundary.
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Mutually-labeling set

Definition
A set U ⊂ X is mutually-labeling for η when:

diam(U ) < marginη(x), ∀x ∈ U .

Proposition
For all time, the nearest neighbor rule makes at
most one mistake per mutually-labeling set.
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Mutually-labeling set

Definition
A set U ⊂ X is mutually-labeling for η when:

diam(U ) < marginη(x), ∀x ∈ U .

Proposition
Let x have positive margin:

rx = marginη(x) > 0.

The open ball B(x, rx/3) is mutually labeling.
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Mutually-labeling cover

1. η has negligible boundary =⇒
mutually-labeling ball cover for X a.e.

2. ρ is a separable metric =⇒
countable subcover

3. ν is a finite measure =⇒
finite, arbitrarily-good approximate cover
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Let η have negligible boundary.

Eventually, all mistakes made by the nearest
neighbor rule must come from an arbitrarily small region w.r.t. ν.

What is the rate that X lands in regions with arbitrarily small mass?

↱ if this rate goes to zero, then the nearest neighbor rule is consistent

37 / 66



Let η have negligible boundary. Eventually, all mistakes made by the nearest
neighbor rule must come from an arbitrarily small region w.r.t. ν.

What is the rate that X lands in regions with arbitrarily small mass?

↱ if this rate goes to zero, then the nearest neighbor rule is consistent

37 / 66



Let η have negligible boundary. Eventually, all mistakes made by the nearest
neighbor rule must come from an arbitrarily small region w.r.t. ν.

What is the rate that X lands in regions with arbitrarily small mass?

↱ if this rate goes to zero, then the nearest neighbor rule is consistent

37 / 66



Let η have negligible boundary. Eventually, all mistakes made by the nearest
neighbor rule must come from an arbitrarily small region w.r.t. ν.

What is the rate that X lands in regions with arbitrarily small mass?

↱ if this rate goes to zero, then the nearest neighbor rule is consistent

37 / 66



Stochastic processes with a time-averaged constraint

Definition (Ergodic continuity)
A stochastic process X is ergodically dominated by ν if for all ε > 0, there is a δ > 0 where:

ν(A) < δ =⇒ lim sup
N→∞

1
N

N∑
n=1

1
{
Xn ∈ A

}
< ε a.s.

We say that X is ergodically continuous with respect to ν at rate ε(δ).

Interpretations.

▶ X comes from a budgeted adversary.

▶ The constraint is only on the tail of X.

▶ The empirical submeasure A 7→ lim supN→∞
1
N

∑
1{Xn ∈ A} is absolutely

continuous with respect to ν.
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Example of ergodic continuity

Definition (Ergodic continuity)
A stochastic process X is ergodically dominated by ν if for all ε > 0, there is a δ > 0 where:

ν(A) < δ =⇒ lim sup
N→∞

1
N

N∑
n=1

1
{
Xn ∈ A

}
< ε a.s.

We say that X is ergodically continuous with respect to ν at rate ε(δ).

I.I.D. processes are ergodically dominated.

▶ Apply the law of large numbers.
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Consistency for nice functions

Theorem
Let (X , ρ, ν) be a space where ρ is a separable metric and ν is a finite Borel measure.

Suppose that X is ergodically dominated by ν and η has negligible boundary. Then:

lim sup
N→∞

1
N

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
= 0︸ ︷︷ ︸

the nearest neighbor rule is online consistent for (X, η).

a.s.
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Consistent settings for 1-nearest neighbor

i.i.d.

Cover and Hart (1967)

η has negligible boundary
X is separable

arbitrary

Kulkarni and Posner (1995)

η has separated classes
X is totally bounded

ergodically dominated

η has negligible boundary
X is separable
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Universal consistency on upper doubling spaces
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Universal consistency

Goal: consistency for all measurable functions almost surely.

▶ Boundary points are no longer localized to a measure zero set.
▶ e.g. η(x) = 1

{
x ∈ Q

}
.
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Introducing a geometric assumption

Definition
A metric space (X , ρ, ν) is doubling when each ball can be
covered by at most 2d balls of half its radius.
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Approximation by functions with negligible boundary

Let ρ be a doubling metric and ν a finite Borel measure.

Proposition
The set of functions with negligible boundary is dense in L1(X ; ν).

↱ Key ingredient: a Lebesgue differentiation theorem on doubling spaces.
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A reasonable conjecture.
Approximate η very well by some η′ with negligible boundary.

▶ When X is ergodically dominated, learning η is like learning η′ when they
have vanishingly small disagreement region {η ̸= η′}.

↱ Since Xn rarely lands in {η ̸= η′}.

This turns out to be wrong.

▶ Blanchard (2022) constructs example where 1-NN is not consistent, but
X = [0, 1] is 1-doubling, η is measurable, and X is ergodically dominated.

46 / 66



A reasonable conjecture.
Approximate η very well by some η′ with negligible boundary.

▶ When X is ergodically dominated, learning η is like learning η′ when they
have vanishingly small disagreement region {η ̸= η′}.

↱ Since Xn rarely lands in {η ̸= η′}.

This turns out to be wrong.

▶ Blanchard (2022) constructs example where 1-NN is not consistent, but
X = [0, 1] is 1-doubling, η is measurable, and X is ergodically dominated.

46 / 66



A reasonable conjecture.
Approximate η very well by some η′ with negligible boundary.

▶ When X is ergodically dominated, learning η is like learning η′ when they
have vanishingly small disagreement region {η ̸= η′}.

↱ Since Xn rarely lands in {η ̸= η′}.

This turns out to be wrong.

▶ Blanchard (2022) constructs example where 1-NN is not consistent, but
X = [0, 1] is 1-doubling, η is measurable, and X is ergodically dominated.

46 / 66



A reasonable conjecture.
Approximate η very well by some η′ with negligible boundary.

▶ When X is ergodically dominated, learning η is like learning η′ when they
have vanishingly small disagreement region {η ̸= η′}.

↱ Since Xn rarely lands in {η ̸= η′}.

This turns out to be wrong.

▶ Blanchard (2022) constructs example where 1-NN is not consistent, but
X = [0, 1] is 1-doubling, η is measurable, and X is ergodically dominated.

46 / 66



What goes wrong?

▶ The influence of {η ̸= η′} is not limited to the times that Xn lands in it.

▶ Those instances can be the nearest neighbor of downstream points.

Insufficiency of a tail constraint.
‘Bad points’ can accumulate in memory, and their influence grows and shrinks
with their Voronoi cells.

▶ A new problem: the ‘hard part’ changes over time.
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Stochastic processes with a time-uniform constraint

Definition (Uniform absolute continuity)
A stochastic process X is uniformly dominated by ν if for all ε > 0, there is a δ > 0 where:

ν(A) < δ =⇒ Pr
(
Xn ∈ A

∣∣X<n
)
< ε a.s.

We say that X is uniformly absolutely continuous with respect to ν at rate ε(δ).

Interpretations.

▶ X comes from a bounded precision adversary.

▶ The constraint is strictly stronger, and applies to each point in time.

▶ Ergodic continuity is retrospective; this is a generative constraint.
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Ergodic continuity v. uniform absolute continuity

▶ Ergodic continuity: looking back, how often did points land in A?

↱ helpful when hard regions are fixed in space

▶ Uniform absolute continuity: how easily can an adversary generate a point from A?

↱ helpful when hard regions change over time

Uniformly dominated processes are ergodically dominated.

▶ Apply the martingale law of large numbers.
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Why is uniform absolute continuity helpful?
▶ A simpler problem: bound the influence of a single point X0 on X̃.

E

[
1
N

N∑
n=1

1
{
X̃n = X0

}]
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Influence of a single point

Metric entropy bound
How many times can the following occur?

▶ X0 is a nearest neighbor of Xn

▶ They are r-separated ρ(X0,Xn) > r

Answer: the r-packing number of the space.
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Influence of a single point

In a doubling space with unit diameter
X0 is a nearest neighbor of:

▶ points in B(X0, 1/2)c at most 2d times

▶ points in B(X0, 1/2k)c at most k · 2d times

▶ points in B(X0, 1/2k) with small probability
by uniform absolute continuity

↰
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Upper doubling measure

Definition
A d-doubling space has an upper doubling measure if:

ν
(
B(x, r)

)
≤ crd .

Then, a set with small metric entropy has small measure.
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What is the influence of a single point on X̃?
▶ If (X , ρ, ν) is upper doubling and X is uniformly dominated at rate ε(δ),

E

[
1
N

N∑
n=1

1
{
X̃n = X0

}]
≤ k · 2d

N
+ ε

(
c2−k

)
, ∀k ∈ N.
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Idea for universal consistency

1. Even though ‘bad points’ can accumulate in memory, in a doubling space, their
Voronoi cells tend to quickly shrink (in the metric entropy sense) as they are hit.

2. These Voronoi cells also shrink with respect to ν in upper doubling spaces.

3. Then, it becomes increasingly unlikely that these bad points are nearest neighbors
if X is uniformly dominated.
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Ergodic continuity of the nearest neighbor process

Theorem
Let (X , ρ, ν) be bounded and upper doubling.

Let X be uniformly dominated at rate ε(δ).
Then, the nearest neighbor process X̃ is ergodically dominated at rate O(ε(δ) log 1

δ ).

In words:
Let η and η′ rarely disagree. The average rate that X̃ lands in {η ̸= η′} is tiny.
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Consistency for all measurable functions

Theorem
Let (X , ρ, ν) be upper doubling,

where ρ is separable and ν is finite. Let η be measurable.
Suppose that X is uniformly dominated by ν. Then:

lim sup
N→∞

1
N

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
= 0︸ ︷︷ ︸

the nearest neighbor rule is online consistent for (X, η).

a.s.
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Proof sketch

1. Let η be approximated arbitrarily well by η′ with negligible boundary.

2. X is uniformly dominated, so the mistake rate on η′ vanishes.

3. If the mistake rate on η does not vanish, this must be due to {η ̸= η′}.
4. But the nearest neighbor process cannot significantly amplify influence of

arbitrarily small regions, implying universal consistency.
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Consistency of the nearest neighbor rule

i.i.d.

Cover and Hart (1967)

η has negligible boundary
X is separable

arbitrary

Kulkarni and Posner (1995)

η has separated classes
X is totally bounded

ergodically dominated

η has negligible boundary
X is separable

uniformly dominated

η is measurable
X is upper doubling
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Takeaways and open problems
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Non-worst-case online learning

Motif of smoothed analysis
While worst-case analyses provide important safeguards, they can be too pessimistic.

▶ They can fail to explain observed behavior.

▶ What constitutes a ‘typical’ online sequence of tasks?
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Constrained classes of stochastic processes

i.i.d. ⊂ smoothed ⊂ uniformly dominated ⊂ ergodically dominated ⊂ C1 ⊂ arbitrary

▶ Smoothed processes:
(Rakhlin et al., 2011; Haghtalab et al., 2020, 2022; Block et al., 2022)

▶ Online learnable processes:
(Hanneke, 2021; Blanchard and Cosson, 2022; Blanchard, 2022)

62 / 66



Open problems

1. Benign noise: when does the kn-nearest neighbor rule learn?

2. Bounded memory: when is bounded memory sufficient?

3. Adaptive rates: can we get meaningful/problem-dependent rates?
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Thank you!

Sanjoy Dasgupta and Geelon So. Online Consistency of the Nearest Neighbor Rule.
In The 38th Conference on Neural Information Processing Systems, 2024.
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