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Online classification
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The realizable online setting

Setup. Let X be an instance space and Y be a finite label
space. Let η : X → Y be the target classifier.

Online classification loop.
For n = 1, 2, . . .
▶ A test instance Xn is generated.

▶ The learner makes prediction Ŷn.

▶ The answer Yn = η(Xn) is revealed.

Consistency of learner: lim sup
N→∞

1
N

N∑
n=1

1
{
Ŷn ̸= Yn

}
= 0.
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Ŷn ̸= Yn

}
= 0.

4 / 42



The realizable online setting

Setup. Let X be an instance space and Y be a finite label
space. Let η : X → Y be the target classifier.

Online classification loop.
For n = 1, 2, . . .
▶ A test instance Xn is generated.

▶ The learner makes prediction Ŷn.
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The nearest neighbor rule Fix and Hodges (1951)

▶ Memorize all data points as they come.

▶ Predict using the label of the most similar instance in memory.
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Nearest neighbor process

Let X = (Xn)n≥0 be a process on a metric space (X , ρ).

Definition
A nearest neighbor process is a sequence X̃ = (X̃n)n>0 satisfying

X̃n = argmin
x∈X<n

ρ(Xn, x).

▶ The nearest neighbor rule: Ŷn = η(X̃n).
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6 / 42



Behavior of the nearest neighbor rule in the i.i.d. setting.
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I.I.D. sequence

Time 0
Mistake counter 0
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Behavior of the nearest neighbor rule in the worst-case setting.
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Question. When is the nearest neighbor rule consistent in the worst case?

Answer. When different classes have positive separation.
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A worst-case negative result

Let (X , ρ) be a totally bounded metric space.

Proposition
There exists a sequence X on which the nearest neighbor rule is not consistent on (X, η)
if and only if the classes are not separated:

inf
η(x)̸=η(x′)

ρ(x, x′) = 0.
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Question. How pathological are these worst-case sequences?

Answer. Extremely. Under mild conditions, they almost never occur.
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Consistency for functions with negligible boundaries
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Inductive bias of the nearest neighbor rule.
Each point, once zoomed in enough, is surrounded by points of the same label.

This section.
Consistency when the inductive bias is correct almost everywhere.

↱ for functions with negligible boundaries
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Metric measure space

Let X be a space with a separable metric ρ and a finite Borel measure ν.

▶ Separable: every open cover has a countable subcover.

▶ Borel: we can measure the mass of balls.
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Classification margin

Definition
The margin of x with respect to η is given by:

marginη(x) = inf
η(x) ̸=η(x′)

ρ(x, x′).
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Mutually-labeling set

Definition
A set U ⊂ X is mutually-labeling for η when:

diam(U ) < marginη(x), ∀x ∈ U .

Proposition
For all time, the nearest neighbor rule makes at
most one mistake per mutually-labeling set.
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Mutually-labeling set

Definition
A set U ⊂ X is mutually-labeling for η when:

diam(U ) < marginη(x), ∀x ∈ U .

Proposition
Let x have positive margin:

rx = marginη(x) > 0.

The open ball B(x, rx/3) is mutually labeling.
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Functions with negligible boundaries

Definition
A function η has negligible boundary if
ν-almost all points have positive margin.

Example
Let X be Euclidean space with the Lebesgue
measure. Let η have smooth decision boundary.
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Mutually-labeling cover
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Let η have negligible boundary.

Eventually, all mistakes made by the nearest
neighbor rule must come from an arbitrarily small region w.r.t. ν.

↱ since ρ is separable and ν is finite.

What is the rate that X lands in regions with arbitrarily small mass?
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Stochastic processes with a time-averaged constraint

Definition (Ergodic continuity)
A stochastic process X is ergodically dominated by ν if for all ε > 0, there is a δ > 0 where:

ν(A) < δ =⇒ lim sup
N→∞

1
N

N∑
n=1

1
{
Xn ∈ A

}
< ε a.s.

We say that X is ergodically continuous with respect to ν at rate ε(δ).

Interpretations.

▶ X comes from a budgeted adversary.

▶ The constraint is only on the tail of X.

▶ The empirical submeasure A 7→ lim supN→∞
1
N

∑
1{Xn ∈ A} is absolutely

continuous with respect to ν.
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Consistency for nice functions

Theorem
Let (X , ρ, ν) be a space where ρ is a separable metric and ν is a finite Borel measure.

Suppose that X is ergodically dominated by ν and η has negligible boundary. Then:

lim sup
N→∞

1
N

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
= 0︸ ︷︷ ︸

the nearest neighbor rule is online consistent for (X, η).

a.s.
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Universal consistency on upper doubling spaces
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Universal consistency

Goal: consistency for all measurable functions almost surely.

▶ Boundary points are no longer localized to a measure zero set.
▶ e.g. η(x) = 1

{
x ∈ Q

}
.
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Introducing a geometric assumption

Definition
A metric space (X , ρ, ν) is doubling when each ball can be
covered by at most 2d balls of half its radius.
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Approximation by functions with negligible boundary

Let ρ be a doubling metric and ν a finite Borel measure.

Proposition
The set of functions with negligible boundary is dense in L1(X ; ν).

↱ Key ingredient: a Lebesgue differentiation theorem on doubling spaces.
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A reasonable conjecture.
Approximate η very well by some η′ with negligible boundary.

▶ Learning η is like learning η′ when they have vanishingly small
disagreement region {η ̸= η′}.

This turns out to be wrong.

▶ Blanchard (2022) constructs example where 1-NN is not consistent, but
X = [0, 1] is 1-doubling, η is measurable, and X is ergodically dominated.
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What goes wrong?

▶ The influence of {η ̸= η′} is not limited to the times that Xn lands in it.

▶ Those instances can be the nearest neighbor of downstream points.

Insufficiency of a tail constraint.
‘Bad points’ can accumulate in memory, and their influence grows and shrinks
with their Voronoi cells.

▶ The ‘hard part’ changes over time.
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Stochastic processes with a time-uniform constraint

Definition (Uniform absolute continuity)
A stochastic process X is uniformly dominated by ν if for all ε > 0, there is a δ > 0 where:

ν(A) < δ =⇒ Pr
(
Xn ∈ A

∣∣X<n
)
< ε a.s.

We say that X is uniformly absolutely continuous with respect to ν at rate ε(δ).

Interpretations.

▶ X comes from a bounded precision adversary.

▶ The constraint is strictly stronger, and applies to each point in time.

▶ Ergodic continuity is retrospective; this is a generative constraint.
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Ergodic continuity v. Uniform absolute continuity

▶ Ergodic continuity: looking back, how often did points land in A?

↱ helpful when hard regions are fixed in space

▶ Uniform absolute continuity: how easily can an adversary generate a point from A?

↱ helpful when hard regions change over time
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Idea for universal consistency

1. Even though ‘bad points’ can accumulate in memory, in a doubling space, their
Voronoi cells tend to shrink (metric entropy) quickly as they are hit.

2. Suppose these Voronoi cells also shrink with respect to ν.

3. Then, it becomes increasingly unlikely that these bad points are nearest neighbors
if X is uniformly dominated.
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Upper doubling measure

Definition
A d-doubling space has an upper doubling measure if:

ν
(
B(x, r)

)
≤ crd .

Then, a small metric entropy implies small measure.
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Ergodic continuity of the nearest neighbor process

Theorem
Let (X , ρ, ν) be bounded and upper doubling.

Let X be uniformly dominated at rate ε(δ).
Then, the nearest neighbor process X̃ is ergodically dominated at rate O(ε(δ) log 1

δ ).

In words:
Let η and η′ rarely disagree. The average rate that X̃ lands in {η ̸= η′} is tiny.
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Consistency for all measurable functions

Theorem
Let (X , ρ, ν) be upper doubling,

where ρ is separable and ν is finite. Let η be measurable.
Suppose that X is uniformly dominated by ν. Then:

lim sup
N→∞

1
N

N∑
n=1

1
{
η(Xn) ̸= η(X̃n)

}
= 0︸ ︷︷ ︸

the nearest neighbor rule is online consistent for (X, η).

a.s.
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Proof sketch

1. Let η be approximated arbitrarily well by η′ with negligible boundary.

2. X is uniformly dominated, so the mistake rate on η′ vanishes.

3. If the mistake rate on η does not vanish, this must be due to {η ̸= η′}.
4. But the nearest neighbor process cannot significantly amplify influence of

arbitrarily small regions, implying universal consistency.
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Broader ideas
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Non-worst-case online learning

Motif of smoothed analysis
While worst-case analyses provide important safeguards, they can be too pessimistic.

▶ They can fail to explain observed behavior.

▶ What constitutes a ‘typical’ online sequence of tasks?
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Constrained classes of stochastic processes

i.i.d. ⊂ smoothed ⊂ uniformly dominated ⊂ ergodically dominated ⊂ C1 ⊂ arbitrary

▶ Smoothed processes: (Rakhlin et al., 2011; Haghtalab et al., 2020, 2022; Block
et al., 2022)

▶ Online learnable processes: (Hanneke et al., 2021; Blanchard and Cosson, 2022;
Blanchard, 2022)
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Thank you!
Paper download: https://geelon.github.io

NeurIPS 2024
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