Learning without mixing: analysis of linear system identification

Max Simchowitz, Horia Mania, Stephen Tu, Michael I. Jordan, Benjamin Recht (2018)

Geelon So, agso@eng.ucsd.edu DSC291 Sequential decision making — June 10, 2021

Problem: suppose we have a data process generating $(X, Y) \in \mathbb{R}^d \times \mathbb{R}^n$,

 $Y = \mathbf{A}X + \eta,$

where $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\eta \in \mathbb{R}^n$ is mean-zero noise.

Problem: suppose we have a data process generating $(X, Y) \in \mathbb{R}^d \times \mathbb{R}^n$,

 $Y = \mathbf{A}X + \eta,$

where $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\eta \in \mathbb{R}^n$ is mean-zero noise.

• Can we use samples $(X_1, Y_1), \ldots, (X_T, Y_T)$ to *identify* **A**? That is, find $\hat{\mathbf{A}}$,

 $\|\mathbf{A} - \hat{\mathbf{A}}\|_{op} \approx 0.$

Problem: suppose we have a data process generating $(X, Y) \in \mathbb{R}^d \times \mathbb{R}^n$,

 $Y = \mathbf{A}X + \eta,$

where $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\eta \in \mathbb{R}^n$ is mean-zero noise.

• Can we use samples $(X_1, Y_1), \ldots, (X_T, Y_T)$ to *identify* **A**? That is, find $\hat{\mathbf{A}}$,

 $\|\mathbf{A} - \hat{\mathbf{A}}\|_{op} \approx 0.$

• Yes, with i.i.d. samples with
$$\mathbb{E}_{X \sim p} [XX^{\top}] \succ 0$$
, (Hsu et al., 2012).

Problem: suppose we have a data process generating $(X, Y) \in \mathbb{R}^d \times \mathbb{R}^n$,

 $Y = \mathbf{A}X + \eta,$

where $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\eta \in \mathbb{R}^n$ is mean-zero noise.

• Can we use samples $(X_1, Y_1), \ldots, (X_T, Y_T)$ to *identify* **A**? That is, find $\hat{\mathbf{A}}$,

$$\|\mathbf{A} - \hat{\mathbf{A}}\|_{\text{op}} pprox \mathbf{0}$$

Yes, with i.i.d. samples with E_{X∼p} [XX^T] ≻ 0, (Hsu et al., 2012).
 Analysis is difficult if (X₁, Y₁), ..., (X_T, Y_T) are not i.i.d.

System identification for linear dynamical systems

An important class of examples where observations $(X_1, Y_1), \ldots, (X_T, Y_T)$ are not i.i.d. are **linear dynamical systems**, which is a system with dynamics:

 $X_{t+1} = \mathbf{A}X_t + \mathbf{B}u_t + \eta_t,$

- ▶ $X_t \in \mathbb{R}^d$ is the state of the system
- \blacktriangleright *u*_t is the input to the system
- ▶ $\eta_t \in \mathbb{R}^d$ is unobserved noise.

System identification for linear dynamical systems

An important class of examples where observations $(X_1, Y_1), \ldots, (X_T, Y_T)$ are not i.i.d. are **linear dynamical systems**, which is a system with dynamics:¹

 $X_{t+1} = \mathbf{A}X_t + \eta_t,$

•
$$X_t \in \mathbb{R}^d$$
 is the state of the system

▶ $\eta_t \in \mathbb{R}^d$ is unobserved noise.

¹For simplicity, we'll consider systems with no input u_t .

- ▶ If $\rho(\mathbf{A}) < 1$, then:
 - **b** deterministic dynamics AX_t contract state X_{t+1} back toward origin

- ▶ If $\rho(\mathbf{A}) < 1$, then:
 - \blacktriangleright deterministic dynamics $\mathbf{A}X_t$ contract state X_{t+1} back toward origin
 - ▶ noise process η_t expands the state X_{t+1} outward

Previous analyses could only handle case when the **spectral radius** $\rho(\mathbf{A}) < 1$.

- ▶ If $\rho(\mathbf{A}) < 1$, then:
 - deterministic dynamics AX_t contract state X_{t+1} back toward origin
 - ▶ noise process η_t expands the state X_{t+1} outward

▶ There is a *stationary distribution* where these opposing forces are at equilibrium.

- ▶ If $\rho(\mathbf{A}) < 1$, then:
 - deterministic dynamics AX_t contract state X_{t+1} back toward origin
 - ▶ noise process η_t expands the state X_{t+1} outward
- ▶ There is a *stationary distribution* where these opposing forces are at equilibrium.
 - ► As the gap $1 \rho(\mathbf{A})$ grows, the process $(X_t)_{t=0}^{\infty}$ mixes more rapidly.

Previous analyses could only handle case when the **spectral radius** $\rho(\mathbf{A}) < 1$.

- ▶ If $\rho(\mathbf{A}) < 1$, then:
 - deterministic dynamics AX_t contract state X_{t+1} back toward origin
 - ▶ noise process η_t expands the state X_{t+1} outward

▶ There is a *stationary distribution* where these opposing forces are at equilibrium.

- ► As the gap $1 \rho(\mathbf{A})$ grows, the process $(X_t)_{t=0}^{\infty}$ mixes more rapidly.
- ▶ If $(X_1, Y_1), \ldots, (X_T, Y_T)$ come from stationary distribution with rapid mixing time, they can essentially be treated as independent (Mohri and Rostamizadeh, 2008).

Previous analyses could only handle case when the **spectral radius** $\rho(\mathbf{A}) < 1$.

- ▶ If $\rho(\mathbf{A}) < 1$, then:
 - deterministic dynamics AX_t contract state X_{t+1} back toward origin
 - ▶ noise process η_t expands the state X_{t+1} outward

▶ There is a *stationary distribution* where these opposing forces are at equilibrium.

- ► As the gap $1 \rho(\mathbf{A})$ grows, the process $(X_t)_{t=0}^{\infty}$ mixes more rapidly.
- ▶ If $(X_1, Y_1), \ldots, (X_T, Y_T)$ come from stationary distribution with rapid mixing time, they can essentially be treated as independent (Mohri and Rostamizadeh, 2008).

Counterintuitive: if X_t is larger compared to the noise process η_t , it should be easier to recover **A** since there is a higher *signal-to-noise* ratio. This happens as $\rho(\mathbf{A})$ increases!

Previous analyses could only handle case when the **spectral radius** $\rho(\mathbf{A}) < 1$.

- ▶ If $\rho(\mathbf{A}) < 1$, then:
 - deterministic dynamics AX_t contract state X_{t+1} back toward origin
 - ▶ noise process η_t expands the state X_{t+1} outward

▶ There is a *stationary distribution* where these opposing forces are at equilibrium.

- ► As the gap $1 \rho(\mathbf{A})$ grows, the process $(X_t)_{t=0}^{\infty}$ mixes more rapidly.
- ▶ If $(X_1, Y_1), \ldots, (X_T, Y_T)$ come from stationary distribution with rapid mixing time, they can essentially be treated as independent (Mohri and Rostamizadeh, 2008).

Counterintuitive: if X_t is larger compared to the noise process η_t , it should be easier to recover **A** since there is a higher *signal-to-noise* ratio. This happens as $\rho(\mathbf{A})$ increases!

Motivates Simchowitz et al. (2018), identification without appeals to mixing.

Interlude: geometry of linear regression

Geometric view of a matrix

Figure 1: $\mathbf{X} \in \mathbb{R}^{d \times T}$ maps the standard basis of \mathbb{R}^T to the columns of \mathbf{X} .

Singular value decomposition

Theorem (SVD)

Let $\mathbf{X} \in \mathbb{R}^{d \times T}$. There exists orthogonal matrices $\mathbf{U} \in \mathbb{R}^{d \times d}$ and $\mathbf{V} \in \mathbb{R}^{T \times T}$ and diagonal matrix $\mathbf{\Sigma} \in \mathbb{R}^{d \times T}$ such that:

 $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}.$

Singular value decomposition

Theorem (SVD)

Let $\mathbf{X} \in \mathbb{R}^{d \times T}$. There exists orthogonal matrices $\mathbf{U} \in \mathbb{R}^{d \times d}$ and $\mathbf{V} \in \mathbb{R}^{T \times T}$ and diagonal matrix $\mathbf{\Sigma} \in \mathbb{R}^{d \times T}$ such that:

 $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}.$

▶ Recall **U** is orthogonal if $\mathbf{U}\mathbf{U}^{\top} = \mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_{d \times d}$.

> Geometrically, U maps the standard orthonormal basis to another orthonormal basis.

Singular value decomposition

Theorem (SVD)

Let $\mathbf{X} \in \mathbb{R}^{d \times T}$. There exists orthogonal matrices $\mathbf{U} \in \mathbb{R}^{d \times d}$ and $\mathbf{V} \in \mathbb{R}^{T \times T}$ and diagonal matrix $\mathbf{\Sigma} \in \mathbb{R}^{d \times T}$ such that:

 $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}.$

▶ Recall **U** is orthogonal if $\mathbf{U}\mathbf{U}^{\top} = \mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_{d \times d}$.

> Geometrically, U maps the standard orthonormal basis to another orthonormal basis.

- ▶ Σ is diagonal if $\Sigma_{ij} = 0$ when $i \neq j$. Denote $\Sigma_{ii} = \sigma_i$.
 - ▶ WLOG, choose SVD so that $\sigma_1 \ge \sigma_2 \ge \cdots \ge 0$.

Geometric view of singular value decomposition

Figure 2: There exists orthonormal bases of \mathbb{R}^T and \mathbb{R}^d such that $\mathbf{X}\mathbf{v}_i = \sigma_i u_i$.

Moore-Penrose pseudoinverse

The (right) **pseudoinverse** \mathbf{X}^+ of \mathbf{X} maps \mathbb{R}^d back to the span(v_1, \ldots, v_d) so that:

 $\mathbf{X}\mathbf{X}^+ = \mathbf{I}_{d \times d}.$

Figure 3: \mathbf{X}^+ maps $\sigma_i u_i$ to v_i .

Moore-Penrose pseudoinverse form

Given the singular value decomposition of $\mathbf{X},$ we can compute $\mathbf{X}^+,$

$$\mathbf{X}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^\top$$

where
$$\Sigma^{-1} \in \mathbb{R}^{T \times d}$$
 is the diagonal matrix where $\Sigma_{ii}^{-1} = \begin{cases} \sigma_i^{-1} & \sigma_i \neq 0 \\ 0 & \sigma_i = 0. \end{cases}$

²Note that this shows that \mathbf{X}^+ satisfies $\mathbf{X}\mathbf{X}^+ = \mathbf{I}_{d \times d}$ when $\mathbf{\Sigma}\mathbf{\Sigma}^\top$ is full rank (i.e. \mathbf{X} is surjective).

Moore-Penrose pseudoinverse form

Given the singular value decomposition of \mathbf{X} , we can compute \mathbf{X}^+ ,

$$\mathbf{X}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^\top$$

where
$$\mathbf{\Sigma}^{-1} \in \mathbb{R}^{T \times d}$$
 is the diagonal matrix where $\mathbf{\Sigma}_{ii}^{-1} = egin{cases} \sigma_i^{-1} & \sigma_i
eq 0 \\ 0 & \sigma_i = 0. \end{cases}$

▶ We do not have to explicitly compute the SVD:²

$$\mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top})^{-1} = \left(\mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}\right)\left(\mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}\right)^{-1} = \mathbf{V}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\top} = \mathbf{X}^{+}.$$

²Note that this shows that \mathbf{X}^+ satisfies $\mathbf{X}\mathbf{X}^+ = \mathbf{I}_{d \times d}$ when $\mathbf{\Sigma}\mathbf{\Sigma}^\top$ is full rank (i.e. \mathbf{X} is surjective).

Linear regression (ordinary least squares)

Let $\mathbf{X} \in \mathbb{R}^{d \times T}$ be a matrix of covariates. Let $\mathbf{Y} \in \mathbb{R}^{n \times T}$ be a matrix of responses. The goal is to find a matrix $\hat{\mathbf{A}} \in \mathbb{R}^{n \times d}$ minimizing:³

$$\min_{\mathbf{A}\in\mathbb{R}^{n\times d}} \sum_{i\in[T]} \|Y_i - \mathbf{A}X_i\|^2 = \min_{\mathbf{A}\in\mathbb{R}^{n\times d}} \|\mathbf{Y} - \mathbf{A}\mathbf{X}\|_F^2.$$

$$\min_{\beta \in \mathbb{R}^{d \times n}} \|\mathbf{Y} - \mathbf{X}\beta\|_F^2$$

³This description of linear regression is actually in a transposed form of the standard linear regression literature. There, the design matrix is $\mathbf{X} \in \mathbb{R}^{T \times d}$ and response matrix $\mathbf{Y} \in \mathbb{R}^{T \times n}$. The goal there is often:

Geometric view of linear regressions

Figure 4: Let $\mathbf{X} \in \mathbb{R}^{d \times T}$ and $\mathbf{Y} \in \mathbb{R}^{n \times T}$ be collections of *T* vectors in \mathbb{R}^d and \mathbb{R}^n .

Formal solution to OLS

We can solve for $\hat{\mathbf{A}}$ by taking the derivative of the objective and setting it to zero:

$$0 = \frac{d}{d\mathbf{A}} \operatorname{tr} \left(\mathbf{Y}^{\top} \mathbf{Y} - \mathbf{Y}^{\top} \mathbf{A} \mathbf{X} - \mathbf{X}^{\top} \mathbf{A}^{\top} \mathbf{Y} + \mathbf{X}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{X} \right)$$

= $-2\mathbf{X}\mathbf{Y}^{\top} + 2\mathbf{X}\mathbf{X}^{\top} \mathbf{A}^{\top}.$

This implies:

$$\hat{\mathbf{A}} = \mathbf{Y}\mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top})^{-1} = \mathbf{Y}\mathbf{X}^{+}.$$

Geometric view of linear regressions

Figure 5: The solution to OLS is $\hat{\mathbf{A}} = \mathbf{Y}\mathbf{X}^+$.

System identification

Assumption 1: model is correct

Suppose that there is some A_{\star} such that data is generated:

$$Y = \mathbf{A}_{\star} X + \eta,$$

where η is noise.

Assumption 1: model is correct

Suppose that there is some A_{\star} such that data is generated:

$$Y = \mathbf{A}_{\star} X + \eta,$$

where η is noise.

▶ If $\eta \equiv 0$, then with $T \ge d$ full-rank samples X_1, \ldots, X_T , can recover \mathbf{A}_{\star} ,

$$\|\mathbf{A}_{\star} - \hat{\mathbf{A}}\|_{\mathrm{op}} = 0.$$

Assumption 1: model is correct

Suppose that there is some A_{\star} such that data is generated:

$$Y = \mathbf{A}_{\star} X + \eta,$$

where η is noise.

▶ If $\eta \equiv 0$, then with $T \ge d$ full-rank samples X_1, \ldots, X_T , can recover \mathbf{A}_{\star} ,

$$\|\mathbf{A}_{\star} - \hat{\mathbf{A}}\|_{\mathrm{op}} = 0.$$

▶ If $\eta \neq 0$, let $\mathbf{E} \in \mathbb{R}^{n \times T}$ be the error matrix. Then the OLS estimator $\hat{\mathbf{A}}$ satisfies:

$$\|\mathbf{A}_{\star} - \hat{\mathbf{A}}\|_{\mathrm{op}} = \|(\mathbf{A}_{\star}\mathbf{X})\mathbf{X}^{+} - (\mathbf{A}_{\star}\mathbf{X} + \mathbf{E})\mathbf{X}^{+}\|_{\mathrm{op}} = \|\mathbf{E}\mathbf{X}^{+}\|_{\mathrm{op}}.$$

> Estimate can be bad if noise $||\mathbf{E}||_{op}$ is large.

 \triangleright Estimate can be bad if singular values of \mathbf{X}^+ are large (\mathbf{X} has small singular values).

Geometry when estimate is bad: large errors

Figure 6: Fitting large noise vectors will throw the estimate off.

Assumption 2: sub-Gaussian noise

Conditioned on the past $\mathcal{F}_t = \sigma(X_1, \eta_1, \dots, X_t, \eta_t)$ the noise at time t + 1,

 $\eta_{t+1} \mid \mathcal{F}_t$ is ν^2 -sub-Gaussian.

► The noise is highly concentrated about zero:

$$\Pr\left(\boldsymbol{w}^{\top}\boldsymbol{\eta}_{t+1} \geq \varepsilon \,\middle|\, \mathcal{F}_t\right) \leq \exp\left(-\frac{\varepsilon^2}{2\nu^2}\right),\,$$

for all unit vectors $w \in S^{n-1}$.

Geometry when estimate is bad: ill-conditioning

Figure 7: High sensitivity to small errors when **X** is ill-conditioned, i.e. $\frac{\sigma_1(\mathbf{X})}{\sigma_d(\mathbf{X})}$ is large.

Assumption 3: large signal and well-conditioned covariance

We assume that the sample covariance satisfies:

$$\sigma^2 \mathbf{I}_{d \times d} \prec \frac{1}{T} \sum_{i \in [T]} X_i X_i^\top \prec \kappa \cdot \sigma^2 \mathbf{I}_{d \times d}.$$

Assumption 3: large signal and well-conditioned covariance

We assume that the sample covariance satisfies:

$$\sigma^{2}\mathbf{I}_{d\times d} \prec \frac{1}{T} \sum_{i \in [T]} X_{i} X_{i}^{\top} \prec \kappa \cdot \sigma^{2} \mathbf{I}_{d\times d}.$$

• If noise is ν^2 -sub-Gaussian, the first condition ensures a signal-to-noise ratio of $\frac{\sigma}{\nu}$.

Assumption 3: large signal and well-conditioned covariance

We assume that the sample covariance satisfies:

$$\sigma^2 \mathbf{I}_{d \times d} \prec \frac{1}{T} \sum_{i \in [T]} X_i X_i^\top \prec \kappa \cdot \sigma^2 \mathbf{I}_{d \times d}.$$

If noise is ν²-sub-Gaussian, the first condition ensures a signal-to-noise ratio of ^σ/_ν.
 The two conditions together ensure the data is well-conditioned,

$$\operatorname{cond}(\mathbf{X}\mathbf{X}^{ op}) \leq \kappa$$

Convergence rate for OLS

Theorem

Let $(X_t, Y_t)_{t=1}^T$ be a sequence where $Y_t = \mathbf{A}_* X_t + \eta_t$ such that:

(a) the noise $\eta_{t+1} | \mathcal{F}_t$ is ν^2 -sub-Gaussian,

(b) with probability at least $1 - \delta$, the sample covariance satisfies:

$$\sigma^{2}\mathbf{I}_{d\times d} \prec \frac{1}{T} \sum_{i \in [T]} X_{i} X_{i}^{\top} \prec \kappa \cdot \sigma^{2} \mathbf{I}_{d\times d}$$

Convergence rate for OLS

Theorem

Let $(X_t, Y_t)_{t=1}^T$ be a sequence where $Y_t = \mathbf{A}_* X_t + \eta_t$ such that:

(a) the noise $\eta_{t+1} | \mathcal{F}_t$ is ν^2 -sub-Gaussian,

(b) with probability at least $1 - \delta$, the sample covariance satisfies:

$$\sigma^{2}\mathbf{I}_{d\times d} \prec \frac{1}{T} \sum_{i \in [T]} X_{i} X_{i}^{\top} \prec \kappa \cdot \sigma^{2} \mathbf{I}_{d\times d}$$

Then, with probability $\geq 1 - 2\delta$, the OLS estimator $\hat{\mathbf{A}}$ satisfies:

$$\|\mathbf{A}_{\star} - \hat{\mathbf{A}}\|_{\mathrm{op}} = O\left(\frac{\nu}{\sigma}\sqrt{\frac{1}{T}\left(n + d\log\kappa + \log\frac{1}{\delta}\right)}\right)$$

We decompose the error as:

$$\|\mathbf{A}_{\star} - \hat{\mathbf{A}}\|_{\mathrm{op}} = \|\mathbf{E}\mathbf{X}^{+}\|_{\mathrm{op}} \le \|\mathbf{E}\|_{\mathrm{op}} \cdot \sigma_{d}(\mathbf{X})^{-1}.$$

We decompose the error as:

$$\|\mathbf{A}_{\star} - \hat{\mathbf{A}}\|_{\mathrm{op}} = \|\mathbf{E}\mathbf{X}^{+}\|_{\mathrm{op}} \leq \|\mathbf{E}\|_{\mathrm{op}} \cdot \sigma_{d}(\mathbf{X})^{-1}.$$

• Control $\|\mathbf{E}\|_{op}$ by concentration of sub-Gaussian martingales to show w.p. $\geq 1 - \delta$,

$$\|\mathbf{E}\|_{\mathrm{op}} = O\left(\nu\sqrt{n+d\log\kappa+\log\frac{1}{\delta}}\right).$$

We decompose the error as:

$$\|\mathbf{A}_{\star} - \hat{\mathbf{A}}\|_{\mathrm{op}} = \|\mathbf{E}\mathbf{X}^{+}\|_{\mathrm{op}} \leq \|\mathbf{E}\|_{\mathrm{op}} \cdot \sigma_{d}(\mathbf{X})^{-1}.$$

• Control $\|\mathbf{E}\|_{op}$ by concentration of sub-Gaussian martingales to show w.p. $\geq 1 - \delta$,

$$\|\mathbf{E}\|_{\mathrm{op}} = O\left(\nu\sqrt{n+d\log\kappa+\lograc{1}{\delta}}
ight).$$

► The assumption $\sigma^2 \mathbf{I}_{d \times d} \prec \frac{1}{T} \mathbf{X} \mathbf{X}^\top$ implies that w.p. $\geq 1 - \delta$,

$$\sigma_d(\mathbf{X})^{-1} \le \frac{1}{\sigma\sqrt{T}}.$$

We decompose the error as:

$$\|\mathbf{A}_{\star} - \hat{\mathbf{A}}\|_{\mathrm{op}} = \|\mathbf{E}\mathbf{X}^{+}\|_{\mathrm{op}} \leq \|\mathbf{E}\|_{\mathrm{op}} \cdot \sigma_{d}(\mathbf{X})^{-1}.$$

► Control $\|\mathbf{E}\|_{op}$ by concentration of sub-Gaussian martingales to show w.p. $\geq 1 - \delta$,

$$\|\mathbf{E}\|_{\mathrm{op}} = O\left(\nu\sqrt{n+d\log\kappa+\log\frac{1}{\delta}}\right).$$

► The assumption $\sigma^2 \mathbf{I}_{d \times d} \prec \frac{1}{T} \mathbf{X} \mathbf{X}^\top$ implies that w.p. $\geq 1 - \delta$,

$$\sigma_d(\mathbf{X})^{-1} \le \frac{1}{\sigma\sqrt{T}}.$$

Multiplying the two bounds yields the result.

Technique: concentration bounds

Let $B^r \subset \mathbb{R}^r$ be the unit ball. The operator norm $\|\mathbf{E}\|_{\text{op}}$ for $\mathbf{E} : \mathbb{R}^T \to \mathbb{R}^n$ is defined as:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in B^T \\ v \in B^n}} v^\top \mathbf{E} w.$$

Let $B^r \subset \mathbb{R}^r$ be the unit ball. The operator norm $\|\mathbf{E}\|_{\text{op}}$ for $\mathbf{E} : \mathbb{R}^T \to \mathbb{R}^n$ is defined as:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in B^T \ v \in B^n}} v^{\top} \mathbf{E} w.$$

► In this case, this is equal to
$$\|\mathbf{E}\|_{\text{op}} = \max_{i \in [T]} \|\eta_i\|.$$

Let $B^r \subset \mathbb{R}^r$ be the unit ball. The operator norm $\|\mathbf{E}\|_{\text{op}}$ for $\mathbf{E} : \mathbb{R}^T \to \mathbb{R}^n$ is defined as:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in B^T \ v \in B^n}} v^{\top} \mathbf{E} w.$$

• In this case, this is equal to $\|\mathbf{E}\|_{\text{op}} = \max_{i \in [T]} \|\eta_i\|.$

▶ The following tail bound holds (Rinaldo, 2019), w.p. $\geq 1 - \delta$,

$$\|\eta\| = O\left(\nu\sqrt{n+\log\frac{1}{\delta}}\right).$$

Let $B^r \subset \mathbb{R}^r$ be the unit ball. The operator norm $\|\mathbf{E}\|_{op}$ for $\mathbf{E} : \mathbb{R}^T \to \mathbb{R}^n$ is defined as:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in B^T \ v \in B^n}} v^{\top} \mathbf{E} w.$$

► In this case, this is equal to $\|\mathbf{E}\|_{\text{op}} = \max_{i \in [T]} \|\eta_i\|$.

▶ The following tail bound holds (Rinaldo, 2019), w.p. $\ge 1 - \delta$,

$$\|\eta\| = O\left(\nu\sqrt{n+\log\frac{1}{\delta}}\right).$$

► It follows by a union bound, w.p. $\geq 1 - \delta$, $\|\mathbf{E}\|_{\text{op}} = O\left(\nu \sqrt{n + \log T + \log \frac{1}{\delta}}\right)$.

Assumption: η is ν^2 -sub-Gaussian in \mathbb{R}^n . The norm is:

$$\|\eta\| = \sup_{\nu \in B^n} \nu^\top \eta.$$

Assumption: η is ν^2 -sub-Gaussian in \mathbb{R}^n . The norm is:

$$\|\eta\| = \sup_{\nu \in B^n} \nu^\top \eta.$$

1. Let $\mathcal{N}_{1/2}$ be a $\frac{1}{2}$ -net of B^n . The optimal v^* decomposes into:

$$v^* = z + u,$$

where $z \in \mathcal{N}_{1/2}$ and $u \in \frac{1}{2}B^n$.

Assumption: η is ν^2 -sub-Gaussian in \mathbb{R}^n . The norm is:

$$\|\eta\| = \sup_{\nu \in B^n} \nu^\top \eta.$$

1. Let $\mathcal{N}_{1/2}$ be a $\frac{1}{2}$ -net of B^n . The optimal v^* decomposes into:

$$v^* = z + u_z$$

where $z \in \mathcal{N}_{1/2}$ and $u \in \frac{1}{2}B^n$.

2. Taking the supremum over $\mathcal{N}_{1/2}$ instead yields upper bound,

$$\|\eta\| = \sup_{\nu \in B^n} \nu^\top \eta$$

Assumption: η is ν^2 -sub-Gaussian in \mathbb{R}^n . The norm is:

$$\|\eta\| = \sup_{\nu \in B^n} \nu^\top \eta.$$

1. Let $\mathcal{N}_{1/2}$ be a $\frac{1}{2}$ -net of B^n . The optimal v^* decomposes into:

$$v^* = z + u_z$$

where $z \in \mathcal{N}_{1/2}$ and $u \in \frac{1}{2}B^n$.

2. Taking the supremum over $\mathcal{N}_{1/2}$ instead yields upper bound,

$$\|\eta\| = \sup_{\nu \in B^n} \nu^\top \eta \le \sup_{z \in \mathcal{N}_{1/2}} z^\top \eta + \sup_{u \in \frac{1}{2}B^n} u^\top \eta$$

Assumption: η is ν^2 -sub-Gaussian in \mathbb{R}^n . The norm is:

$$\|\eta\| = \sup_{\nu \in B^n} \nu^\top \eta.$$

1. Let $\mathcal{N}_{1/2}$ be a $\frac{1}{2}$ -net of B^n . The optimal v^* decomposes into:

$$v^* = z + u_z$$

where $z \in \mathcal{N}_{1/2}$ and $u \in \frac{1}{2}B^n$.

2. Taking the supremum over $\mathcal{N}_{1/2}$ instead yields upper bound,

$$\|\eta\| = \sup_{\nu \in B^n} \nu^{\top} \eta \le \sup_{z \in \mathcal{N}_{1/2}} z^{\top} \eta + \sup_{u \in \frac{1}{2}B^n} u^{\top} \eta = \sup_{z \in \mathcal{N}_{1/2}} z^{\top} \eta + \frac{1}{2} \|\eta\|$$

Assumption: η is ν^2 -sub-Gaussian in \mathbb{R}^n . The norm is:

$$\|\eta\| = \sup_{\nu \in B^n} \nu^\top \eta.$$

1. Let $\mathcal{N}_{1/2}$ be a $\frac{1}{2}$ -net of B^n . The optimal v^* decomposes into:

$$v^* = z + u,$$

where $z \in \mathcal{N}_{1/2}$ and $u \in \frac{1}{2}B^n$.

2. Taking the supremum over $\mathcal{N}_{1/2}$ instead yields upper bound, $\|\eta\| \leq 2 \sup_{z \in \mathcal{N}_{1/2}} z^{\top} \eta$,

$$\|\eta\| = \sup_{\nu \in B^n} \nu^{\top} \eta \le \sup_{z \in \mathcal{N}_{1/2}} z^{\top} \eta + \sup_{u \in \frac{1}{2}B^n} u^{\top} \eta = \sup_{z \in \mathcal{N}_{1/2}} z^{\top} \eta + \frac{1}{2} \|\eta\|$$

Proof of tail bound (cont.)

2. We have an upper bound, $\|\eta\| \leq 2 \sup_{z \in \mathcal{N}_{1/2}} z^{\top} \eta$.

Proof of tail bound (cont.)

2. We have an upper bound, $\|\eta\| \leq 2 \sup_{z \in \mathcal{N}_{1/2}} z^{\top} \eta$.

3. Each $z^{\top}\eta$ is ν^2 -sub-Gaussian, so apply union bound:

$$\Pr\left(\|\eta\| \ge \varepsilon\right) \le \Pr\left(\sup_{z \in \mathcal{N}_{1/2}} z^{\top} \eta \ge 2\varepsilon\right) \le |\mathcal{N}_{1/2}| \cdot \exp\left(-\frac{\varepsilon^2}{8\nu^2}\right).$$

Proof of tail bound (cont.)

2. We have an upper bound,
$$\|\eta\| \leq 2 \sup_{z \in \mathcal{N}_{1/2}} z^{\top} \eta$$
.

3. Each $z^{\top}\eta$ is ν^2 -sub-Gaussian, so apply union bound:

$$\Pr\left(\|\eta\| \ge \varepsilon\right) \le \Pr\left(\sup_{z \in \mathcal{N}_{1/2}} z^\top \eta \ge 2\varepsilon\right) \le |\mathcal{N}_{1/2}| \cdot \exp\left(-\frac{\varepsilon^2}{8\nu^2}\right).$$

4. By a covering number bound $|\mathcal{N}_{1/2}| \leq 5^n \leq e^{2n}$, this implies:

$$\Pr\left(\|\eta\| \ge \nu \sqrt{16n + 8\log\frac{1}{\delta}}\right) \le \delta.$$

Technical issue

We already remarked that a union bound shows that w.p. $\geq 1-\delta,$

$$\|\mathbf{E}\|_{\mathrm{op}} = O\left(\nu\sqrt{n+\log T + \log \frac{1}{\delta}}\right).$$

▶ But we actually want a bound that is independent of *T*,

$$\|\mathbf{E}\|_{\mathrm{op}} = O\left(\nu\sqrt{n+d\log\kappa+\lograc{1}{\delta}}
ight).$$

To analyze $\|\mathbf{E}\mathbf{X}^+\|_{\text{op}}$, we can restrict the domain of **E** to at most *d* dimensions,

 $\mathbf{E}: \operatorname{Im}(\mathbf{X}^+) \to \mathbb{R}^n.$

To analyze $||\mathbf{E}\mathbf{X}^+||_{op}$, we can restrict the domain of **E** to at most *d* dimensions,

 $\mathbf{E}: \operatorname{Im}(\mathbf{X}^+) \to \mathbb{R}^n.$

▶ If we fix a *d*-dimensional subspace $V \subset \mathbb{R}^T$ and restricted the domain $\mathbf{E} : V \to \mathbb{R}^n$, the operator norm is now:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in B^T \cap V \\ v \in B^n}} v^{\top} \mathbf{E} w.$$

To analyze $||\mathbf{E}\mathbf{X}^+||_{op}$, we can restrict the domain of **E** to at most *d* dimensions,

 $\mathbf{E}: \operatorname{Im}(\mathbf{X}^+) \to \mathbb{R}^n.$

▶ If we fix a *d*-dimensional subspace $V \subset \mathbb{R}^T$ and restricted the domain $\mathbf{E} : V \to \mathbb{R}^n$, the operator norm is now:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in B^T \cap V \\ v \in B^n}} v^{\top} \mathbf{E} w.$$

• We can apply the same covering argument to both B^n and $B^T \cap V$ to obtain:

$$\|\mathbf{E}\|_{\mathrm{op}} = O\left(\nu\sqrt{n+d+\log\frac{1}{\delta}}\right).$$

To analyze $||\mathbf{E}\mathbf{X}^+||_{op}$, we can restrict the domain of **E** to at most *d* dimensions,

 $\mathbf{E}: \operatorname{Im}(\mathbf{X}^+) \to \mathbb{R}^n.$

▶ If we fix a *d*-dimensional subspace $V \subset \mathbb{R}^T$ and restricted the domain $\mathbf{E} : V \to \mathbb{R}^n$, the operator norm is now:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in B^T \cap V \\ v \in B^n}} v^{\top} \mathbf{E} w.$$

• We can apply the same covering argument to both B^n and $B^T \cap V$ to obtain:

$$\|\mathbf{E}\|_{\mathrm{op}} = O\left(\nu\sqrt{n+d+\log\frac{1}{\delta}}\right).$$

• However, $Im(X^+)$ is data-dependent while V is not; argument does not apply.

When the domain is restricted $\mathbf{E}: \mathrm{Im}(\mathbf{X}^+) \to \mathbb{R}^n$, then:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in \mathbb{R}^d \ v \in B^n}} rac{v^{ op} \mathbf{E} \mathbf{X}^+ w}{\|\mathbf{X}^+ w\|}.$$

When the domain is restricted $\mathbf{E} : \operatorname{Im}(\mathbf{X}^+) \to \mathbb{R}^n$, then:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in \mathbb{R}^d \ v \in B^n}} rac{v^{ op} \mathbf{E} \mathbf{X}^+ w}{\|\mathbf{X}^+ w\|}.$$

▶ If we know that $\sigma^2 \mathbf{I}_{d \times d} \prec \frac{1}{T} \mathbf{X} \mathbf{X}^\top \prec \kappa \cdot \sigma^2 \mathbf{I}_{d \times d}$, it suffices to consider:

$$\mathcal{N}_{\sigma/2} = a \frac{\sigma}{2}$$
-covering of the $\sqrt{\kappa} \cdot \sigma$ -ball in \mathbb{R}^d .

When the domain is restricted $\mathbf{E} : \operatorname{Im}(\mathbf{X}^+) \to \mathbb{R}^n$, then:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in \mathbb{R}^d \ v \in B^n}} rac{v^{ op} \mathbf{E} \mathbf{X}^+ w}{\|\mathbf{X}^+ w\|}.$$

▶ If we know that $\sigma^2 \mathbf{I}_{d \times d} \prec \frac{1}{T} \mathbf{X} \mathbf{X}^\top \prec \kappa \cdot \sigma^2 \mathbf{I}_{d \times d}$, it suffices to consider:

$$\mathcal{N}_{\sigma/2} = a \frac{\sigma}{2}$$
-covering of the $\sqrt{\kappa} \cdot \sigma$ -ball in \mathbb{R}^d .

▶ The set $\mathbf{X}^+ \mathcal{N}_{\sigma/2}$ is therefore a $\frac{1}{2}$ -covering of Im(\mathbf{X}^+).

When the domain is restricted $\mathbf{E} : \text{Im}(\mathbf{X}^+) \to \mathbb{R}^n$, then:

$$\|\mathbf{E}\|_{\mathrm{op}} = \sup_{\substack{w \in \mathbb{R}^d \\ v \in B^n}} \frac{v^\top \mathbf{E} \mathbf{X}^+ w}{\|\mathbf{X}^+ w\|}.$$

▶ If we know that $\sigma^2 \mathbf{I}_{d \times d} \prec \frac{1}{T} \mathbf{X} \mathbf{X}^\top \prec \kappa \cdot \sigma^2 \mathbf{I}_{d \times d}$, it suffices to consider:

$$\mathcal{N}_{\sigma/2} = a \frac{\sigma}{2}$$
-covering of the $\sqrt{\kappa} \cdot \sigma$ -ball in \mathbb{R}^d .

The set X⁺N_{σ/2} is therefore a ¹/₂-covering of Im(X⁺).
 Since log |N_{σ/2}| = O(d log κ), we obtain:

$$\|\mathbf{E}\|_{\mathrm{op}} = O\left(\nu\sqrt{n+d\log\kappa+\lograc{1}{\delta}}
ight).$$

Geometric view of covering

Figure 8: $\mathcal{N}_{\sigma/2}$ is a $\frac{\sigma}{2}$ -covering (black x's) of the $\sqrt{\kappa} \cdot \sigma B^d$ (cyan ball). As long as $\frac{1}{T}\mathbf{X}\mathbf{X}^{\top}$ is sufficiently well-conditioned with eigenvalues greater than σ^2 (i.e. orange ellipse is contained in $\sqrt{\kappa} \cdot \sigma B^d$ and contains σB^d), then $\mathbf{X}^+ \mathcal{N}_{\sigma/2}$ is a $\frac{1}{2}$ -covering of $\mathrm{Im}(\mathbf{X}^+) \cap B^T$.

Application to linear dynamical systems

Identification of linear dynamical systems

Corollary

Consider a linear dynamical system $X_{t+1} = \mathbf{A}_{\star}X_t + \eta_t$ where \mathbf{A}_{\star} is marginally stable (i.e. $\rho(\mathbf{A}_{\star}) \leq 1$), $X_0 = 0$, and $\eta_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \nu^2 \mathbf{I}_{n \times n})$. For sufficiently large T, w.p. $\geq 1 - \delta$,

$$\|\mathbf{A}_{\star} - \hat{\mathbf{A}}\|_{\mathrm{op}} = O\left(\sqrt{rac{1}{T\lambda_{\min}(\mathbf{\Gamma}_k)}\left(d\lograc{d}{\delta} + \log\det\left(\mathbf{\Gamma}_T\mathbf{\Gamma}_k^{-1}
ight)
ight)}
ight),$$

where $\Gamma_t := \sum_{s=0}^{t-1} (\mathbf{A}^s_{\star}) (\mathbf{A}^s_{\star})^{\top}$ and λ_{\min} yields the smallest eigenvalue.

• Note that
$$X_t = \sum_{s=1}^{t} \mathbf{A}_{\star}^{t-s} \eta_{s-1}$$
, so that $\mathbb{E} \left[X_t X_t^{\top} \right] = \nu^2 \Gamma_t$.

References

- Daniel Hsu, Sham M Kakade, and Tong Zhang. Random design analysis of ridge regression. In *Conference on learning theory*, pages 9–1. JMLR Workshop and Conference Proceedings, 2012.
- Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for non-iid processes. 2008.
- Alessandro Rinaldo. Lecture 8 euclidean norm of sub-gaussian random vectors. In *Lecture notes for Advanced Statistical Theory*, February 2019. URL
 - http://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb21_Shenghao.pdf.
- Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. Learning without mixing: Towards a sharp analysis of linear system identification. In *Conference On Learning Theory*, pages 439–473. PMLR, 2018.