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Linear regression problem

Problem: suppose we have a data process generating (X , Y) ∈ Rd × Rn,

Y = AX + η,

where A ∈ Rn×d and η ∈ Rn is mean-zero noise.

I Can we use samples (X1, Y1), . . . , (XT , YT ) to identify A? That is, find Â,

‖A− Â‖op ≈ 0.

I Yes, with i.i.d. samples with E
X∼p

[
XX>

]
� 0, (Hsu et al., 2012).

I Analysis is di�icult if (X1, Y1), . . . , (XT , YT ) are not i.i.d.
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System identification for linear dynamical systems

An important class of examples where observations (X1, Y1), . . . , (XT , YT ) are not i.i.d.
are linear dynamical systems, which is a system with dynamics:

Xt+1 = AXt + But + ηt ,

I Xt ∈ Rd is the state of the system

I ut is the input to the system

I ηt ∈ Rd is unobserved noise.
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System identification for linear dynamical systems

An important class of examples where observations (X1, Y1), . . . , (XT , YT ) are not i.i.d.
are linear dynamical systems, which is a system with dynamics:1

Xt+1 = AXt + ηt ,

I Xt ∈ Rd is the state of the system

I ηt ∈ Rd is unobserved noise.

1For simplicity, we’ll consider systems with no input ut .
3 / 33



Previous analyses for linear dynamical system identification

Previous analyses could only handle case when the spectral radius ρ(A) < 1.

I If ρ(A) < 1, then:
I deterministic dynamics AXt contract state Xt+1 back toward origin
I noise process ηt expands the state Xt+1 outward

I There is a stationary distribution where these opposing forces are at equilibrium.
I As the gap 1− ρ(A) grows, the process (Xt)

∞
t=0 mixes more rapidly.

I If (X1, Y1), . . . , (XT , YT ) come from stationary distribution with rapid mixing time,
they can essentially be treated as independent (Mohri and Rostamizadeh, 2008).

Counterintuitive: if Xt is larger compared to the noise process ηt , it should be easier to
recover A since there is a higher signal-to-noise ratio. This happens as ρ(A) increases!

I Motivates Simchowitz et al. (2018), identification without appeals to mixing.
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Interlude: geometry of linear regression
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Geometric view of a matrix

Figure 1: X ∈ Rd×T maps the standard basis of RT to the columns of X.
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Singular value decomposition

Theorem (SVD)
Let X ∈ Rd×T . There exists orthogonal matrices U ∈ Rd×d and V ∈ RT×T and diagonal
matrix Σ ∈ Rd×T such that:

X = UΣV>.

I Recall U is orthogonal if UU> = U>U = Id×d .
I Geometrically, U maps the standard orthonormal basis to another orthonormal basis.

I Σ is diagonal if Σij = 0 when i 6= j. Denote Σii = σi.
I WLOG, choose SVD so that σ1 ≥ σ2 ≥ · · · ≥ 0.
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Geometric view of singular value decomposition

Figure 2: There exists orthonormal bases of RT and Rd such that Xvi = σiui.
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Moore-Penrose pseudoinverse

The (right) pseudoinverse X+ of X maps Rd back to the span(v1, . . . , vd) so that:

XX+ = Id×d .

Figure 3: X+ maps σiui to vi.
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Moore-Penrose pseudoinverse form

Given the singular value decomposition of X, we can compute X+,

X+ = VΣ−1U>,

where Σ−1 ∈ RT×d is the diagonal matrix where Σ−1ii =

{
σ−1i σi 6= 0
0 σi = 0.

I We do not have to explicitly compute the SVD:2

X>(XX>)−1 =
(
VΣ>U>

)(
UΣΣ>U>

)−1
= VΣ−1U> = X+.

2Note that this shows that X+ satisfies XX+ = Id×d when ΣΣ> is full rank (i.e. X is surjective).
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Linear regression (ordinary least squares)

Let X ∈ Rd×T be a matrix of covariates. Let Y ∈ Rn×T be a matrix of responses. The goal
is to find a matrix Â ∈ Rn×d minimizing:3

min
A∈Rn×d

∑
i∈[T ]

‖Yi − AXi‖2 = min
A∈Rn×d

‖Y− AX‖2F .

3This description of linear regression is actually in a transposed form of the standard linear regression
literature. There, the design matrix is X ∈ RT×d and response matrix Y ∈ RT×n. The goal there is o�en:

min
β∈Rd×n

‖Y− Xβ‖2F .
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Geometric view of linear regressions

Figure 4: Let X ∈ Rd×T and Y ∈ Rn×T be collections of T vectors in Rd and Rn.
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Formal solution to OLS

We can solve for Â by taking the derivative of the objective and se�ing it to zero:

0 =
d
dA

tr
(
Y>Y− Y>AX− X>A>Y+ X>A>AX

)
= −2XY> + 2XX>A>.

This implies:
Â = YX>(XX>)−1 = YX+.
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Geometric view of linear regressions

Figure 5: The solution to OLS is Â = YX+.
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System identification
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Assumption 1: model is correct
Suppose that there is some A? such that data is generated:

Y = A?X + η,

where η is noise.

I If η ≡ 0, then with T ≥ d full-rank samples X1, . . . ,XT , can recover A?,

‖A? − Â‖op = 0.

I If η 6≡ 0, let E ∈ Rn×T be the error matrix. Then the OLS estimator Â satisfies:

‖A? − Â‖op = ‖(A?X)X+ − (A?X+ E)X+‖op = ‖EX+‖op.

I Estimate can be bad if noise ‖E‖op is large.
I Estimate can be bad if singular values of X+ are large (X has small singular values).
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‖A? − Â‖op = ‖(A?X)X+ − (A?X+ E)X+‖op = ‖EX+‖op.

I Estimate can be bad if noise ‖E‖op is large.
I Estimate can be bad if singular values of X+ are large (X has small singular values).

16 / 33



Assumption 1: model is correct
Suppose that there is some A? such that data is generated:

Y = A?X + η,

where η is noise.

I If η ≡ 0, then with T ≥ d full-rank samples X1, . . . ,XT , can recover A?,
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Geometry when estimate is bad: large errors

Figure 6: Fi�ing large noise vectors will throw the estimate o�.
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Assumption 2: sub-Gaussian noise

Conditioned on the past Ft = σ(X1, η1, . . . ,Xt , ηt) the noise at time t + 1,

ηt+1 | Ft is ν2-sub-Gaussian.

I The noise is highly concentrated about zero:

Pr
(
w>ηt+1 ≥ ε

∣∣Ft
)
≤ exp

(
− ε2

2ν2

)
,

for all unit vectors w ∈ Sn−1.
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Geometry when estimate is bad: ill-conditioning

Figure 7: High sensitivity to small errors when X is ill-conditioned, i.e.
σ1(X)
σd(X)

is large.
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Assumption 3: large signal and well-conditioned covariance

We assume that the sample covariance satisfies:

σ2Id×d ≺
1
T

∑
i∈[T ]

XiX>i ≺ κ · σ2Id×d .

I If noise is ν2-sub-Gaussian, the first condition ensures a signal-to-noise ratio of
σ

ν
.

I The two conditions together ensure the data is well-conditioned,

cond
(
XX>

)
≤ κ.
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Convergence rate for OLS

Theorem
Let (Xt , Yt)Tt=1 be a sequence where Yt = A?Xt + ηt such that:

(a) the noise ηt+1 | Ft is ν2-sub-Gaussian,

(b) with probability at least 1− δ, the sample covariance satisfies:

σ2Id×d ≺
1
T

∑
i∈[T ]

XiX>i ≺ κ · σ2Id×d .

Then, with probability ≥ 1− 2δ, the OLS estimator Â satisfies:

‖A? − Â‖op = O

(
ν

σ

√
1
T

(
n+ d log κ+ log

1
δ

))
.
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Proof sketch
We decompose the error as:

‖A? − Â‖op = ‖EX+‖op ≤ ‖E‖op · σd(X)−1.

I Control ‖E‖op by concentration of sub-Gaussian martingales to show w.p. ≥ 1− δ,

‖E‖op = O

(
ν

√
n+ d log κ+ log

1
δ

)
.

I The assumption σ2Id×d ≺ 1
TXX

> implies that w.p. ≥ 1− δ,

σd(X)−1 ≤
1

σ
√
T
.

Multiplying the two bounds yields the result.
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Technique: concentration bounds
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Euclidean norm of sub-Gaussian random variables

Let Br ⊂ Rr be the unit ball. The operator norm ‖E‖op for E : RT → Rn is defined as:

‖E‖op = sup
w∈BT
v∈Bn

v>Ew.

I In this case, this is equal to ‖E‖op = max
i∈[T ]

‖ηi‖.

I The following tail bound holds (Rinaldo, 2019), w.p. ≥ 1− δ,

‖η‖ = O

(
ν

√
n+ log

1
δ

)
.

I It follows by a union bound, w.p. ≥ 1− δ, ‖E‖op = O
(
ν
√
n+ log T + log 1

δ

)
.
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Proof of tail bound
Assumption: η is ν2-sub-Gaussian in Rn. The norm is:

‖η‖ = sup
v∈Bn

v>η.

1. Let N1/2 be a 1
2 -net of Bn. The optimal v∗ decomposes into:

v∗ = z + u,

where z ∈ N1/2 and u ∈ 1
2B

n.

2. Taking the supremum over N1/2 instead yields upper bound,

‖η‖ = sup
v∈Bn

v>η ≤ sup
z∈N1/2

z>η + sup
u∈ 1

2B
n
u>η = sup

z∈N1/2

z>η +
1
2
‖η‖.
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Proof of tail bound (cont.)

2. We have an upper bound, ‖η‖ ≤ 2 sup
z∈N1/2

z>η.

3. Each z>η is ν2-sub-Gaussian, so apply union bound:

Pr
(
‖η‖ ≥ ε

)
≤ Pr

(
sup

z∈N1/2

z>η ≥ 2ε

)
≤ |N1/2| · exp

(
− ε2

8ν2

)
.

4. By a covering number bound |N1/2| ≤ 5n ≤ e2n, this implies:

Pr

(
‖η‖ ≥ ν

√
16n+ 8 log

1
δ

)
≤ δ.
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Technical issue

We already remarked that a union bound shows that w.p. ≥ 1− δ,

‖E‖op = O

(
ν

√
n+ log T + log

1
δ

)
.

I But we actually want a bound that is independent of T ,

‖E‖op = O

(
ν

√
n+ d log κ+ log

1
δ

)
.
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First a�empt at bound independent of T
To analyze ‖EX+‖op, we can restrict the domain of E to at most d dimensions,

E : Im(X+)→ Rn.

I If we fix a d-dimensional subspace V ⊂ RT and restricted the domain E : V → Rn,
the operator norm is now:

‖E‖op = sup
w∈BT∩V
v∈Bn

v>Ew.

I We can apply the same covering argument to both Bn and BT ∩ V to obtain:

‖E‖op = O

(
ν

√
n+ d + log

1
δ

)
.

I However, Im(X+) is data-dependent while V is not; argument does not apply.
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Concentration bound independent of T
When the domain is restricted E : Im(X+)→ Rn, then:

‖E‖op = sup
w∈Rd

v∈Bn

v>EX+w
‖X+w‖

.

I If we know that σ2Id×d ≺ 1
TXX

> ≺ κ · σ2Id×d , it su�ices to consider:

Nσ/2 = a
σ

2
-covering of the

√
κ · σ-ball in Rd .

I The set X+Nσ/2 is therefore a 1
2 -covering of Im(X+).

I Since log |Nσ/2| = O (d log κ), we obtain:

‖E‖op = O

(
ν

√
n+ d log κ+ log

1
δ

)
.
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Geometric view of covering

Figure 8: Nσ/2 is a σ
2 -covering (black x’s) of the

√
κ · σBd (cyan ball). As long as 1

TXX
>

is su�iciently well-conditioned with eigenvalues greater than σ2 (i.e. orange ellipse is
contained in

√
κ · σBd and contains σBd ), then X+Nσ/2 is a 1

2 -covering of Im(X+)∩ BT .
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Application to linear dynamical systems
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Identification of linear dynamical systems

Corollary
Consider a linear dynamical system Xt+1 = A?Xt + ηt where A? is marginally stable (i.e.

ρ(A?) ≤ 1), X0 = 0, and ηt
i.i.d.∼ N (0, ν2In×n). For su�iciently large T , w.p. ≥ 1− δ,

‖A? − Â‖op = O

(√
1

Tλmin(Γk)

(
d log

d
δ
+ log det

(
ΓTΓ

−1
k

)))
,

where Γt :=
∑t−1

s=0(A
s
?)(As

?)
> and λmin yields the smallest eigenvalue.

I Note that Xt =

t∑
s=1

At−s
? ηs−1, so that E

[
XtX>t

]
= ν2Γt .

32 / 33



References

Daniel Hsu, Sham M Kakade, and Tong Zhang. Random design analysis of ridge regression. In Conference
on learning theory, pages 9–1. JMLR Workshop and Conference Proceedings, 2012.

Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for non-iid processes. 2008.

Alessandro Rinaldo. Lecture 8 – euclidean norm of sub-gaussian random vectors. In Lecture notes for
Advanced Statistical Theory, February 2019. URL
http://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb21_Shenghao.pdf .

Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. Learning without
mixing: Towards a sharp analysis of linear system identification. In Conference On Learning Theory,
pages 439–473. PMLR, 2018.

33 / 33

http://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb21_Shenghao.pdf

	Interlude: geometry of linear regression
	System identification
	Technique: concentration bounds
	Application to linear dynamical systems
	References

