
PAC-Bayes ReLu NN Lecture Notes

Aaron Geelon So

April 5, 2018

Last time, we saw the PAC-Bayes bound, which states:

Theorem 1 (PAC-Bayes). Let P be a prior distribution over H, L be a loss bounded between 0 and 1, and L̂
be the empirical loss using m samples. Then, with probability at least 1− δ, for all posterior distributions Q,

EQ [L(h)] ≤ EQ
[
L̂(h)

]
+

√
2
(
KL(Q||P) + ln 2m

δ

)
m− 1 . (1)

Today, we’ll see an application of this theorem to give a risk bound for a ReLu neural network h performing
a k-classification task of some bounded set B ⊂ Rn into Rk. Here, as usual, the point x ∈ B is classified into:

j∗ = arg max
j∈[k]

h(x)j ,

and the margin by which j∗ beats the other classes is just:

margin = max
i
|h(x)i − h(x)j∗ | .

Here’s the high-level idea of the rest of the lecture. Suppose we’ve produced a classifier h∗ through training
(using m samples), and now we want to obtain an upper bound on L(h∗), saying something like:

L(h∗) ≤ L̂(h∗) + ε.

We’d like to just apply PAC-Bayes, but we can’t do that without getting a vacuous bound. That’s because
the posterior distribution here would be δh∗ , with all the probability mass at a single point. And in contrast,
the prior is probably much more dispersed, so KL(δh∗ ||P) � 1. In fact, if P is a continuous probability
density, then the KL-divergence is actually infinite. (See Figure 1).

But if we know that classifiers h around h∗ don’t behave all that differently from h∗, we can afford to
diffuse δh∗ to some other posterior Q, whose ‘mean’ behavior is still h∗. Though we may pay some in the
EQ
[
L̂(h)

]
term, we might gain a lot in the remainder term.

Indeed, this interpretation might even be preferable—after training on just m samples, we shouldn’t be
absolutely confident that h∗ is the correct classifier. It’s just the mean classifier.

If we’re going to move our analysis to a ‘weaker’ posterior distribution Q (compared to δh∗), then we also
need to compensate by using a loss L′ that’s ‘stronger’ than L. That way, we can provide an upper bound:

L(h∗) . EQ [L′(h)] .

(Spoiler: L′ will be a margin loss). Following that, we can pass to empirical loss estimates over Q using
PAC-Bayes. And finally, if it’s true that most classifiers distributed according to Q are close to h∗, we can
bound the empirical loss estimates over Q by empirical loss estimates over h∗.

In the remainder of the lecture, we’ll first prove a lemma that does precisely this. Then, we’ll prove some
properties about ReLu neural networks, which we’ll use to specialize our analysis to this family of neural
networks. This lecture follows [Neyshabur 2018].

1

Figure 1: Two posterior distributions on H, δh∗ and Q. If the prior P is the uniform distribution on H, then
KL(δh∗ ||P) might even be infinite.

Passing to Margins
Above, we defined the margin as the amount by which the chosen class beats the other classes. We can define
the margin loss Lγ so that the correct class must not only beat all other classes, but it must have them beat
by some margin γ:

Lγ(h) = Pr
(x,j)∼D

[
f(x)j ≤ γ + max

i6=j
f(x)i

]
.

Some useful properties about the margin loss:

• L0(h) is equivalent to the 0-1 loss.

• if γ ≤ η, then Lγ(h) ≤ Lη(h).

• if for all x ∈ X , two hypotheses h and h′ give similar predictions, where |h(x)− h′(x)|∞ ≤ γ
2 , then

Lη(h) ≤ Lη+γ(h′) and L̂η(h) ≤ L̂η+γ(h′).

Note that the conditions are symmetric in h and h′, so the same inequalities holds when h and h′ are
reversed.

These properties let us easily prove the following:

Proposition 2. Let P be a prior distribution over a hypothesis class H. Suppose we obtain a classifier
h∗ ∈ H after training with m samples. If Q be a (posterior) distribution over H such that for any h ∼ Q, for
all x ∈ X

|h(x)− h∗(x)|∞ ≤
γ

4 , (2)

then, the 0-1 loss of h∗ has an upper bound, with probability 1− δ:

L0(h∗) ≤ L̂γ(h∗) +

√
2(KL(Q||P) + ln 2m

δ)
m− 1 . (3)

2

Proof. This simply follows from the fact that for all h ∼ Q,

L0(h∗) ≤ Lγ/2(h),

so it also holds in expectation, L0(h∗) ≤ EQ
[
Lγ/2(h)

]
. Then, we apply PAC-Bayes:

L0(h∗) ≤ EQ
[
L̂γ/2(h)

]
+

√
2(KL(Q||P) + ln 2m

δ)
m− 1 .

And because for all h sampled from Q, we also have L̂γ/2(h) ≤ L̂γ(h∗), this inequality also holds in expectation,
and thus we obtain the bound in the proposition statement.

Now, perhaps it is unreasonable to expect that we can easily find a distribution Q where any h sampled
from Q will satisfy Equation 2. But maybe we know that we can obtain some distribution Q̃ where a constant
fraction of them does. That is,

Z := Pr
h∼Q̃

[
∀x ∈ X , |h(x)− h∗(x)| ≤ γ

4

]
≥ c > 0, (4)

for some constant c. Then, we can decompose Q̃ as a sum of two distributions: one that has support over
the classifiers satisfying Equation 2, say Qsmall perturbations, and one that has support over those that don’t,
Qlarge perturbations. That is,

Q̃ = ZQsmall perturbations + (1− Z)Qlarge perturbations.

From this, we can immediately obtain a bound on L0(h∗) using Proposition 2, where Q = Qsmall perturbations.
But as we can’t compute KL(Qsmall perturbations||P) directly, we need to bound that through KL(Q̃||P). We
achieve this via the identity:

KL(Q̃||P) = ZKL(Qsmall perturbations||P) + (1− Z)KL(Qlarge perturbations||P)−H(Z), (5)

where it follows that
KL(Qsmall perturbations||P) ≤ 1

Z

(
KL(Q̃||P) + 1

)
. (6)

Plugging this bound into the KL-term in Proposition 2 gives us:

Proposition 3. Let P be a prior over H. Let h∗ : X → Rk be a classifier obtained after training with m
samples. If Q is a posterior distribution over H such that Equation 4 is satisfied for some c > 0, then, the
0-1 loss of h∗ is upper bounded with probability 1− δ,

L0(h∗) ≤ L̂γ(h∗) + 2
c

√
KL(Q||P) + c2 ln 2e1/c2m

δ

2(m− 1) . (7)

We’ll now use this framework to prove bounds for ReLu neural networks.

ReLu Neural Networks
We start by defining this family of neural networks, then proving some useful properties about them.

3

Definition 4. Let F be family of d-layered ReLu neural networks fw : Rn → Rk parametrized by its weights
w = vec

(
{Wi}di=1

)
. That is, let φ : Rs → Rs be the (vectorized) activation function:

φ(x)i =

xi xi ≥ 0
0 o.w.

Then, fw is decomposed into:
fw(x) = φ(Wdφ(Wd−1φ · · ·x)).

Furthermore, let h be an upper bound on the number of output unit of any layer, so that we also have
Wi : Rs → Rt, where s, t ≤ h.

Here, we’ll show that we can restrict our analysis to neural networks fv : Bn(0, 1)→ Rk, where Bn(0, 1)
is the unit n-ball in Rn, and each Vi in v is normalized: ‖Vi‖2 = 1. Briefly, this is because ReLu neural
networks are homogeneous, and margin losses scale inversely with the ‘magnitude’ the weights and the radius
of the domain. More formally,

Lemma 5. ReLu neural networks are homogeneous. That is, let fw ∈ F . Then, fw(λx) = λfw(x) if λ ≥ 0.

Proof. Multiplication by Wi is linear and φ is homogeneous. Thus, any sequence of compositions of Wi’s and
φ’s is homogeneous.

Corollary 6. Every ReLu neural network fw may be written as a product of a nonnegative scalar α with a
neural network fv, where each Vi in v has ‖Vi‖2 = 1. Thus,

fw = αfv.

Proof by induction. For each layer, we can rewrite the computation as:

φWix = φ
Wi

‖Wi‖2
(‖Wi‖2 x) = ‖Wi‖2 · φVix,

where Vi = Wi/ ‖Wi‖2. We can pull the ‖Wi‖2 through the rest of the layers by Lemma 5. Therefore, without
loss of generality, we may take any ReLu neural network to be of the form αfv, where v is a collection of
L2-normalized weights for each of the d layers.

This also shows that we can (multiplicatively) redistribute the weight α among the different layers without
changing the output of the classifier. Now, we show how scaling a classifier affects margin losses. While the
following isn’t strictly needed, it gives a relationship that can help us check units later.

Corollary 7. If fw = αfv, then Lγ(fw) = Lγ/α(fv).

Proof. Expanding out the margin loss, we have:

Lγ(fw) = Pr
(x,j)∼D

[
fw(x)j ≤ γ + max

i 6=j
fw(x)i

]
= Pr

(x,j)∼D

[
fv(x)j ≤

γ

α
+ max

i 6=j
fv(x)i

]
= Lγ/α(fv).

Thus, we may restrict our analysis to normalized ReLu neural networks, and pass the scalar α into the margin
loss parameter γ.

4

By similar argument, it is not surprising we can also assume that the domain X ⊂ Bn(0, 1) is contained
in the unit n-ball. Briefly, if supx∈X ‖x‖2 = r, then just let X ′ = X/r; for every x, we have a corresponding
x′ = x/r, and its clear from above that αfv(x) = rαfv(x′). So in fact, the prior analysis for α also provides
the analysis for the magnitude term r. Formally, this is summarized as follows:

Corollary 8. Let X ⊂ Rn be bounded, with ‖x‖2 ≤ r for all x ∈ X . Let X ′ = X/r just be its normalization.
Let fw = αfv be a ReLu neural network (where fv is normalized). Let D be a distribution over X × Y, and
let D′ be the natural distribution over X ′ × Y where the likelihood of (x, y) being sampled from D is equal to
the likelihood that (x/r, y) is sampled from D′. Then,

Lγ,X (fw) = Lγ/rα,X ′(fv).

With this in mind, let’s see how similarly classifiers around fv behave. First, a quick technical lemma
that we state without proof:

Lemma 9. Let φ : Rs → Rs. Then, φ is a contraction. That is, if x, y ∈ Rs, then:

‖φ(x)− φ(y)‖2 ≤ ‖x− y‖2 .

Proposition 10. Let u = vec({Ui}di=1) be a small perturbation, where each ‖Ui‖2 ≤
1
d . Let fv be a

(normalized) ReLu neural network. Then for all x ∈ Bn(0, 1),

‖fv+u(x)− fv(x)‖2 ≤
(

1 + 1
d

)d d∑
i=1
‖Ui‖2 ≤ e

d∑
i=1
‖Ui‖2 .

Note that the second inequality follows immediately from the fact that the Taylor expansion for ex ≥ 1 +x

implies
(
1 + 1

x

)x ≤ e. So, all we need to do is prove the first inequality.

Proof by induction. We may assume that ‖x‖2 = 1, for if the bound holds for all such x’s, then by homogeneity
of fv, it holds for any x ∈ Bn(0, 1).

Denote by f iw(x) the output of the ith layer of fw before applying the activation function. Let us bound
how far f iv+u(x) and f iv(x) have diverged from each other:

∆i = f iv+u(x)− f iv(x).

And let ∆′i denote the similar quantity after activation:

∆′i = φ
(
f iv+u(x)

)
− φ

(
f iv(x)

)
.

This lets us inductively define ∆i+1, most easily seen by the following figure:

Figure 2: Transformation of f iv(x) and f iv+u(x) at the (i+ 1)th layer. Note that φ is a contraction.

5

This quickly shows that:
∆i+1 = Ui+1φ

(
f iv(x)

)
+ (Vi+1 + Ui+1)∆′i,

which we can bound using triangle inequality, Cauchy-Schwarz, and the fact that φ is a contraction:

‖∆i+1‖2 ≤ ‖Ui+1‖2
∥∥f iv(x)

∥∥
2 + (‖Vi+1‖2 + ‖Ui+1‖2) ‖∆′i‖2

≤ ‖Ui+1‖2 + (1 + ‖Ui+1‖2) ‖∆i‖2 ≤ ‖Ui+1‖2 +
(

1 + 1
d

)
‖∆i‖2 .

From this fact, the rest of the proof follows easily by inducting over the hypothesis:

‖∆i‖2 ≤
(

1 + 1
d

)i i∑
k=1
‖Uk‖2 .

Corollary 11. Let fw be a ReLu neural network. Let u = vec({Ui}di=1) be a small perturbation, where each
‖Ui‖2 / ‖Wi‖2 ≤

1
d . Then for all x ∈ Bn(0, r),

‖fv+u − fv(x)‖2 ≤ er
d∑
i=1

‖Ui‖2
‖Wi‖2

.

We are now ready to put all these pieces together to give a risk bound for ReLu neural networks.

Risk Bounds for ReLu Neural Networks
Suppose that we’ve run our training algorithm using m samples dranw from Bn(0, r), and we’ve obtained fw.
By above, we know we can write fw = αfv, but we can also redistribute the α even across the layers, so
that fw = fβv, where α = βd. Thus, we may assume, without loss of generality, that w = βv; that is, the
(spectral) norm of each layer is the same.

To bound the risk, our main workhorse will be Proposition 3. That requires producing a posterior
distribution Q where a constant fraction of sampled classifiers have similar margins as fw. Let’s looks at
classifiers whose parameters are w + u, where u ∼ N (0, σ2I) are small perturbations.

To control the variation of the margins, we then need Corollary 11 to control the size of ‖U‖i. We know:

Pr
Ui∼N (0,σ2I)

[‖Ui‖2 > t] ≤ 2he−t
2/2hσ2

.

Then, we can union bound over all d layers. Suppose we want to ensure the bound for a constant fraction,
say, 1/2. Then, bound the above by 1/2d. Now, with probability 1/2, for all Ui in u,

‖Ui‖2 ≤ σ
√

2h ln 4hd.

Applying Corollary 11, we get see that with probability 1/2, for all x ∈ X ,

‖fw+u(x)− fw(x)‖2 ≤ erβ
d

d∑
i=1

1
β
‖Ui‖2 ≤ erβ

d−1dσ
√

2h ln 4hd.

This, we’ll want to upper bound by γ/4, for Proposition 3. However, σ can’t depend on β in our analysis, so
what we’ll do instead is cover all possible β’s by a grid of β̃ so that for any β, there is an approximator where:∣∣∣β − β̃∣∣∣ ≤ 1

d
β.

6

This lets us bound βd−1 by eβ̃d−1 in the above expression. We’ll just have to remember to union bound over
all possible β̃’s later. This lets us produce a value for σ:

σ = γ

42drβ̃d−1
√
h ln(4hd)

.

So, we have Q = N (w, σ2I). A natural prior we could have chosen is P = N (0, σ2I), in which case the
KL-divergence is:

KL(Q||P) ≤ |w|
2

2σ2 = 1
2σ2

d∑
i=1
‖Wi‖2

F = O

r2α2

γ2 d2h ln(dh)︸ ︷︷ ︸
≥
∑d

i=1‖Ui‖2
F

d∑
i=1
‖Vi‖2

F

 ,

where U i is the normalized version (U i = Ui/ ‖Wi‖2).
Plugging the bound for the KL-divergence lets us get a risk bound for this one β. The final step is to

figure out how many β̃’s we need for the union bound. Since

|fw(x)| ≤ αr ≤ γ/2,

we know that β ≥
(
γ
2r
)1/d. And if the

√
KL/m term is greater than one, then the bound is vacuous. That

forces β ≤
(
γ
√
m

2r

)1/d
. Given that we only need to approximators on this compact interval, it turns out that

we only need a cover of size at most dm1/2d. It follows that:

Theorem 12. Let F be a family of ReLu neural networks fw : Bn(0, r)→ Rk. Let the dimension of each
output layer be bounded by h. Let fw = αfv be a classifier obtained after training on m samples. Then, for
all margins γ > 0 and confidence δ > 0,

L0(fw) ≤ L̂γ(fw) + rα

γ
·O

√d2h ln(dh)
∑d
i=1 ‖Vi‖

2
F + ln dm

δ

m

 .

References
[Neyshabur 2018] Neyshabur, B., Bhojanapalli, S., and Srebro, N. A PAC-Bayesian approach to spectrally-
normalized margin bounds for neural networks. ICLR. 2018.

7

