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Multi-objective optimization

Decision Objectives
ﬁ Cost Location
Buying a home ’ E.:i
Value Noise

Solution concept: Pareto efficiency/optimality
A Pareto efficient decision makes an optimal trade off: improving one
objective necessarily comes at the cost of worsening another.
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Multi-objective optimization problem

The (unconstrained) multi-objective optimization problem:
min F(x).

x€R4

> F=(fi,....fn) : R? = R"is a collection of objectives.
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Multi-objective optimization problem

The (unconstrained) multi-objective optimization problem:

min F(x).
x€ER4 ( )

> F=(fi,....fn) : R? = R"is a collection of objectives.

» xis a decision variable.

» F(x) is the outcome of the decision x.
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Pareto optimal solutions

Definition
A decision x € R? is Pareto optimal if for all X' € R? and i € [d],

file') < fi(x)
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Pareto optimal solutions

Definition
A decision x € R? is Pareto optimal if for all X' € R? and i € [d],

i) <filtx) = fi(x) > fi(x),
for some j € [d].

Notation: let Pareto(F) be the set of Pareto optimal solutions.
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Making a single decision

At the end of the day, we often need to settle on a single decision.
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Making a single decision

At the end of the day, we often need to settle on a single decision.

However, Pareto optimal solutions are generally:

» not unique: there can be many optimal trade offs,

» not totally ordered: there is usually no ‘best’” optimal trade off.

Thus, the problem is not very well-posed yet.
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Multi-objective optimization: current approaches

Covering approach
Construct a representative subsample of
the set of Pareto efficient solutions.
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Multi-objective optimization: current approaches

Issues
Covering approach » Unruly geometry makes
Construct a representative subsample of sampling difficult.
the set of Pareto efficient solutions. » Pareto set can be very large;

not a scalable approach.

Example: a realtor selects a small collection of homes for you to inspect.
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Multi-objective optimization: current approaches

Scalarization approach
Reduce to single-objective optimization:
e.g. weight objectives by importance.
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Multi-objective optimization: current approaches

Issues
Scalarization approach

Reduce to single-objective optimization:
e.g. weight objectives by importance.

» Incomparable objectives.
» Hard to design the ‘right’

scalar objective.

Example: quantify how much each additional mile to work is worth to you.
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Pareto-constrained optimization

This work:
» Let F=(fi,...,fy) : RY = R" be n objective functions.

» Suppose we are given an additional preference function f; : R — R.
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Pareto-constrained optimization

This work:
» Let F=(fi,...,f,) : RY — R" be n objective functions.

» Suppose we are given an additional preference function f; : R? — R.

Goal: optimize fy constrained to the Pareto set of F,

min _ fo(x).

x€Pareto(F)
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Challenges of Pareto-constrained optimization

1. The Pareto set is defined implicitly.
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Challenges of Pareto-constrained optimization

1. The Pareto set is defined implicitly.
2. The Pareto set is generally non-smooth and non-convex.

This is true even when the objectives are very nice.
Even defining an appropriate solution concept can be non-trivial.
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Non-smoothness and non-convexity of Pareto set

Example
The Pareto set of three quadratics,

fix) = 5 (e — &) Ailx = @),
A = [1 0 . 0
A — 0.25]0] - %

A3: :| Cop —
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Previously observed unruliness

» singularities or self-crossings (Sheftel et al., 2013)

» needle-like extensions and knees (Kulkarni et al., 2023)
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A failed attempt

//
/ /]

=

Approach. Find a potential ® where:
> $(x) >0
» x € Pareto(F) <= ®(x) = 0.

7
7
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A failed attempt

N

Approach. Find a potential ® where:
> $(x) >0
» x € Pareto(F) <= ®(x) = 0.

Difficulty. Non-smoothness of Pareto
set carries over to the potential.

» & is not analytic near singularity;

Taylor series a poor approximate.
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Geometry of the Pareto set
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Pareto stationarity

Definition

Letfi,. .., f, be smooth. A point x € R is Pareto stationary if zero is a convex combination:
Z w;Vfi(x) =0,
i€[n]

for some wy, ..., wy, > 0 such that w; + - -+ w, = 1.
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Pareto stationarity

Definition

Letfi,. .., f, be smooth. A point x € R is Pareto stationary if zero is a convex combination:
> wiVfi(x) =0,
i€[n]

for some wy, ..., wy, > 0 such that w; + - -+ w, = 1.

Notation: let A"~! denote the (n — 1)-dimensional simplex and for all w € A"~ !,

fulx) =Y wifi(x).

i€[n]

Therefore, x is Pareto stationary if and only if Vf,,(x) = 0 for some w € A"™1.
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Pareto optimality = Pareto stationarity

Claim. If x is not Pareto stationary, then there is a descent direction for all objectives.
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Pareto optimality = Pareto stationarity

Claim. If x is not Pareto stationary, then there is a descent direction for all objectives.

Proof. Given vectors vy, ..., v,, Gordan’s theorem states that there are two alternatives:

Zero is a convex combination: All vectors lie in some half-space:
_ T
wivy + -+ wyv, = 0. u v; <0.
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Strict convexity + Pareto stationarity = Pareto optimality

Claim. If fi, ..., f, are strictly convex and x is Pareto stationary, then x is Pareto optimal.
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Strict convexity + Pareto stationarity = Pareto optimality

Claim. If fi, ..., f, are strictly convex and x is Pareto stationary, then x is Pareto optimal.

If x is Pareto stationary, then moving toward any direction x’ — x will increase one of
the objectives. By strict convexity, the increase is strictly monotonic.
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Pareto optimality <= Pareto stationarity (under strict convexity)

Proposition

Let fi, ..., fy be smooth and strictly convex. Then:

Pareto(F) = {x : Vf,,(x) = 0 for some w € A"},
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Pareto manifold

Definition
Let fi, ..., fu be smooth and strictly convex.
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Pareto manifold

Definition
Let fi,..., fu be smooth and strictly convex. The Pareto manifold P(F) is defined:

P(F) = {(x, ) : Vfu(x) =0},

where (x, w) ranges over R% x A1,

Claims:
» Pareto(F) is recovered by projecting P(F) onto R%.
» P(F) is a smooth submanifold of R? x A"~1,

» In fact, it is diffeomorphic to A",
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Proof of smoothness structure

1. The Pareto manifold P(F) is the zero set of a smooth function:

(x,w) = Vfi,(x).
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Proof of smoothness structure

1. The Pareto manifold P(F) is the zero set of a smooth function:
(x, w) = Vfi,(x).
2. The Jacobian with respect to x at (x, w) € P(F) is invertible:

Vi fu(x) = 0.

3. By the implicit function theorem, there is a smooth map x* : A" ! — R so that:

(x, w) = (x*(w), w), V(x,w) € P(F).
4. In fact, we can also deduce x* and Vx* (albeit implicitly):

x*(w) = x,, ;= argmin f,,(x) and Vx*(w) = —V2f(xw) ' VF(xy).
xER
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Pareto-constrained optimization
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ceiin o S(x)
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Pareto-constrained optimization: high-level idea

Pareto(F) P(F) A™!
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Pareto(F) P(F) A™!
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min X
x€Pareto(F) ﬁ) ( )
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Pareto-constrained optimization: high-level idea

Pareto(F) P(F) A™!
Problem definition Smoothness structure
xEPIaE(le)(F) fb(x) (x,vglel%(F) ﬁ)(X)
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Pareto-constrained optimization: high-level idea

Pareto(F) P(F) A1
Problem definition Smoothness structure Theory and algorithms
ety H®) oin o) minfi(x'(w)

» Pulling back to the simplex overcomes non-smoothness and non-convexity.
» However, the problem remains implicit, since x*(w) is implicitly defined.
This is an instance of a bilevel optimization problem:

min i (argmin £,(x) )

weAr—1 xERY

22/41



Solution concepts

Given objectives fi, . .., f, and a preference function f;, we say:

» A point x € R is preference optimal if it minimizes:

ceiin o).
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Solution concepts

Given objectives fi, ..., f, and a preference function fy, we say:
» A point x € R is preference optimal if it minimizes:

ceiin o).

> A point x € R is preference stationary if:

1. x minimizes f,, for some w € A""! and
2. forall w € A™ 1,

—V(fyox*)(w) T (W —w) <.

23/4



Preference optimality = preference stationarity

Proposition (Necessary condition)

If x is preference optimal, then it is preference stationary.
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Preference optimality = preference stationarity

Proposition (Necessary condition)

If x is preference optimal, then it is preference stationary.

Proof.
Standard from convex optimization, see Nesterov (2013) for example. O
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Preference stationarity is a second-order condition

Expanding out the preference stationarity condition, we obtain:
V1o (x) V()" VF(x,,) (W — w) <0,

which relies on second-order information about the objectives.
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Preference stationarity is a second-order condition

Expanding out the preference stationarity condition, we obtain:
V1o (x) V()" VF(x,,) (W — w) <0,
which relies on second-order information about the objectives.

Question: is second-order information necessary?

» Yes. First order information VF doesn’t tell us how the Pareto set curves.
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Necessity of second-order information

Two Pareto sets (thick gray) with the same first-order information (orange vectors).
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Necessary first-order conditions are trivial

Proposition

If a first-order condition is necessary for preference optimality, then it is trivial.
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Necessary first-order conditions are trivial
Proposition
If a first-order condition is necessary for preference optimality, then it is trivial.

» A first-order condition only looks at the values Vfy(x), Vfi(x),..., Vfu(x).

» It is necessary if it holds whenever x is preference optimal.

» Informally, it is trivial if it holds for almost all sets of first-order information.

Implication: first-order conditions either:
(i) reject Pareto optimal points at times, or

(ii) are uninformative.

27/4



Theory and algorithms
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Estimating the gradient

Ideally, we could perform gradient descent on f; o x*.
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Estimating the gradient

Ideally, we could perform gradient descent on f; o x*. Apply chain rule using;:

Vx*(w) = —V2f,,(x,)  'VF(x,).

Because x,, is implicit, let us define the (computable) approximation:

~

Vx*(x, w) == —V2f,,(x) 'VF(x).

Two goals:
» Analysis of algorithms that make use of this approximation.

» Design of an algorithm that robustly makes use of this approximation.

29/41



Assumptions

We assume that the objectives fi, ..., f, : RY — R satisfy:

» [i-strong convexity and L-Lipschitz smoothness,
» Lp-Lipschitz continuity of the Hessians,
» minimizers are contained in the r-ball, so that:

argmin f; € B(0, r).
x€RI
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Assumptions

We assume that the objectives fi, ..., f, : RY — R satisfy:
» [i-strong convexity and L-Lipschitz smoothness,
» Lp-Lipschitz continuity of the Hessians,
» minimizers are contained in the r-ball, so that:

argmin f; € B(0, r).
x€RI

We also assume that the preference f; : RY — R satisfies:

» L-Lipschitz smoothness.
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Implications of assumptions

1. the diameter and curvature of the Pareto set can be controlled
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Implications of assumptions

1. the diameter and curvature of the Pareto set can be controlled

2. the approximation error H%x* (x, w) — Vx*(w)|| can also be controlled
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Majorizing surrogates

Definition
A majorizing surrogate g : A"' — R of the composition fy o x* is a map:

g(w) < (foox™)(w), Ywe A"
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A family of majorizing surrogates

Proposition

Suppose the above assumptions hold. The following majorizes f; o x*,
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A family of majorizing surrogates

Proposition

Suppose the above assumptions hold. The following majorizes f; o x*,

g(wix, w) = f(xy) + Vfo(x)T§x*(x, w)(w — w) + %Hw' — w3 + err(x, w).
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A family of majorizing surrogates

Proposition

Suppose the above assumptions hold. The following majorizes f; o x*,

83, w) = f(5) + VI ()T (o w) (' = w) + S| — ]l + enr(x, w),
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A family of majorizing surrogates

Proposition

Suppose the above assumptions hold. The following majorizes f; o x*,

83, w) = f(5) + VI ()T (o w) (' = w) + S| — ]l + enr(x, w),

» This yields a family of majorizing quadratic surrogates parametrized by (x, w).

» The constant ¢ and error function err(x, w) can be computed explicitly.

» As x approaches x,,, the error term shrinks and the upper bound becomes tighter.
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Majorization-minimization

Majorization-minimization
Fork=0,1,...
» Compute a majorizing surrogate at xy.

» Set x;11 to minimize the surrogate.
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Majorization-minimization

Majorization-minimization
Fork=0,1,...
» Compute a majorizing surrogate at xy.

» Set x;11 to minimize the surrogate.

Ideally, the surrogate is tangent to the objective
at xi, and locally remains a good upper bound.

» This ensures guaranteed progress.

34/



A majorization-minimization approach

Pareto majorization-minimization (PMM).
Initialize (xp, wo) € RY x A" Fork=0,1,...,K — 1:
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A majorization-minimization approach

Pareto majorization-minimization (PMM).
Initialize (xp, wo) € R? x A™ ! Fork=0,1,...,K — 1:
» Compute the majorizing surrogate g(-; xx, wg).

» Compute approximate minimizers:

- -
Wiy < argmin g(w; xg, wg) and Xkq1 ¢ argmin fo,  (x).
weAn-1 xeR4

The subroutines are easy: arg min g(w) is a quadratic program; f,,(x) is strongly convex.
weAn—1
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Convergence result

Theorem (Convergence of PMM)

Pareto majorization-minimization achieves -stationarity in O(c~?) iterations, if:
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Convergence result

Theorem (Convergence of PMM)
Pareto majorization-minimization achieves -stationarity in O(c~?) iterations, if:

» argmin g(w) achieves e-stationarity
weAn—1

» arg min f,,(x) achieves £*-optimality.
xeR?
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Provide decision pairs (x, x’) and ask the decision-maker which is better.
Makes use of ideas from zero-order optimization.

» Analysis of two-timescale projected gradient descent/mirror descent
Choose two learning rate schedules for x; and wy’s.

» Sampling from the Pareto set
Mirror descent allows for sampling from the simplex.
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Thank you!

Paper at https://arxiv.org/abs/2308.02145.
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