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Multi-objective optimization

Decision Objectives

Buying a home

Cost Location

Value Noise

Solution concept: Pareto efficiency/optimality
A Pareto efficient decision makes an optimal trade off: improving one
objective necessarily comes at the cost of worsening another.
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Multi-objective optimization problem

The (unconstrained) multi-objective optimization problem:

min
x∈Rd

F(x).

▶ F ≡ (f1, . . . , fn) : Rd → Rn is a collection of objectives.

▶ x is a decision variable.

▶ F(x) is the outcome of the decision x.
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Pareto optimal solutions

Definition
A decision x ∈ Rd is Pareto optimal if for all x′ ∈ Rd and i ∈ [d],

fi(x′) < fi(x)

=⇒ fj(x′) > fj(x′),

for some j ∈ [d].

Notation: let Pareto(F) be the set of Pareto optimal solutions.
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Making a single decision

At the end of the day, we often need to settle on a single decision.

However, Pareto optimal solutions are generally:

▶ not unique: there can be many optimal trade offs,

▶ not totally ordered: there is usually no ‘best’ optimal trade off.

Thus, the problem is not very well-posed yet.
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Multi-objective optimization: current approaches

Covering approach
Construct a representative subsample of
the set of Pareto efficient solutions.

Issues
▶ Unruly geometry makes

sampling difficult.

▶ Pareto set can be very large;
not a scalable approach.

Example: a realtor selects a small collection of homes for you to inspect.
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Multi-objective optimization: current approaches

Scalarization approach
Reduce to single-objective optimization:
e.g. weight objectives by importance.

Issues
▶ Incomparable objectives.

▶ Hard to design the ‘right’
scalar objective.

Example: quantify how much each additional mile to work is worth to you.
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Pareto-constrained optimization

This work:
▶ Let F ≡ (f1, . . . , fn) : Rd → Rn be n objective functions.

▶ Suppose we are given an additional preference function f0 : Rd → R.

Goal: optimize f0 constrained to the Pareto set of F ,

min
x∈Pareto(F)

f0(x).
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Challenges of Pareto-constrained optimization

1. The Pareto set is defined implicitly.

2. The Pareto set is generally non-smooth and non-convex.

▶ This is true even when the objectives are very nice.
▶ Even defining an appropriate solution concept can be non-trivial.
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Non-smoothness and non-convexity of Pareto set

Example
The Pareto set of three quadratics,

fi(x) =
1
2
(x − ci)⊤Ai(x − ci).

A1 =

[
1 0
0 1

]
c1 =

[
0
0

]
A2 =

[
0.25 0
0 1

]
c2 =

[
1
0.5

]
A3 =

[
1 0
0 0.25

]
c2 =

[
0.5
1

]
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Previously observed unruliness

▶ singularities or self-crossings (Sheftel et al., 2013)

▶ needle-like extensions and knees (Kulkarni et al., 2023)
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A failed attempt

Approach. Find a potential Φ where:

▶ Φ(x) ≥ 0
▶ x ∈ Pareto(F)⇐⇒ Φ(x) = 0.

Difficulty. Non-smoothness of Pareto
set carries over to the potential.

▶ Φ is not analytic near singularity;
Taylor series a poor approximate.
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Geometry of the Pareto set
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Pareto stationarity

Definition
Let f1, . . . , fn be smooth. A point x ∈ Rd is Pareto stationary if zero is a convex combination:∑

i∈[n]

wi∇fi(x) = 0,

for some w1, . . . ,wn ≥ 0 such that w1 + · · ·wn = 1.

Notation: let ∆n−1 denote the (n− 1)-dimensional simplex and for all w ∈ ∆n−1,

fw(x) :=
∑
i∈[n]

wifi(x).

Therefore, x is Pareto stationary if and only if ∇fw(x) = 0 for some w ∈ ∆n−1.
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Pareto optimality =⇒ Pareto stationarity
Claim. If x is not Pareto stationary, then there is a descent direction for all objectives.

Proof. Given vectors v1, . . . , vn, Gordan’s theorem states that there are two alternatives:

Zero is a convex combination:

w1v1 + · · ·+ wnvn = 0.

All vectors lie in some half-space:

u⊤vi < 0.
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Strict convexity + Pareto stationarity =⇒ Pareto optimality

Claim. If f1, . . . , fn are strictly convex and x is Pareto stationary, then x is Pareto optimal.

xx′

If x is Pareto stationary, then moving toward any direction x′− x will increase one of
the objectives. By strict convexity, the increase is strictly monotonic.
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Pareto optimality⇐⇒ Pareto stationarity (under strict convexity)

Proposition
Let f1, . . . , fn be smooth and strictly convex. Then:

Pareto(F) =
{
x : ∇fw(x) = 0 for some w ∈ ∆n−1}.
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Pareto manifold

Definition
Let f1, . . . , fn be smooth and strictly convex.

The Pareto manifold P(F) is defined:

P(F) =
{
(x,w) : ∇fw(x) = 0

}
,

where (x,w) ranges over Rd ×∆n−1.

Claims:

▶ Pareto(F) is recovered by projecting P(F) onto Rd .

▶ P(F) is a smooth submanifold of Rd ×∆n−1.

▶ In fact, it is diffeomorphic to∆n−1.
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Proof of smoothness structure
1. The Pareto manifold P(F) is the zero set of a smooth function:

(x,w) 7→ ∇fw(x).

2. The Jacobian with respect to x at (x,w) ∈ P(F) is invertible:

∇2fw(x) ≻ 0.

3. By the implicit function theorem, there is a smooth map x∗ : ∆n−1 → Rd , so that:

(x,w) =
(
x∗(w),w

)
, ∀(x,w) ∈ P(F).

4. In fact, we can also deduce x∗ and ∇x∗ (albeit implicitly):

x∗(w) ≡ xw := argmin
x∈Rd

fw(x) and ∇x∗(w) = −∇2fw(xw)−1∇F(xw).
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Pareto-constrained optimization
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min
x∈Pareto(F)

f0(x)
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Pareto-constrained optimization: high-level idea

Pareto(F) P(F) ∆n−1

Problem definition

min
x∈Pareto(F)

f0(x)

Smoothness structure

min
(x,w)∈P(F)

f0(x)

Theory and algorithms

min
w∈∆n−1

f0
(
x∗(w)

)
▶ Pulling back to the simplex overcomes non-smoothness and non-convexity.
▶ However, the problem remains implicit, since x∗(w) is implicitly defined.

▶ This is an instance of a bilevel optimization problem:

min
w∈∆n−1

f0

(
argmin

x∈Rd
fw(x)

)
.
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Solution concepts

Given objectives f1, . . . , fn and a preference function f0, we say:

▶ A point x ∈ Rd is preference optimal if it minimizes:

min
x∈Pareto(F)

f0(x).

▶ A point x ∈ Rd is preference stationary if:

1. x minimizes fw for some w ∈ ∆n−1, and
2. for all w′ ∈ ∆n−1,

−∇(f0 ◦ x∗)(w)⊤(w′ − w) ≤ 0.
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Preference optimality =⇒ preference stationarity

Proposition (Necessary condition)
If x is preference optimal, then it is preference stationary.

Proof.
Standard from convex optimization, see Nesterov (2013) for example.
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Preference stationarity is a second-order condition

Expanding out the preference stationarity condition, we obtain:

∇f0(xw) ∇2fw(xw)−1 ∇F(xw)(w′ − w) ≤ 0,

which relies on second-order information about the objectives.

Question: is second-order information necessary?

▶ Yes. First order information∇F doesn’t tell us how the Pareto set curves.
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Necessity of second-order information

Two Pareto sets (thick gray) with the same first-order information (orange vectors).
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Necessary first-order conditions are trivial

Proposition
If a first-order condition is necessary for preference optimality, then it is trivial.

▶ A first-order condition only looks at the values∇f0(x),∇f1(x), . . . ,∇fn(x).
▶ It is necessary if it holds whenever x is preference optimal.

▶ Informally, it is trivial if it holds for almost all sets of first-order information.

Implication: first-order conditions either:
(i) reject Pareto optimal points at times, or

(ii) are uninformative.
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Theory and algorithms
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Estimating the gradient

Ideally, we could perform gradient descent on f0 ◦ x∗.

Apply chain rule using:

∇x∗(w) = −∇2fw(xw)−1∇F(xw).

Because xw is implicit, let us define the (computable) approximation:

∇̂x∗(x,w) := −∇2fw(x)−1∇F(x).

Two goals:

▶ Analysis of algorithms that make use of this approximation.

▶ Design of an algorithm that robustly makes use of this approximation.
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Assumptions

We assume that the objectives f1, . . . , fn : Rd → R satisfy:

▶ µ-strong convexity and L-Lipschitz smoothness,

▶ LH -Lipschitz continuity of the Hessians,

▶ minimizers are contained in the r-ball, so that:

argmin
x∈Rd

fi ∈ B(0, r).

We also assume that the preference f0 : Rd → R satisfies:

▶ L0-Lipschitz smoothness.
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Implications of assumptions

1. the diameter and curvature of the Pareto set can be controlled

2. the approximation error
∥∥∇̂x∗(x,w)−∇x∗(w)∥∥ can also be controlled
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Majorizing surrogates

Definition
A majorizing surrogate g : ∆n−1 → R of the composition f0 ◦ x∗ is a map:

g(w) ≤ (f0 ◦ x∗)(w), ∀w ∈ ∆n−1.
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A family of majorizing surrogates

Proposition
Suppose the above assumptions hold. The following majorizes f0 ◦ x∗,

g(w′; x,w) := f (xw) +∇f0(x)⊤∇̂x∗(x,w)(w′ − w) +
cn
2
∥w′ − w∥22 + err(x,w).

▶ This yields a family of majorizing quadratic surrogates parametrized by (x,w).

▶ The constant c and error function err(x,w) can be computed explicitly.

▶ As x approaches xw , the error term shrinks and the upper bound becomes tighter.
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Majorization-minimization

Majorization-minimization
For k = 0, 1, . . .
▶ Compute a majorizing surrogate at xk .

▶ Set xk+1 to minimize the surrogate.

Ideally, the surrogate is tangent to the objective
at xk , and locally remains a good upper bound.

▶ This ensures guaranteed progress.
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A majorization-minimization approach

Pareto majorization-minimization (PMM).
Initialize (x0,w0) ∈ Rd ×∆n−1. For k = 0, 1, . . . ,K − 1:

▶ Compute the majorizing surrogate g(· ; xk,wk).

▶ Compute approximate minimizers:

wk+1 ← ̂argmin
w∈∆n−1

g(w; xk,wk) and xk+1 ← ̂argmin
x∈Rd

fwk+1(x).

The subroutines are easy: argmin
w∈∆n−1

g(w) is a quadratic program; fw(x) is strongly convex.
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Convergence result

Theorem (Convergence of PMM)
Pareto majorization-minimization achieves ε-stationarity in O(ε−2) iterations, if:

▶ argmin
w∈∆n−1

g(w) achieves ε-stationarity

▶ argmin
x∈Rd

fw(x) achieves ε2-optimality.
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Extensions
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Ongoing work

▶ Optimization with dueling feedback

▶ Provide decision pairs (x, x′) and ask the decision-maker which is better.
▶ Makes use of ideas from zero-order optimization.

▶ Analysis of two-timescale projected gradient descent/mirror descent

▶ Choose two learning rate schedules for xk and wk’s.

▶ Sampling from the Pareto set

▶ Mirror descent allows for sampling from the simplex.
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Collaborators

Abhishek Roy
UC San Diego

Yian Ma
UC San Diego
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Thank you!
Paper at https://arxiv.org/abs/2308.02145.
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