Optimization on the Pareto set

Geometry of multi-objective optimization

Geelon So (UCSD), geelon@ucsd.edu Yale Theory Student Seminar — March 5, 2024

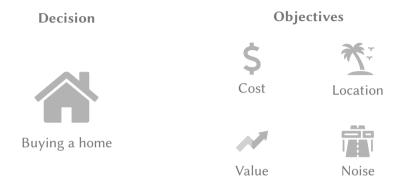
Multi-objective optimization

Decision

Objectives

Buying a home

Multi-objective optimization



Multi-objective optimization

Solution concept: Pareto efficiency/optimality

A Pareto efficient decision makes an optimal trade off: improving one objective necessarily comes at the cost of worsening another.

Multi-objective optimization problem

The (unconstrained) multi-objective optimization problem:

 $\min_{x\in\mathbb{R}^d} F(x).$

• $F \equiv (f_1, \ldots, f_n) : \mathbb{R}^d \to \mathbb{R}^n$ is a collection of objectives.

Multi-objective optimization problem

The (unconstrained) multi-objective optimization problem:

 $\min_{x\in\mathbb{R}^d} F(x).$

F ≡ (f₁,...,f_n) : ℝ^d → ℝⁿ is a collection of objectives.
 x is a decision variable.

Multi-objective optimization problem

The (unconstrained) multi-objective optimization problem:

 $\min_{x\in\mathbb{R}^d} F(x).$

- $F \equiv (f_1, \ldots, f_n) : \mathbb{R}^d \to \mathbb{R}^n$ is a collection of objectives.
- \blacktriangleright x is a decision variable.
- \blacktriangleright *F*(*x*) is the **outcome** of the decision *x*.

Pareto optimal solutions

Definition

A decision $x \in \mathbb{R}^d$ is Pareto optimal if for all $x' \in \mathbb{R}^d$ and $i \in [d]$,

 $f_i(x') < f_i(x)$

Definition

A decision $x \in \mathbb{R}^d$ is Pareto optimal if for all $x' \in \mathbb{R}^d$ and $i \in [d]$,

$$f_i(x') < f_i(x) \implies f_j(x') > f_j(x'),$$

for some $j \in [d]$.

Definition

A decision $x \in \mathbb{R}^d$ is Pareto optimal if for all $x' \in \mathbb{R}^d$ and $i \in [d]$,

$$f_i(x') < f_i(x) \implies f_j(x') > f_j(x'),$$

for some $j \in [d]$.

Notation: let Pareto(F) be the set of Pareto optimal solutions.

Making a single decision

At the end of the day, we often need to settle on a single decision.

At the end of the day, we often need to settle on a single decision.

However, Pareto optimal solutions are generally:

- **• not unique:** there can be many optimal trade offs,
- ▶ not totally ordered: there is usually no 'best' optimal trade off.

Thus, the problem is not very well-posed yet.

Covering approach Construct a **representative subsample** of the set of Pareto efficient solutions.

Covering approach Construct a **representative subsample** of the set of Pareto efficient solutions.

Issues

- Unruly geometry makes sampling difficult.
- Pareto set can be very large; not a scalable approach.

Covering approach Construct a **representative subsample** of the set of Pareto efficient solutions.

Issues

- Unruly geometry makes sampling difficult.
- Pareto set can be very large; not a scalable approach.

Example: a realtor selects a small collection of homes for you to inspect.

Scalarization approach Reduce to single-objective optimization: e.g. **weight** objectives by importance.

Scalarization approach

Reduce to single-objective optimization: e.g. **weight** objectives by importance.

Issues

- ► Incomparable objectives.
- Hard to design the 'right' scalar objective.

Scalarization approach Reduce to single-objective optimization: e.g. **weight** objectives by importance.

lssues

- ► Incomparable objectives.
- Hard to design the 'right' scalar objective.

Example: quantify how much each additional mile to work is worth to you.

Pareto-constrained optimization

This work:

- Let $F \equiv (f_1, \ldots, f_n) : \mathbb{R}^d \to \mathbb{R}^n$ be *n* objective functions.
- Suppose we are given an additional preference function $f_0 : \mathbb{R}^d \to \mathbb{R}$.

Pareto-constrained optimization

This work:

- Let $F \equiv (f_1, \ldots, f_n) : \mathbb{R}^d \to \mathbb{R}^n$ be *n* objective functions.
- Suppose we are given an additional preference function $f_0 : \mathbb{R}^d \to \mathbb{R}$.

Goal: optimize f_0 constrained to the Pareto set of F,

 $\min_{x\in \text{Pareto}(F)} f_0(x).$

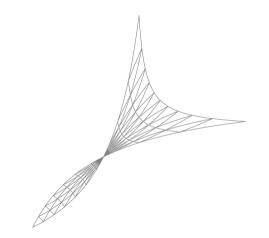
1. The Pareto set is defined implicitly.

- 1. The Pareto set is defined implicitly.
- 2. The Pareto set is generally non-smooth and non-convex.

- 1. The Pareto set is defined implicitly.
- 2. The Pareto set is generally non-smooth and non-convex.
 - > This is true even when the objectives are very nice.

- 1. The Pareto set is defined implicitly.
- 2. The Pareto set is generally non-smooth and non-convex.
 - > This is true even when the objectives are very nice.
 - > Even defining an appropriate solution concept can be non-trivial.

Non-smoothness and non-convexity of Pareto set



Example The Pareto set of three quadratics,

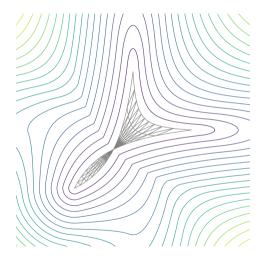
$$f_i(x) = \frac{1}{2}(x - c_i)^{\top} A_i(x - c_i).$$

$$A_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad c_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$A_{2} = \begin{bmatrix} 0.25 & 0 \\ 0 & 1 \end{bmatrix} \qquad c_{2} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$
$$A_{3} = \begin{bmatrix} 1 & 0 \\ 0 & 0.25 \end{bmatrix} \qquad c_{2} = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}$$

Previously observed unruliness

- ▶ singularities or self-crossings (Sheftel et al., 2013)
- ▶ needle-like extensions and knees (Kulkarni et al., 2023)

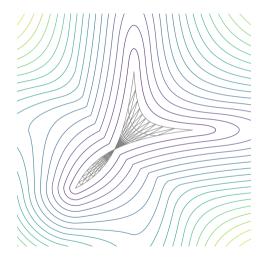
A failed attempt



Approach. Find a potential Φ where:

- ► $\Phi(x) \ge 0$
- ▶ $x \in Pareto(F) \iff \Phi(x) = 0.$

A failed attempt



Approach. Find a potential Φ where:

- ► $\Phi(x) \ge 0$
- ▶ $x \in \operatorname{Pareto}(F) \iff \Phi(x) = 0.$

Difficulty. Non-smoothness of Pareto set carries over to the potential.

 Φ is not analytic near singularity; Taylor series a poor approximate.

 Geometry of the Pareto set

Definition

Let f_1, \ldots, f_n be smooth. A point $x \in \mathbb{R}^d$ is Pareto stationary if zero is a convex combination:

$$\sum_{i\in[n]}w_i\nabla f_i(x)=0,$$

for some $w_1, \ldots, w_n \ge 0$ such that $w_1 + \cdots + w_n = 1$.

Definition

Let f_1, \ldots, f_n be smooth. A point $x \in \mathbb{R}^d$ is Pareto stationary if zero is a convex combination:

$$\sum_{i\in[n]}w_i\nabla f_i(x)=0,$$

for some $w_1, \ldots, w_n \ge 0$ such that $w_1 + \cdots + w_n = 1$.

Notation: let Δ^{n-1} denote the (n-1)-dimensional simplex

Definition

Let f_1, \ldots, f_n be smooth. A point $x \in \mathbb{R}^d$ is Pareto stationary if zero is a convex combination:

$$\sum_{i\in[n]}w_i\nabla f_i(x)=0,$$

for some $w_1, \ldots, w_n \ge 0$ such that $w_1 + \cdots + w_n = 1$.

Notation: let Δ^{n-1} denote the (n-1)-dimensional simplex and for all $w \in \Delta^{n-1}$,

$$f_w(x) := \sum_{i \in [n]} w_i f_i(x).$$

Definition

Let f_1, \ldots, f_n be smooth. A point $x \in \mathbb{R}^d$ is Pareto stationary if zero is a convex combination:

$$\sum_{i\in[n]}w_i\nabla f_i(x)=0,$$

for some $w_1, \ldots, w_n \ge 0$ such that $w_1 + \cdots + w_n = 1$.

Notation: let Δ^{n-1} denote the (n-1)-dimensional simplex and for all $w \in \Delta^{n-1}$,

$$f_w(x) := \sum_{i \in [n]} w_i f_i(x).$$

Therefore, *x* is Pareto stationary if and only if $\nabla f_w(x) = 0$ for some $w \in \Delta^{n-1}$.

Pareto optimality \implies Pareto stationarity

Claim. If *x* is not Pareto stationary, then there is a descent direction for all objectives.

Pareto optimality \implies Pareto stationarity

Claim. If *x* is not Pareto stationary, then there is a descent direction for all objectives.

Proof. Given vectors v_1, \ldots, v_n , Gordan's theorem states that there are two alternatives:

Pareto optimality \implies Pareto stationarity

Claim. If *x* is not Pareto stationary, then there is a descent direction for all objectives.

Proof. Given vectors v_1, \ldots, v_n , Gordan's theorem states that there are two alternatives:

Zero is a convex combination:

$$w_1v_1+\cdots+w_nv_n=0.$$

Pareto optimality \implies Pareto stationarity

Claim. If *x* is not Pareto stationary, then there is a descent direction for all objectives.

Proof. Given vectors v_1, \ldots, v_n , Gordan's theorem states that there are two alternatives:



Zero is a convex combination:

All vectors lie in some half-space:

 $w_1v_1+\cdots+w_nv_n=0.$

$$u^{\top}v_i < 0.$$

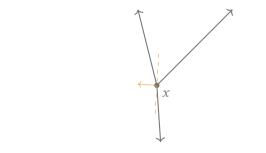
Strict convexity + Pareto stationarity \implies Pareto optimality

Claim. If f_1, \ldots, f_n are strictly convex and *x* is Pareto stationary, then *x* is Pareto optimal.

Strict convexity + Pareto stationarity \implies Pareto optimality

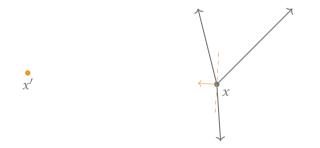
x'

Claim. If f_1, \ldots, f_n are strictly convex and *x* is Pareto stationary, then *x* is Pareto optimal.



Strict convexity + Pareto stationarity \implies Pareto optimality

Claim. If f_1, \ldots, f_n are strictly convex and *x* is Pareto stationary, then *x* is Pareto optimal.



If x is Pareto stationary, then moving toward any direction x' - x will increase one of the objectives. By strict convexity, the increase is strictly monotonic.

Pareto optimality \iff Pareto stationarity (under strict convexity)

Proposition

Let f_1, \ldots, f_n be smooth and strictly convex. Then:

Pareto(F) =
$$\{x : \nabla f_w(x) = 0 \text{ for some } w \in \Delta^{n-1}\}.$$

Definition Let f_1, \ldots, f_n be smooth and strictly convex.

Definition

Let f_1, \ldots, f_n be smooth and strictly convex. The Pareto manifold $\mathcal{P}(F)$ is defined:

$$\mathcal{P}(F) = \big\{ (x, w) : \nabla f_w(x) = 0 \big\},\$$

where (x, w) ranges over $\mathbb{R}^d \times \Delta^{n-1}$.

Definition

Let f_1, \ldots, f_n be smooth and strictly convex. The Pareto manifold $\mathcal{P}(F)$ is defined:

$$\mathcal{P}(F) = \big\{ (x, w) : \nabla f_w(x) = 0 \big\},\$$

where (x, w) ranges over $\mathbb{R}^d \times \Delta^{n-1}$.

Claims:

▶ Pareto(*F*) is recovered by projecting $\mathcal{P}(F)$ onto \mathbb{R}^d .

Definition

Let f_1, \ldots, f_n be smooth and strictly convex. The Pareto manifold $\mathcal{P}(F)$ is defined:

$$\mathcal{P}(F) = \big\{ (x, w) : \nabla f_w(x) = 0 \big\},\$$

where (x, w) ranges over $\mathbb{R}^d \times \Delta^{n-1}$.

Claims:

- ▶ Pareto(*F*) is recovered by projecting $\mathcal{P}(F)$ onto \mathbb{R}^d .
- $\mathcal{P}(F)$ is a smooth submanifold of $\mathbb{R}^d \times \Delta^{n-1}$.

Definition

Let f_1, \ldots, f_n be smooth and strictly convex. The Pareto manifold $\mathcal{P}(F)$ is defined:

$$\mathcal{P}(F) = \big\{ (x, w) : \nabla f_w(x) = 0 \big\},\$$

where (x, w) ranges over $\mathbb{R}^d \times \Delta^{n-1}$.

Claims:

- ▶ Pareto(*F*) is recovered by projecting $\mathcal{P}(F)$ onto \mathbb{R}^d .
- $\mathcal{P}(F)$ is a smooth submanifold of $\mathbb{R}^d \times \Delta^{n-1}$.
- In fact, it is diffeomorphic to Δ^{n-1} .

1. The Pareto manifold $\mathcal{P}(F)$ is the zero set of a smooth function:

 $(x, w) \mapsto \nabla f_w(x).$

1. The Pareto manifold $\mathcal{P}(F)$ is the zero set of a smooth function:

 $(x, w) \mapsto \nabla f_w(x).$

2. The Jacobian with respect to *x* at $(x, w) \in \mathcal{P}(F)$ is invertible:

 $\nabla^2 f_w(x) \succ 0.$

1. The Pareto manifold $\mathcal{P}(F)$ is the zero set of a smooth function:

 $(x, w) \mapsto \nabla f_w(x).$

2. The Jacobian with respect to *x* at $(x, w) \in \mathcal{P}(F)$ is invertible:

 $\nabla^2 f_w(x) \succ 0.$

3. By the implicit function theorem, there is a smooth map $x^* : \Delta^{n-1} \to \mathbb{R}^d$, so that:

$$(x,w) = (x^*(w),w), \qquad \forall (x,w) \in \mathcal{P}(F).$$

1. The Pareto manifold $\mathcal{P}(F)$ is the zero set of a smooth function:

 $(x, w) \mapsto \nabla f_w(x).$

2. The Jacobian with respect to *x* at $(x, w) \in \mathcal{P}(F)$ is invertible:

 $\nabla^2 f_w(x) \succ 0.$

3. By the implicit function theorem, there is a smooth map $x^* : \Delta^{n-1} \to \mathbb{R}^d$, so that:

$$(x, w) = (x^*(w), w), \qquad \forall (x, w) \in \mathcal{P}(F).$$

4. In fact, we can also deduce x^* and ∇x^* (albeit implicitly):

$$x^*(w) \equiv x_w := \operatorname*{arg\,min}_{x \in \mathbb{R}^d} f_w(x) \qquad ext{and} \qquad
abla x^*(w) = -
abla^2 f_w(x_w)^{-1}
abla F(x_w).$$

Pareto-constrained optimization

 $\min_{x\in \text{Pareto}(F)} f_0(x)$

Pareto(F)
$$\mathcal{P}(F)$$
 Δ^{n-1}

Pareto(F)
$$\mathcal{P}(F)$$
 Δ^{n-1} Problem definition $x \in Pareto(F)$ $f_0(x)$

Pareto(F)	$\mathcal{P}(F)$	Δ^{n-1}
Problem definition	Smoothness structure	
$\min_{x\in \text{Pareto}(F)} f_0(x)$	$\min_{(x,w)\in\mathcal{P}(F)} f_0(x)$	

Pareto(F)	$\mathcal{P}(F)$	Δ^{n-1}
Problem definition	Smoothness structure	Theory and algorithms
$\min_{x\in ext{Pareto}(F)} f_0(x)$	$\min_{(x,w)\in\mathcal{P}(F)}f_0(x)$	$\min_{w \in \Delta^{n-1}} f_0(x^*(w))$

Pareto(F)	$\mathcal{P}(F)$	Δ^{n-1}
Problem definition	Smoothness structure	Theory and algorithms
$\min_{x\in \operatorname{Pareto}(F)} f_0(x)$	$\min_{(x,w)\in\mathcal{P}(F)} f_0(x)$	$\min_{w\in\Delta^{n-1}}f_0\big(x^*(w)\big)$

> Pulling back to the simplex overcomes non-smoothness and non-convexity.

Pareto(F)	$\mathcal{P}(F)$	Δ^{n-1}
Problem definition	Smoothness structure	Theory and algorithms
$\min_{x\in \operatorname{Pareto}(F)} f_0(x)$	$\min_{(x,w)\in \mathcal{P}(F)} f_0(x)$	$\min_{w\in\Delta^{n-1}}f_0\big(x^*(w)\big)$

- Pulling back to the simplex overcomes non-smoothness and non-convexity.
- However, the problem **remains implicit**, since $x^*(w)$ is implicitly defined.

Pareto(F)	$\mathcal{P}(F)$	Δ^{n-1}
Problem definition	Smoothness structure	Theory and algorithms
$\min_{x\in \operatorname{Pareto}(F)} f_0(x)$	$\min_{(x,w)\in \mathcal{P}(F)} f_0(x)$	$\min_{w\in\Delta^{n-1}}f_0\big(x^*(w)\big)$

▶ Pulling back to the simplex overcomes non-smoothness and non-convexity.

- However, the problem **remains implicit**, since $x^*(w)$ is implicitly defined.
 - > This is an instance of a bilevel optimization problem:

$$\min_{w\in\Delta^{n-1}}f_0\left(rgmin_{x\in\mathbb{R}^d}f_w(x)
ight).$$

Given objectives f_1, \ldots, f_n and a preference function f_0 , we say: A point $x \in \mathbb{R}^d$ is preference optimal if it minimizes:

 $\min_{x\in \text{Pareto}(F)} f_0(x).$

Given objectives f₁,..., f_n and a preference function f₀, we say:
A point x ∈ ℝ^d is preference optimal if it minimizes:

 $\min_{x\in \text{Pareto}(F)} f_0(x).$

• A point $x \in \mathbb{R}^d$ is preference stationary if:

Given objectives f₁,..., f_n and a preference function f₀, we say:
A point x ∈ ℝ^d is preference optimal if it minimizes:

 $\min_{x\in \text{Pareto}(F)} f_0(x).$

A point x ∈ ℝ^d is preference stationary if:
 1. x minimizes f_w for some w ∈ Δⁿ⁻¹, and

Given objectives f_1, \ldots, f_n and a preference function f_0 , we say: A point $x \in \mathbb{R}^d$ is preference optimal if it minimizes:

 $\min_{x\in \operatorname{Pareto}(F)} f_0(x).$

• A point $x \in \mathbb{R}^d$ is preference stationary if:

1. *x* minimizes f_w for some $w \in \Delta^{n-1}$, and 2. for all $w' \in \Delta^{n-1}$,

 $-\nabla (f_0 \circ x^*)(w)^\top (w'-w) \leq 0.$

Preference optimality \implies preference stationarity

Proposition (Necessary condition)

If x is preference optimal, then it is preference stationary.

Preference optimality \implies preference stationarity

Proposition (Necessary condition)

If x is preference optimal, then it is preference stationary.

Proof.

Standard from convex optimization, see Nesterov (2013) for example.

Preference stationarity is a second-order condition

Expanding out the preference stationarity condition, we obtain:

$$\nabla f_0(x_w) \frac{\nabla^2 f_w(x_w)^{-1}}{\nabla F(x_w)(w'-w)} \le 0,$$

which relies on second-order information about the objectives.

Preference stationarity is a second-order condition

Expanding out the preference stationarity condition, we obtain:

$$\nabla f_0(x_w) \frac{\nabla^2 f_w(x_w)^{-1}}{\nabla F(x_w)(w'-w)} \le 0,$$

which relies on second-order information about the objectives.

Question: is second-order information necessary?

Preference stationarity is a second-order condition

Expanding out the preference stationarity condition, we obtain:

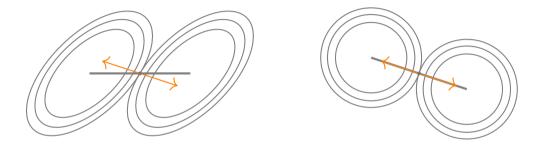
$$\nabla f_0(x_w) \frac{\nabla^2 f_w(x_w)^{-1}}{\nabla F(x_w)(w'-w)} \le 0,$$

which relies on second-order information about the objectives.

Question: is second-order information necessary?

> Yes. First order information ∇F doesn't tell us how the Pareto set curves.

Necessity of second-order information



Two Pareto sets (thick gray) with the same first-order information (orange vectors).

Necessary first-order conditions are trivial

Proposition

If a first-order condition is necessary for preference optimality, then it is trivial.

Necessary first-order conditions are trivial

Proposition

If a first-order condition is necessary for preference optimality, then it is trivial.

▶ A first-order condition only looks at the values $\nabla f_0(x)$, $\nabla f_1(x)$, ..., $\nabla f_n(x)$.

Necessary first-order conditions are trivial

Proposition

If a first-order condition is necessary for preference optimality, then it is trivial.

- ▶ A first-order condition only looks at the values $\nabla f_0(x)$, $\nabla f_1(x)$, ..., $\nabla f_n(x)$.
- ▶ It is necessary if it holds whenever *x* is preference optimal.

Proposition

If a first-order condition is necessary for preference optimality, then it is trivial.

- ▶ A first-order condition only looks at the values $\nabla f_0(x)$, $\nabla f_1(x)$, ..., $\nabla f_n(x)$.
- ▶ It is necessary if it holds whenever *x* is preference optimal.
- ► Informally, it is trivial if it holds for almost all sets of first-order information.

Proposition

If a first-order condition is necessary for preference optimality, then it is trivial.

- ▶ A first-order condition only looks at the values $\nabla f_0(x)$, $\nabla f_1(x)$, ..., $\nabla f_n(x)$.
- ▶ It is necessary if it holds whenever *x* is preference optimal.
- ► Informally, it is trivial if it holds for almost all sets of first-order information.

Implication: first-order conditions either:

Proposition

If a first-order condition is necessary for preference optimality, then it is trivial.

- ▶ A first-order condition only looks at the values $\nabla f_0(x)$, $\nabla f_1(x)$, ..., $\nabla f_n(x)$.
- ▶ It is necessary if it holds whenever *x* is preference optimal.
- ► Informally, it is trivial if it holds for almost all sets of first-order information.

Implication: first-order conditions either:

(i) reject Pareto optimal points at times, or

Proposition

If a first-order condition is necessary for preference optimality, then it is trivial.

- ▶ A first-order condition only looks at the values $\nabla f_0(x)$, $\nabla f_1(x)$, ..., $\nabla f_n(x)$.
- ▶ It is necessary if it holds whenever *x* is preference optimal.
- ► Informally, it is trivial if it holds for almost all sets of first-order information.

Implication: first-order conditions either:

- (i) reject Pareto optimal points at times, or
- (ii) are uninformative.

Theory and algorithms

Ideally, we could perform gradient descent on $f_0 \circ x^*$.

Ideally, we could perform gradient descent on $f_0 \circ x^*$. Apply chain rule using:

$$\nabla x^*(w) = -\nabla^2 f_w(x_w)^{-1} \nabla F(x_w).$$

Ideally, we could perform gradient descent on $f_0 \circ x^*$. Apply chain rule using:

$$\nabla x^*(w) = -\nabla^2 f_w(x_w)^{-1} \nabla F(x_w).$$

Because x_w is implicit, let us define the (computable) approximation:

$$\widehat{\nabla} x^*(x,w) := -\nabla^2 f_w(x)^{-1} \nabla F(x).$$

Ideally, we could perform gradient descent on $f_0 \circ x^*$. Apply chain rule using:

$$\nabla x^*(w) = -\nabla^2 f_w(x_w)^{-1} \nabla F(x_w).$$

Because x_w is implicit, let us define the (computable) approximation:

$$\widehat{\nabla} x^*(x,w) := -\nabla^2 f_w(x)^{-1} \nabla F(x).$$

Two goals:

• Analysis of algorithms that make use of this approximation.

Ideally, we could perform gradient descent on $f_0 \circ x^*$. Apply chain rule using:

$$\nabla x^*(w) = -\nabla^2 f_w(x_w)^{-1} \nabla F(x_w).$$

Because x_w is implicit, let us define the (computable) approximation:

$$\widehat{\nabla} x^*(x,w) := -\nabla^2 f_w(x)^{-1} \nabla F(x).$$

Two goals:

- Analysis of algorithms that make use of this approximation.
- Design of an algorithm that robustly makes use of this approximation.

Assumptions

We assume that the objectives $f_1, \ldots, f_n : \mathbb{R}^d \to \mathbb{R}$ satisfy:

- μ -strong convexity and *L*-Lipschitz smoothness,
- L_H -Lipschitz continuity of the Hessians,
- ▶ minimizers are contained in the *r*-ball, so that:

 $\operatorname*{arg\,min}_{x\in\mathbb{R}^d}f_i\in B(0,r).$

Assumptions

We assume that the objectives $f_1, \ldots, f_n : \mathbb{R}^d \to \mathbb{R}$ satisfy:

- μ -strong convexity and *L*-Lipschitz smoothness,
- L_H -Lipschitz continuity of the Hessians,
- ▶ minimizers are contained in the *r*-ball, so that:

 $\operatorname*{arg\,min}_{x\in\mathbb{R}^d}f_i\in B(0,r).$

We also assume that the preference $f_0 : \mathbb{R}^d \to \mathbb{R}$ satisfies:

 \blacktriangleright *L*₀-Lipschitz smoothness.

Implications of assumptions

1. the diameter and curvature of the Pareto set can be controlled

Implications of assumptions

- 1. the diameter and curvature of the Pareto set can be controlled
- 2. the approximation error $\|\widehat{\nabla}x^*(x,w) \nabla x^*(w)\|$ can also be controlled

Majorizing surrogates

Definition A majorizing surrogate $g : \Delta^{n-1} \to \mathbb{R}$ of the composition $f_0 \circ x^*$ is a map:

$$g(w) \leq (f_0 \circ x^*)(w), \qquad \forall w \in \Delta^{n-1}.$$

Proposition

Suppose the above assumptions hold. The following majorizes $f_0 \circ x^*$,

Proposition

Suppose the above assumptions hold. The following majorizes $f_0 \circ x^*$,

$$g(w'; x, w) := f(x_w) + \nabla f_0(x)^\top \widehat{\nabla} x^*(x, w)(w' - w) + \frac{cn}{2} \|w' - w\|_2^2 + \operatorname{err}(x, w).$$

Proposition

Suppose the above assumptions hold. The following majorizes $f_0 \circ x^*$,

$$g(w'; x, w) := f(x_w) + \nabla f_0(x)^\top \widehat{\nabla} x^*(x, w)(w' - w) + \frac{cn}{2} \|w' - w\|_2^2 + \operatorname{err}(x, w).$$

• This yields a family of majorizing quadratic surrogates parametrized by (x, w).

Proposition

Suppose the above assumptions hold. The following majorizes $f_0 \circ x^*$,

$$g(w'; x, w) := f(x_w) + \nabla f_0(x)^\top \widehat{\nabla} x^*(x, w)(w' - w) + \frac{cn}{2} \|w' - w\|_2^2 + \operatorname{err}(x, w).$$

- This yields a family of majorizing quadratic surrogates parametrized by (x, w).
- ▶ The constant *c* and error function err(x, w) can be computed explicitly.

Proposition

Suppose the above assumptions hold. The following majorizes $f_0 \circ x^*$,

$$g(w'; x, w) := f(x_w) + \nabla f_0(x)^\top \widehat{\nabla} x^*(x, w)(w' - w) + \frac{cn}{2} \|w' - w\|_2^2 + \operatorname{err}(x, w).$$

- This yields a family of majorizing quadratic surrogates parametrized by (x, w).
- ▶ The constant *c* and error function err(x, w) can be computed explicitly.
- As x approaches x_w , the error term shrinks and the upper bound becomes tighter.

Majorization-minimization

Majorization-minimization For k = 0, 1, ...

- Compute a majorizing surrogate at x_k .
- Set x_{k+1} to minimize the surrogate.

Majorization-minimization

Majorization-minimization For k = 0, 1, ...

- Compute a majorizing surrogate at x_k .
- Set x_{k+1} to minimize the surrogate.

Ideally, the surrogate is tangent to the objective at x_k , and locally remains a good upper bound.

Majorization-minimization

Majorization-minimization For k = 0, 1, ...

- Compute a majorizing surrogate at x_k .
- Set x_{k+1} to minimize the surrogate.

Ideally, the surrogate is tangent to the objective at x_k , and locally remains a good upper bound.

► This ensures guaranteed progress.

Pareto majorization-minimization (PMM). Initialize $(x_0, w_0) \in \mathbb{R}^d \times \Delta^{n-1}$. For $k = 0, 1, \dots, K-1$:

Pareto majorization-minimization (PMM). Initialize $(x_0, w_0) \in \mathbb{R}^d \times \Delta^{n-1}$. For $k = 0, 1, \dots, K-1$:

• Compute the majorizing surrogate $g(\cdot; x_k, w_k)$.

Pareto majorization-minimization (PMM). Initialize $(x_0, w_0) \in \mathbb{R}^d \times \Delta^{n-1}$. For $k = 0, 1, \dots, K-1$:

- Compute the majorizing surrogate $g(\cdot; x_k, w_k)$.
- ► Compute approximate minimizers:

$$w_{k+1} \leftarrow \widehat{\operatorname{arg\,min}}_{w \in \Delta^{n-1}} g(w; x_k, w_k)$$
 and $x_{k+1} \leftarrow \widehat{\operatorname{arg\,min}}_{x \in \mathbb{R}^d} f_{w_{k+1}}(x).$

Pareto majorization-minimization (PMM). Initialize $(x_0, w_0) \in \mathbb{R}^d \times \Delta^{n-1}$. For $k = 0, 1, \dots, K-1$:

- Compute the majorizing surrogate $g(\cdot; x_k, w_k)$.
- ► Compute approximate minimizers:

$$w_{k+1} \leftarrow \widehat{\operatorname*{arg\,min}_{w \in \Delta^{n-1}}} g(w; x_k, w_k) \quad \text{and} \quad x_{k+1} \leftarrow \widehat{\operatorname*{arg\,min}_{x \in \mathbb{R}^d}} f_{w_{k+1}}(x).$$

The subroutines are easy:

Pareto majorization-minimization (PMM). Initialize $(x_0, w_0) \in \mathbb{R}^d \times \Delta^{n-1}$. For $k = 0, 1, \dots, K-1$:

- Compute the majorizing surrogate $g(\cdot; x_k, w_k)$.
- ► Compute approximate minimizers:

$$w_{k+1} \leftarrow \widehat{\operatorname*{arg\,min}}_{w \in \Delta^{n-1}} g(w; x_k, w_k) \qquad ext{and} \qquad x_{k+1} \leftarrow \widehat{\operatorname*{arg\,min}}_{x \in \mathbb{R}^d} f_{w_{k+1}}(x).$$

The subroutines are easy: $\underset{w \in \Delta^{n-1}}{\arg \min} g(w)$ is a quadratic program;

Pareto majorization-minimization (PMM). Initialize $(x_0, w_0) \in \mathbb{R}^d \times \Delta^{n-1}$. For $k = 0, 1, \dots, K-1$:

- Compute the majorizing surrogate $g(\cdot; x_k, w_k)$.
- ► Compute approximate minimizers:

$$w_{k+1} \leftarrow \widehat{\operatorname*{arg\,min}}_{w \in \Delta^{n-1}} g(w; x_k, w_k) \qquad ext{and} \qquad x_{k+1} \leftarrow \widehat{\operatorname*{arg\,min}}_{x \in \mathbb{R}^d} f_{w_{k+1}}(x).$$

The subroutines are easy: $\underset{w \in \Delta^{n-1}}{\arg \min} g(w)$ is a quadratic program; $f_w(x)$ is strongly convex.

Theorem (Convergence of PMM)

Pareto majorization-minimization achieves ε -stationarity in $O(\varepsilon^{-2})$ iterations, if:

Theorem (Convergence of PMM)

Pareto majorization-minimization achieves ε -stationarity in $O(\varepsilon^{-2})$ iterations, if:

• $\underset{w \in \Delta^{n-1}}{\operatorname{arg\,min}} g(w)$ achieves ε -stationarity

Theorem (Convergence of PMM)

Pareto majorization-minimization achieves ε -stationarity in $O(\varepsilon^{-2})$ iterations, if:

- $\underset{w \in \Delta^{n-1}}{\operatorname{arg min}} g(w)$ achieves ε -stationarity
- $\underset{x \in \mathbb{R}^d}{\operatorname{arg\,min}} f_w(x)$ achieves ε^2 -optimality.

Extensions

► Optimization with dueling feedback

► Optimization with dueling feedback

> Provide decision pairs (x, x') and ask the decision-maker which is better.

► Optimization with dueling feedback

- > Provide decision pairs (x, x') and ask the decision-maker which is better.
- > Makes use of ideas from zero-order optimization.

► Optimization with dueling feedback

- > Provide decision pairs (x, x') and ask the decision-maker which is better.
- > Makes use of ideas from zero-order optimization.
- > Analysis of two-timescale projected gradient descent/mirror descent

Optimization with dueling feedback

- > Provide decision pairs (x, x') and ask the decision-maker which is better.
- > Makes use of ideas from zero-order optimization.
- > Analysis of two-timescale projected gradient descent/mirror descent
 - Choose two learning rate schedules for x_k and w_k 's.

• Optimization with dueling feedback

- > Provide decision pairs (x, x') and ask the decision-maker which is better.
- > Makes use of ideas from zero-order optimization.
- > Analysis of two-timescale projected gradient descent/mirror descent
 - Choose two learning rate schedules for x_k and w_k 's.
- ► Sampling from the Pareto set

Optimization with dueling feedback

- > Provide decision pairs (x, x') and ask the decision-maker which is better.
- > Makes use of ideas from zero-order optimization.
- > Analysis of two-timescale projected gradient descent/mirror descent
 - Choose two learning rate schedules for x_k and w_k 's.
- ► Sampling from the Pareto set
 - > Mirror descent allows for sampling from the simplex.

Collaborators

Abhishek Roy UC San Diego

Yian Ma UC San Diego

Thank you!

Paper at https://arxiv.org/abs/2308.02145.

References

- Aditya Kulkarni, Maximilian Kohns, Michael Bortz, Karl-Heinz Küfer, and Hans Hasse. Regularities of pareto sets in low-dimensional practical multi-criteria optimisation problems: Analysis, explanation, and exploitation. *Optimization and Engineering*, 24(3):1611–1632, 2023.
- Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer Science & Business Media, 2013.
- Abhishek Roy*, Geelon So*, and Yi-An Ma. Optimization on pareto sets: On a theory of multi-objective optimization. *arXiv preprint arXiv:2308.02145*, 2023.
- Hila Sheftel, Oren Shoval, Avi Mayo, and Uri Alon. The geometry of the p areto front in biological phenotype space. *Ecology and evolution*, 3(6):1471–1483, 2013.