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Weather forecasting problem

the weather channel’s task

Each day:

▶ receive current atmospheric data

▶ predict tomorrow’s weather

▶ observe actual weather

▶ incur ire of viewers if wrong
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Nearest neighbor for weather prediction

nearest neighbor algorithm

▶ remember all past conditions + weather outcomes

▶ predict weather according to the most similar conditions in memory
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The nearest neighbor rule

setting

Let (X , ρ) be a metric space.

nearest neighbor algorithm

▶ remember all past data points {(x1, y1), . . . , (xt , yt)}
▶ given query x, find most similar data point in memory

NN(x) = argmin
τ

ρ(x, xτ )

▶ predict using corresponding label

ŷ(x) = yNN(x)
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Nearest neighbor for weather prediction

rain

rain

rain

no rain

no rain

?no rain
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Behavior of online nearest neighbor

question

When is the nearest neighbor rule a reasonable online prediction strategy?
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Online learning setting

online learning loop

For t = 1, 2, . . .
▶ receive instance xt

▶ predict label ŷt
▶ observe true label yt
▶ incur loss ℓ(xt , yt , ŷt)
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Online learning setting

realizability assumption

The true labels are generated by some underlying function f : X → Y ,

yt = f (xt).
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Online learning setting

goal

Make fewer and fewer mistakes over time.

Formally:

erT :=
1
T

T∑
t=1

ℓ
(
xt , yt , ŷt

)
→ 0︸ ︷︷ ︸

achieve vanishing error rate

.
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Connection to regret

In the usual goal in the online learning setting is to achieve sublinear regret:

regretT :=

T∑
t=1

ℓ
(
xt , yt , ŷt

)
− inf

h∈H

T∑
t=1

ℓ
(
xt , yt , h(xt)

)
.

▶ In the realizable setting, ifH is non-parametric (e.g. all nearest neighbor classifiers),

no mistakes are made by any optimal h ∈ H on (x1, y1), . . . , (xT , yT ).

▶ Thus, sublinear regret is equivalent to vanishing error rate.
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Difficulty of realizable online learning

▶ The sequence of instances xt do not come i.i.d. from some distribution.

▶ In the worst-case, each xt is selected so that learner makes a mistake each time.

11 / 51



Difficulty of realizable online learning

▶ The sequence of instances xt do not come i.i.d. from some distribution.

▶ In the worst-case, each xt is selected so that learner makes a mistake each time.

11 / 51



Negative example: learning the sign function

goal

Learn the sign function f (x) :=

{
+ x ≥ 0
− x < 0

0− +

x1 x2x3

x2 looks at label of x1

example. A worst-case sequence where the nearest neighbor rule errs every time.

▶ The sequence alternate signs and the nearest neighbor of xt+1 is xt out of x1, . . . , xt .

▶ Mistake rate fails to go to zero despite the mistake set shrinking exponentially fast.
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Generalized negative result

setting

Let (X , ρ) be a totally bounded metric space and f : X → {−,+}.

Proposition (Non-convergence in the worst-case)

There is a sequence of instances (xt)t on which the nearest neighbor error rate is bounded

away from zero if and only if there is no positive separation between classes:

inf
f (x)̸=f (x′)

ρ(x, x′) = 0.

▶ Proof idea: can always find arbitrarily close pairs (x, x′) with opposite signs

▶ can select sequence so that x2t is closest to x2t−1, which has the opposite sign
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Implications of negative result

The worst-case adversary is too powerful—learning may not be possible in this setting.

▶ issue: the adversary can compute/construct test instances with arbitrary precision.

Saving grace: we may reasonably never expect to meet this worst-case adversary.

▶ a real adversary may be limited in:

▶ information,

▶ computational power,

▶ access to hard instances.
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This work

research question

Under what general conditions is realizable online learning possible?

▶ How much do we need to relax the worst-case adversary?
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Smoothed analysis of algorithms

Spielman and Teng (2004) initiated the analysis of algorithms beyond the worst-case.

▶ Worst-case analysis:

▶ Show that there exists at least one hard problem instance.

▶ This can fail to capture the actual behavior of the algorithm in practice.

▶ Non-worst-case analysis:

▶ Introduce a (probability) measure over problem instances.

▶ Show that almost all problems are easy (the hard instances have measure zero).

▶ Or, problems are easy with high probability/on average.
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Smoothed adversary for online learning

smoothed adversary loop

For t = 1, 2, . . .

▶ select test distribution µt over all instances X
▶ draw test instance xt ∼ µt

▶ observe (fully/partially) learner’s internal state after update

The smoothed online setting is also studied by Rakhlin et al. (2011); Haghtalab et al. (2020).
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Smoothed adversary for online learning

▶ The smoothed adversary framework interpolates between:

▶ the i.i.d. setting: µt is fixed for all time t

▶ the worst-case setting: µt may be point masses
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Example: Gaussian perturbation model

gaussian-smoothed adversary:

▶ adversary selects x

▶ test instance x is a perturbed version x + ξ where ξ ∼ N (0, σ2I), so:

µ = N (x̄, σ2I).
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Example: σ-smoothed adversary

σ-smoothed adversary:

▶ let ν be an underlying distribution over X

▶ the adversary can select any distribution µ satisfying:

µ(A) ≤ 1
σ
· ν(A),

for all A ⊂ X measurable.
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Dominated adversary

In this work, we generalize both by the ν-dominated adversary.

▶ intuition: the dominated adversary cannot place a constant probability mass on an

arbitrarily small region of problem instances.

▶ setting: let (X , ν) be a measure space.

Definition (Dominated adversary)

The measure ν uniformly dominates a familyM of probability distributions on X if for all

ε > 0 there exists δ > 0 such that:

ν(A) < δ =⇒ µ(A) < ε,

for all A ⊂ X measurable and distribution µ ∈M. We say that adversary is ν-dominated if

at all times t it selects µt from a family of distributions uniformly dominated by ν.
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Example: learning labels for well-separated clusters

setting

Suppose that the instance space X consists of countably many well-separated clusters

▶ within-cluster distances≪ between-cluster distances

▶ the labels for each cluster is pure (all positive or all negative labels).

he nearest neighbor learner

akes at most one mistake made per cluster

the nearest neighbor learner

makes at most one mistake made per cluster
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Example: learning labels for well-separated clusters

convergence result for well-separated clusters

Let ν be a finite measure on X .

The nearest neighbor learner achieves vanishing error

rate against any ν-dominated adversary.

23 / 51



Example: learning labels for well-separated clusters

convergence result for well-separated clusters

Let ν be a finite measure on X . The nearest neighbor learner achieves vanishing error
rate against any ν-dominated adversary.

23 / 51



Example: learning labels for well-separated clusters

Proof sketch.

▶ Split X into two pieces Xeasy ∪ Xsmall, where:

▶ Xeasy is a finite union of clusters

▶ Xsmall contains very little mass ν(Xsmall) < δ.

▶ Such a decomposition exists for any δ > 0 by the finiteness of ν.

▶ Nearest neighbor makes finitely many mistakes on Xeasy.

▶ These mistakes contribute nothing to the asymptotic mistake rate.

▶ The ν-dominated adversary selects points from Xsmall at rate µ(Xsmall) < ε.

▶ By the law of large number, at most an ε-fraction of (xt)t comes from Xsmall.

▶ Thus, the asymptotic mistake rate is upper bounded by ε almost surely.

▶ Simultaneously apply upper bound for a countable collection of εk ↓ 0.

The asymptotic mistake rate is zero.

24 / 51
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Generalizing the argument

The argument works even if the clusters are not well-separated.

key property used

The nearest neighbor learner makes at most one mistake per

▶ We introduce the device of mutually-labeling sets U ⊂ X satisfying the property:

interpoint distances in U < distance to points with different labels.
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Mutually-labeling set

X

x
x′

margin(x)
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Generalizing argument

Definition (Mutually-labeling set)

A subset U ⊂ X is mutually labeling if for all x, x′ ∈ U :

ρ(x, x′)︸ ︷︷ ︸
interpoint distances

< margin(x)︸ ︷︷ ︸
distance to decision boundary

where margin(x) is the smallest distance between x and points with different labels:

margin(x) = inf{ρ(x, x) : f (x) ̸= f (x)}.
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Convergence result

setting

Let (X , ρ, ν) be a space equipped with a separable metric ρ and a finite Borel measure ν.

▶ Let f : X → Y have decision boundary ∂X := {margin(x) = 0}.
▶ Assume ∂X has ν-measure zero.

▶ e.g. The decision boundary is not a space-filling curve.

Theorem (Convergence of nearest neighbor)

The nearest neighbor rule achieves vanishing mistake rate against a ν-dominated adversary:

lim
T→∞

1
T

T∑
t=1

1{ŷt ̸= yt} = 0 a.s.
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Convergence result

Proof sketch.

▶ Sufficiently small open balls around non-boundary points are mutually-labeling.

▶ There is an a.e.-countable cover of X by these balls:

▶ Use separability of X and that ∂X has measure zero.

▶ Decompose X into Xeasy ∪ Xsmall like before:

▶ Xeasy is a finite union of these balls.

▶ Xsmall contains very little mass ν(Xsmall) < δ.

By prior argument, the mistake rate converges to zero almost surely.
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Discussion about this work

upshot

1. The nearest neighbor rule works fine against the ν-dominated adversary.

▶ Along the way, we obtained a nice analytic tool (mutually-labeling sets).

2. The argument generalizes to other certain types of online learners (see paper).

▶ We give a sufficient condition to online learning against a dominated adversary.

3. It is easy to convert asymptotic result to a rate of convergence (see paper).

▶ Quantify geometry of the the instance space and concept to be learned

▶ doubling dimension of space and Minkowski content of the boundary

▶ Quantify the strength of the adversary

▶ Smoothness rate in definition of a dominated adversary ε(δ)
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Further work
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Open questions

questions

▶ Does the ν-dominated adversary balance between generality and tractability well?

▶ Is smoothed online learning possible when there is benign label noise?
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Online learning with noise

online learning loop

For t = 1, 2, . . .
▶ receive instance xt
▶ predict label ŷt
▶ observe label yt ∼ PY |X=xt drawn from a fixed conditional distribution

▶ incur loss ℓ(xt , yt , ŷt)
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Online learning with noise

setting

Let data (x1, y1), . . . , (xt , yt) be adaptively generated:

▶ xt can depend arbitrarily on the past {(xτ , yτ )}t−1
τ=1

▶ yt ∼ PY |X=xt is conditionally independent given xt .

question

How should this data be used to construct a classifier?
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Online learning with noise: binary search on noise

x1 x2x3 x4 x5x6

x7x8x9

binary search sampling algorithm

For t = 1, 2, . . .

▶ x− ← max negative data point in data set

▶ x+ ← min positive data point in data set

▶ xt+1 ← mean(x−, x+)
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Online learning with noise: binary search on noise

two indistinguishable worlds

An unbounded adversary can select points in a way so that the learner can’t distinguish:

1. the labels are generated by a threshold function f (x) = 1{x ≥ θ}
2. the labels are drawn from Ber( 12 +∆)
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Online learning with noise: binary search on noise

Suppose labels are drawn from pure noise Ber( 12).

i.i.d. setting: for all time t, all intervals I simultaneously satisfy with high probability:

# positive data points in I
# data points in I

=
1
2
± O

(√
log t

# data points in I

)
.

▶ The class of all intervals has VC dimension 2.

sequential setting: at each time t, the interval I = [0, xt ] satisfies:

# positive data points in I
# data points in I

= 0,

where # data points in I ≈ 1
2 t.

▶ For a vast majority of intervals with < 1
2 t points, the average label is far from

1
2 .
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Challenge of online learning with noise

making patterns out of noise

In the sequential setting, the uniform law of large number does not apply

▶ there can be many balls/intervals whose average label is far from correct

▶ finite VC dimension does not imply sequential uniform Glivenko-Cantelli property
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The kn-nearest neighbor rule

kn-nearest neighbor algorithm

▶ remember all past data points {(x1, y1), . . . , (xn, yn)}
▶ given query x, find the kn most similar data point in memory

▶ predict using majority vote over kn nearest neighbors
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Online learning with noise

setting

Let X = [0, 1] be the unit interval and let PY |X=x = Ber( 12 +∆).

▶ Assume that∆ ∈ (0, 12) is bounded away from
1
2 .

Proposition

Suppose that kn = o(n). An unbounded adversary can adaptively generate a sequence (xn)n
such that the mistake rate of the kn-nearest neighbor rule never converges to zero:

lim inf
n→∞

1
n

n∑
j=1

1{ŷkn-NN(xn) ̸= 1} = Ω(1).
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Smoothed online learning with noise

question

How does the kn-nearest neighbor rule perform against a dominated adversary?
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Preliminary result

setting

Let X = [0, 1] be the unit interval and let PY |X=x = Ber( 12 +∆).

▶ Let the dominated adversary µ be smoothed at rate ε : [0, 1]→ [0, 1] so that:

ν(A) < δ =⇒ µ(A) < ε(δ).

Here, ν is the Lebesgue measure on X .

Theorem

Let kn = ω
(
(log ε−1( 1n))

2)
. The kn-nearest neighbor rule eventually makes no mistakes:

lim
n→∞

1{ŷkn-NN(xn) ̸= 1} = 0 a.s.
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1{ŷkn-NN(xn) ̸= 1} = 0 a.s.

42 / 51



Preliminary result

setting

Let X = [0, 1] be the unit interval and let PY |X=x = Ber( 12 +∆).

▶ Let the dominated adversary µ be smoothed at rate ε : [0, 1]→ [0, 1] so that:

ν(A) < δ =⇒ µ(A) < ε(δ).

Here, ν is the Lebesgue measure on X .

Theorem

Let kn = ω
(
(log ε−1( 1n))

2)
. The kn-nearest neighbor rule eventually makes no mistakes:

lim
n→∞

1{ŷkn-NN(xn) ̸= 1} = 0 a.s.

42 / 51



Proof idea

1. Define the finite family of simple intervals of depth ℓn ∈ N of the form:[
j02−ℓn , j12−ℓn

]
, j0, j1 ∈ N

▶ this class satisfies uniform law of large numbers because it is finite

2. Approximate any kn-nearest neighbor interval Ikn-NN by simple intervals:

Iinner ⊂ Ikn-NN ⊂ Iouter

▶ They can be chosen so that Iouter \ Iinner is a union of two dyadic intervals of length 2−ℓn

3. Iouter contains at least kn points: most are correctly labeled points (uniform LLN)

4. Iinner differ by very few points (smoothness + union bound over dyadic intervals)

5. The majority of points in Ikn-NN are correctly labeled

Our choice of kn leads to Pr(1{mistaken}) = o(n−1). Apply Borel-Cantelli.
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Big picture: smoothed analysis of online learning

Many applications of machine learning happen in the online setting:

▶ never-ending and non-i.i.d. stream of tasks

▶ models are updated incrementally

opportunity: we might not live in the worst-case adversarial setting

▶ Is the ν-dominated online learning setting realistic and tractable?

▶ If so, can we design and analyze algorithms specifically for this setting?

▶ e.g. a minimax optimal algorithm might not be optimal in this setting
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Related work: realizable online learning

learnability of a concept class

Let F be a concept class. When is it learnable under worst-case online setting?

▶ Littlestone (1988): if F has finite Littlestone dimension d, it is possible to make at

most d mistakes (uniform bound over all f ∈ F )
▶ Bousquet et al. (2021): if F does not have an infinite Littlestone tree, it is possible to

make finitely many mistakes (no uniform-bound over f ∈ F )

non-parametric online learning

Non-parametric classes have infinite Littlestone trees. Any deterministic learner makes a

mistake every round in the worst-case.

▶ We show that online learning is possible under mild smoothing of adversary.

▶ Finite Littlestone dimension not needed!
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Related work: uniform convergence

i.i.d. uniform convergence

▶ Balsubramani et al. (2019): uniform convergence for empirical conditional measures

▶ Let A,B ⊂ 2X have VC dimensions at most d. At time n, for all A ∈ A and B ∈ B:

∣∣µ̂n(A|B)− µ(A|B)
∣∣ < O

(√
d log(n)

# data points in B

)
w.h.p.

sequential uniform convergence

▶ Rakhlin et al. (2015): finite VC dimension is not sufficient for sequential uniform

convergence; finite Littlestone dimension necessary and sufficient.

▶ Let (Xn)n be an (Fn)n-stochastic process and µn the conditional law of Xn given Fn−1.

∀ε > 0, lim
N→∞

sup
µ

Pr

(
sup
n>N

sup
A∈A

∣∣∣∣∣µ̂n(A)−
1
n

n∑
k=1

µk(A)

∣∣∣∣∣ > ε

)
= 0
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Open questions: sequential uniform convergence

1. Sequential uniform convergence for (adaptive) sequences (An)n of classes An ⊂ 2X ?

∀ε > 0, lim
N→∞

sup
µ

Pr

(
sup
n>N

sup
A∈An

∣∣∣∣∣µ̂n(A)−
1
n

n∑
k=1

µk(A)

∣∣∣∣∣ > ε

)
= 0

2. Sequential uniform convergence for smoothed processes?

▶ Suppose A is well-approximated by some class B with finite Littlestone dimension:

sup
A

inf
B

ν
(
Bouter(A) \ Binner(A)

)
< δ.

Can smoothness extend uniform convergence for B to A? Does B need to be closed

under set operations, as with the dyadic cubes?
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Related work: smoothed online learning

existing results

▶ Haghtalab et al. (2022) and Block et al. (2022) show that in the smoothed online

setting where the adversary also controls labels, finite VC dimension is sufficient

▶ Assumes
1
σ -Lipschitz smoothing: µ(A) < 1

σ · ν(A) for all A ⊂ X measurable.

▶ Requires knowledge of underlying base measure ν.

our result

▶ Generalizes the Lipschitz adversary to dominated adversary.

▶ Does not require finite VC/Littlestone dimension.

▶ Does not need knowledge of base measure ν.

▶ But, labels are not chosen adaptively (chosen adversarially at beginning of time).

50 / 51



References

Akshay Balsubramani, Sanjoy Dasgupta, Shay Moran, et al. An adaptive nearest neighbor rule for

classification. Advances in Neural Information Processing Systems, 32, 2019.

Adam Block, Yuval Dagan, Noah Golowich, and Alexander Rakhlin. Smoothed online learning is as easy as

statistical learning. In Conference on Learning Theory, pages 1716–1786. PMLR, 2022.

Olivier Bousquet, Steve Hanneke, Shay Moran, Ramon van Handel, and Amir Yehudayoff. A theory of

universal learning. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,

pages 532–541, 2021.

Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis of online and differentially

private learning. Advances in Neural Information Processing Systems, 33:9203–9215, 2020.

Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis with adaptive adversaries. In

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 942–953. IEEE, 2022.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.

Machine learning, 2(4):285–318, 1988.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Stochastic and constrained

adversaries. arXiv preprint arXiv:1104.5070, 2011.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Sequential complexities and uniform martingale

laws of large numbers. Probability theory and related fields, 161:111–153, 2015.

Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex algorithm

usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.

51 / 51


	Further work
	Additional slides
	References

