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Weather forecasting problem

the weather channel’s task

Each day:

▶ receive current atmospheric data

▶ predict tomorrow’s weather

▶ observe actual weather

▶ incur ire of viewers if wrong
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Nearest neighbor for weather prediction

nearest neighbor algorithm

▶ remember all past conditions + weather outcomes

▶ predict weather according to the most similar conditions in memory
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The nearest neighbor rule

setting

Let (X , ρ) be a metric space.

nearest neighbor algorithm

▶ remember all past data points {(x1, y1), . . . , (xt , yt)}
▶ given query x, find most similar data point in memory

NN(x) = argmin
τ

ρ(x, xτ )

▶ predict using corresponding label

ŷ(x) = yNN(x)
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Nearest neighbor for weather prediction

rain

rain

rain

no rain

no rain

?no rain
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Behavior of online nearest neighbor

question

When is the nearest neighbor rule a reasonable online prediction strategy?
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Online learning setting

online learning loop

For t = 1, 2, . . .
▶ receive instance xt

▶ predict label ŷt
▶ observe true label yt
▶ incur loss ℓ(xt , yt , ŷt)
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Online learning setting

realizability assumption

The true labels are generated by some underlying function f : X → Y ,

yt = f (xt).
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Online learning setting

goal

Make fewer and fewer mistakes over time.

Formally:

erT :=
1
T

T∑
t=1

ℓ
(
xt , yt , ŷt

)
→ 0︸ ︷︷ ︸

achieve vanishing error rate

.
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Connection to regret

In the usual goal in the online learning setting is to achieve sublinear regret:

regretT :=

T∑
t=1

ℓ
(
xt , yt , ŷt

)
− inf

h∈H

T∑
t=1

ℓ
(
xt , yt , h(xt)

)
.

▶ In the realizable setting, ifH is non-parametric (e.g. all nearest neighbor classifiers),

no mistakes are made by any optimal h ∈ H on (x1, y1), . . . , (xT , yT ).

▶ Thus, sublinear regret is equivalent to vanishing error rate.
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Difficulty of realizable online learning

▶ The sequence of instances xt do not come i.i.d. from some distribution.

▶ In the worst-case, each xt is selected so that learner makes a mistake each time.
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Negative example: learning the sign function

goal

Learn the sign function f (x) :=

{
+ x ≥ 0
− x < 0

0− +

x1 x2x3

x2 looks at label of x1

example. A worst-case sequence where the nearest neighbor rule errs every time.

▶ The sequence alternate signs and the nearest neighbor of xt+1 is xt out of x1, . . . , xt .

▶ Mistake rate fails to go to zero despite the mistake set shrinking exponentially fast.
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Generalized negative result

setting

Let (X , ρ) be a totally bounded metric space and f : X → {−,+}.

Proposition (Non-convergence in the worst-case)

There is a sequence of instances (xt)t on which the nearest neighbor error rate is bounded
away from zero if and only if there is no positive separation between classes:

inf
f (x)̸=f (x′)

ρ(x, x′) = 0.

▶ Proof idea: can always find arbitrarily close pairs (x, x′) with opposite signs

▶ can select sequence so that x2t is closest to x2t−1, which has the opposite sign
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Implications of negative result

The worst-case adversary is too powerful—learning may not be possible in this setting.

▶ issue: the adversary can compute/construct test instances with arbitrary precision.

Saving grace: we may reasonably never expect to meet this worst-case adversary.

▶ a real adversary may be limited in:

▶ information,

▶ computational power,

▶ access to hard instances.
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This work

research question

Under what general conditions is realizable online learning possible?

▶ How much do we need to relax the worst-case adversary?
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Smoothed analysis of algorithms

Spielman and Teng (2004) initiated the analysis of algorithms beyond the worst-case.

▶ Worst-case analysis:

▶ Show that there exists at least one hard problem instance.

▶ This can fail to capture the actual behavior of the algorithm in practice.

▶ Non-worst-case analysis:

▶ Introduce a (probability) measure over problem instances.

▶ Show that almost all problems are easy (the hard instances have measure zero).

▶ Or, problems are easy with high probability/on average.
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Smoothed adversary for online learning

smoothed adversary loop

For t = 1, 2, . . .

▶ select test distribution µt over all instances X
▶ draw test instance xt ∼ µt

▶ observe (fully/partially) learner’s internal state after update

The smoothed online setting is also studied by Rakhlin et al. (2011); Haghtalab et al. (2020).
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Smoothed adversary for online learning

▶ The smoothed adversary framework interpolates between:

▶ the i.i.d. setting: µt is fixed for all time t

▶ the worst-case setting: µt may be point masses
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Example: Gaussian perturbation model

gaussian-smoothed adversary:

▶ adversary selects x

▶ test instance x is a perturbed version x + ξ where ξ ∼ N (0, σ2I), so:

µ = N (x̄, σ2I).
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Example: σ-smoothed adversary

σ-smoothed adversary:

▶ let ν be an underlying distribution over X

▶ the adversary can select any distribution µ satisfying:

µ(A) ≤ 1
σ
· ν(A),

for all A ⊂ X measurable.
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Dominated adversary

In this work, we generalize both by the ν-dominated adversary.

▶ intuition: the dominated adversary cannot place a constant probability mass on an

arbitrarily small region of problem instances.

▶ setting: let (X , ν) be a measure space.

Definition (Dominated adversary)

The measure ν uniformly dominates a familyM of probability distributions on X if for all
ε > 0 there exists δ > 0 such that:

ν(A) < δ =⇒ µ(A) < ε,

for all A ⊂ X measurable and distribution µ ∈ M. We say that adversary is ν-dominated if
at all times t it selects µt from a family of distributions uniformly dominated by ν.
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Example: learning labels for well-separated clusters

setting

Suppose that the instance space X consists of countably many well-separated clusters

▶ within-cluster distances≪ between-cluster distances

▶ the labels for each cluster is pure (all positive or all negative labels).

he nearest neighbor learner

akes at most one mistake made per cluster

the nearest neighbor learner

makes at most one mistake made per cluster

22 / 33



Example: learning labels for well-separated clusters

setting

Suppose that the instance space X consists of countably many well-separated clusters

▶ within-cluster distances≪ between-cluster distances

▶ the labels for each cluster is pure (all positive or all negative labels).

he nearest neighbor learner

akes at most one mistake made per cluster

the nearest neighbor learner

makes at most one mistake made per cluster

22 / 33



Example: learning labels for well-separated clusters

setting

Suppose that the instance space X consists of countably many well-separated clusters

▶ within-cluster distances≪ between-cluster distances

▶ the labels for each cluster is pure (all positive or all negative labels).

he nearest neighbor learner

akes at most one mistake made per cluster

the nearest neighbor learner

makes at most one mistake made per cluster

22 / 33



Example: learning labels for well-separated clusters

setting

Suppose that the instance space X consists of countably many well-separated clusters

▶ within-cluster distances≪ between-cluster distances

▶ the labels for each cluster is pure (all positive or all negative labels).

he nearest neighbor learner

akes at most one mistake made per cluster

the nearest neighbor learner

makes at most one mistake made per cluster

22 / 33



Example: learning labels for well-separated clusters

convergence result for well-separated clusters

Let ν be a finite measure on X .

The nearest neighbor learner achieves vanishing error

rate against any ν-dominated adversary.
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Example: learning labels for well-separated clusters

Proof sketch.

▶ Split X into two pieces Xeasy ∪ Xsmall, where:

▶ Xeasy is a finite union of clusters

▶ Xsmall contains very little mass ν(Xsmall) < δ.

▶ Such a decomposition exists for any δ > 0 by the finiteness of ν.

▶ Nearest neighbor can only make finitely many mistakes on Xeasy.

▶ These mistakes contribute nothing to the asymptotic mistake rate.

▶ The ν-dominated adversary selects points from Xsmall at rate µ(Xsmall) < ε.

▶ By the law of large number, at most an ε-fraction of (xt)t comes from Xsmall.

▶ Thus, the asymptotic mistake rate is upper bounded by ε almost surely.

▶ Simultaneously apply upper bound for a countable collection of εk ↓ 0.

The asymptotic mistake rate is zero.

24 / 33
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Generalizing the argument

The argument works even if the clusters are not well-separated.

key property used

The nearest neighbor learner makes at most one mistake per

▶ We introduce the device of mutually-labeling sets U ⊂ X satisfying the property:

interpoint distances in U < distance to points with different labels.
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Mutually-labeling set

X

x
x′

margin(x)
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Generalizing argument

Definition (Mutually-labeling set)

A subset U ⊂ X is mutually labeling if for all x, x′ ∈ U :

ρ(x, x′)︸ ︷︷ ︸
interpoint distances

< margin(x)︸ ︷︷ ︸
distance to decision boundary

where margin(x) is the smallest distance between x and points with different labels:

margin(x) = inf{ρ(x, x) : f (x) ̸= f (x)}.
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Convergence result

setting

Let (X , ρ, ν) be a space equipped with a separable metric ρ and a finite Borel measure ν.

▶ Let f : X → Y have decision boundary ∂X := {margin(x) = 0}.
▶ Assume ∂X has ν-measure zero.

▶ e.g. The decision boundary is not a space-filling curve.

Theorem (Convergence of nearest neighbor)

The nearest neighbor rule achieves vanishing mistake rate against a ν-dominated adversary:

lim
T→∞

1
T

T∑
t=1

1{ŷt ̸= yt} = 0 a.s.
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Convergence result

Proof sketch.

▶ Sufficiently small open balls around non-boundary points are mutually-labeling.

▶ There is an a.e.-countable cover of X by these balls:

▶ Use separability of X and that ∂X has measure zero.

▶ Decompose X into Xeasy ∪ Xsmall like before:

▶ Xeasy is a finite union of these balls.

▶ Xsmall contains very little mass ν(Xsmall) < δ.

By prior argument, the mistake rate converges to zero almost surely.
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Discussion about this work

upshot

1. The nearest neighbor rule works fine against the ν-dominated adversary.

▶ Along the way, we obtained a nice analytic tool (mutually-labeling sets).

2. The argument generalizes to other certain types of online learners (see paper).

▶ We give a sufficient condition to online learning against a dominated adversary.

questions

▶ Does the ν-dominated adversary balance between generality and tractability well?

▶ Can the arguments still hold when there is benign label noise?

▶ What do meaningful rates of convergence look like?
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Big picture: smoothed analysis for online learning

Many applications of machine learning happen in the online setting:

▶ never-ending and non-i.i.d. stream of tasks

▶ models are updated incrementally

opportunity: we might not live in the worst-case adversarial setting

▶ Is the ν-dominated online learning setting realistic and tractable?

▶ If so, can we design and analyze algorithms specifically for this setting?

▶ e.g. a minimax optimal algorithm might not be optimal in this setting
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