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Weather forecasting problem

THE WEATHER CHANNEL’S TASK
Each day:
» receive current atmospheric data
» predict tomorrow’s weather

» observe actual weather

» incur ire of viewers if wrong
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Nearest neighbor for weather prediction
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Nearest neighbor for weather prediction

NEAREST NEIGHBOR ALGORITHM
» remember all past conditions + weather outcomes

» predict weather according to the most similar conditions in memory
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The nearest neighbor rule

SETTING
Let (X, p) be a metric space.

4/33



The nearest neighbor rule

SETTING
Let (X, p) be a metric space.

NEAREST NEIGHBOR ALGORITHM

/33



The nearest neighbor rule

SETTING
Let (X, p) be a metric space.

NEAREST NEIGHBOR ALGORITHM

» remember all past data points {(x1, y1), ..., (%, v¢)}

4/33



The nearest neighbor rule

SETTING
Let (X, p) be a metric space.

NEAREST NEIGHBOR ALGORITHM
» remember all past data points {(x1, y1), ..., (%, v¢)}
» given query x, find most similar data point in memory

NN(x) = argmin p(x, x;)

T

4/33



The nearest neighbor rule

SETTING
Let (X, p) be a metric space.

NEAREST NEIGHBOR ALGORITHM
» remember all past data points {(x1, y1), ..., (%, v¢)}
» given query x, find most similar data point in memory

NN(x) = argmin p(x, x;)

T

» predict using corresponding label

Y(x) = yNN(x)
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Behavior of online nearest neighbor

QUESTION
When is the nearest neighbor rule a reasonable online prediction strategy?

6/33



Online learning setting

ONLINE LEARNING LOOP
Fort=1,2,...

» receive instance x;
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Online learning setting

ONLINE LEARNING LOOP
Fort=1,2,...
» receive instance x;
» predict label j;

» observe true label y;

» incur loss /(x;, i, )
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Online learning setting

REALIZABILITY ASSUMPTION
The true labels are generated by some underlying function f : X — ),

ye = f(x).
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Online learning setting

GOAL
Make fewer and fewer mistakes over time.
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Online learning setting

GOAL
Make fewer and fewer mistakes over time. Formally:

T
1
err = ?Zg(xt,yt,j/t) — 0.
t=1

achieve vanishing error rate
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Connection to regret

In the usual goal in the online learning setting is to achieve sublinear regret:
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Connection to regret

In the usual goal in the online learning setting is to achieve sublinear regret:
T T
regret, 1= Z €(xt, Vi, j/t) - ﬁg{ Zﬁ(xt, Vi, h(xt)).
=1 =1

» In the realizable setting, if H is non-parametric (e.g. all nearest neighbor classifiers),
no mistakes are made by any optimal h € H on (x1, 1), ..., (x1, y1).

» Thus, sublinear regret is equivalent to vanishing error rate.
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Difficulty of realizable online learning

» The sequence of instances x; do not come i.i.d. from some distribution.
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Difficulty of realizable online learning

» The sequence of instances x; do not come i.i.d. from some distribution.

» |n the worst-case, each x; is selected so that learner makes a mistake each time.
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Negative example: learning the sign function
GOAL

>0
Learn the sign function f(x) := {+ t e

— x<0
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Negative example: learning the sign function

GOAL
. . + x20
Learn the sign function f(x) :=
- x<0
/’// \\\\s
X1 X3 X2
- 0 +

EXAMPLE. A worst-case sequence

» The sequence alternate sign

where the nearest neighbor rule errs every time.
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Negative example: learning the sign function

GOAL
{—l— x>0

Learn the sign function f(x) :=
- x<0

}< - ~
X1 X2

[ ]

[ ]

0 +

EXAMPLE. A worst-case sequence where the nearest neighbor rule errs every time.

» The sequence alternate signs and the nearest neighbor of x;41 is x; out of xy, ..

» Mistake rate fails to go to zero despite the mistake set shrinking exponentially fast.

<y Xt.
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Generalized negative result

SETTING
Let (X, p) be a totally bounded metric space and f : X — {—,+}.

Proposition (Non-convergence in the worst-case)

There is a sequence of instances (x;); on which the nearest neighbor error rate is bounded
away from zero if and only if there is no positive separation between classes:

inf  p(x,x') =o0.
FE#Af(K) (%)
» Proof idea: can always find arbitrarily close pairs (x, x") with opposite signs

can select sequence so that xy; is closest to xy;—1, which has the opposite sign
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Implications of negative result

The worst-case adversary is too powerful—learning may not be possible in this setting.

» 1ssuUE: the adversary can compute/construct test instances with arbitrary precision.
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Implications of negative result

The worst-case adversary is too powerful—learning may not be possible in this setting.

» 1ssuUE: the adversary can compute/construct test instances with arbitrary precision.

Saving grace: we may reasonably never expect to meet this worst-case adversary.
» areal adversary may be limited in:

information,
computational power,
access to hard instances.
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This work

RESEARCH QUESTION
Under what general conditions is realizable online learning possible?
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This work

RESEARCH QUESTION
Under what general conditions is realizable online learning possible?

» How much do we need to relax the worst-case adversary?
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Smoothed analysis of algorithms
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Smoothed analysis of algorithms

Spielman and Teng (2004) initiated the analysis of algorithms beyond the worst-case.
» Worst-case analysis:

Show that there exists at least one hard problem instance.
This can fail to capture the actual behavior of the algorithm in practice.

» Non-worst-case analysis:

Introduce a (probability) measure over problem instances.
Show that almost all problems are easy (the hard instances have measure zero).

» Or, problems are easy with high probability/on average.
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Smoothed adversary for online learning

SMOOTHED ADVERSARY LOOP
Fort=1,2,...
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Smoothed adversary for online learning

SMOOTHED ADVERSARY LOOP
Fort=1,2,...
» select test distribution p; over all instances X
» draw test instance x; ~ f;

» observe (fully/partially) learner’s internal state after update

The smoothed online setting is also studied by Rakhlin et al. (2011); Haghtalab et al. (2020).
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Smoothed adversary for online learning

» The smoothed adversary framework interpolates between:
the i.i.d. setting: i, is fixed for all time ¢
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Smoothed adversary for online learning

» The smoothed adversary framework interpolates between:

the i.i.d. setting: i, is fixed for all time ¢
the worst-case setting: 11, may be point masses
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Example: Gaussian perturbation model

GAUSSIAN-SMOOTHED ADVERSARY:

» adversary selects X
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Example: Gaussian perturbation model

GAUSSIAN-SMOOTHED ADVERSARY:
» adversary selects X

» test instance x is a perturbed version X + £ where & ~ N (0, 0°I), so:

p=N(x,c%I).
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Example: o-smoothed adversary

0-SMOOTHED ADVERSARY:

» let v be an underlying distribution over X
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Example: o-smoothed adversary

0-SMOOTHED ADVERSARY:
» let v be an underlying distribution over X

» the adversary can select any distribution p satisfying:

u(A) < —-v(4),

SH

for all A C X measurable.
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Dominated adversary
In this work, we generalize both by the v-dominated adversary.

» INTUITION: the dominated adversary cannot place a constant probability mass on an
arbitrarily small region of problem instances.
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Dominated adversary

In this work, we generalize both by the v-dominated adversary.

» INTUITION: the dominated adversary cannot place a constant probability mass on an
arbitrarily small region of problem instances.

» SETTING: let (X, ) be a measure space.

Definition (Dominated adversary)

The measure v uniformly dominates a family M of probability distributions on X if for all
€ > 0 there exists 6 > 0 such that:

v(A) <o = u(A)<e,

forall A C X measurable and distribution . € M. We say that adversary is v-dominated if
at all times t it selects p; from a family of distributions uniformly dominated by v.
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Example: learning labels for well-separated clusters

SETTING
Suppose that the instance space X’ consists of countably many well-separated clusters

» within-cluster distances < between-cluster distances

» the labels for each cluster is pure (all positive or all negative labels).

THE NEAREST NEIGHBOR LEARNER
makes at most one mistake made per cluster
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Example: learning labels for well-separated clusters

CONVERGENCE RESULT FOR WELL-SEPARATED CLUSTERS
Let v be a finite measure on X.
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Example: learning labels for well-separated clusters

CONVERGENCE RESULT FOR WELL-SEPARATED CLUSTERS
Let v be a finite measure on X'. The nearest neighbor learner achieves vanishing error
rate against any v-dominated adversary.
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Proof sketch.
» Split X" into two pieces Xeasy U Xgmanl, where:
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Example: learning labels for well-separated clusters

Proof sketch.
» Split X" into two pieces Xeasy U Xgmanl, where:

Xeasy is a finite union of clusters
Xsman contains very little mass v/(Xgpan) < 0.

» Such a decomposition exists for any § > 0 by the finiteness of v.

» Nearest neighbor can only make finitely many mistakes on Xy

These mistakes contribute nothing to the asymptotic mistake rate.

» The v-dominated adversary selects points from X,y at rate pu(Xsman) < €.

By the law of large number, at most an e-fraction of (x;); comes from Xy

» Thus, the asymptotic mistake rate is upper bounded by ¢ almost surely.
Simultaneously apply upper bound for a countable collection of € | 0.

The asymptotic mistake rate is zero.

24/33



Generalizing the argument

The argument works even if the clusters are not well-separated.
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Generalizing the argument

The argument works even if the clusters are not well-separated.

KEY PROPERTY USED
The nearest neighbor learner makes at most one mistake per mutually-labeling set.

» We introduce the device of mutually-labeling sets U C X satisfying the property:

interpoint distances in U < distance to points with different labels.
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Mutually-labeling set

26/33



Generalizing argument

Definition (Mutually-labeling set)
A subset U C X is mutually labeling if for all x,x" € U:

plx,x') < margin(x)
N—— —

interpoint distances distance to decision boundary

where margin(x) is the smallest distance between x and points with different labels:

margin(x) = inf{p(x. %) : f(x) # f(®)}.
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Convergence result
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Convergence result

SETTING
Let (X, p,v) be a space equipped with a separable metric p and a finite Borel measure v.

» Let f: X — ) have decision boundary X := {margin(x) = 0}.
» Assume OX has v-measure zero.

e.g. The decision boundary is not a space-filling curve.

Theorem (Convergence of nearest neighbor)

The nearest neighbor rule achieves vanishing mistake rate against a v-dominated adversary:
T

.1 .
Tl;rgo T Z {y: #y} =0 as.

=1
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Convergence result

Proof sketch.
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Convergence result

Proof sketch.

» Sufficiently small open balls around non-boundary points are mutually-labeling.

» There is an a.e.-countable cover of X" by these balls:
Use separability of X and that OX has measure zero.

» Decompose X into Xeasy U Xgman like before:

Xeasy is a finite union of these balls.
Xsman contains very little mass v/(Xgpan) < 0.

By prior argument, the mistake rate converges to zero almost surely. O
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Discussion about this work

UPSHOT
1. The nearest neighbor rule works fine against the v-dominated adversary.
Along the way, we obtained a nice analytic tool (mutually-labeling sets).

2. The argument generalizes to other certain types of online learners (see paper).

We give a sufficient condition to online learning against a dominated adversary.

QUESTIONS
» Does the v-dominated adversary balance between generality and tractability well?
» Can the arguments still hold when there is benign label noise?

» What do meaningful rates of convergence look like?
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Big picture: smoothed analysis for online learning

Many applications of machine learning happen in the online setting:
» never-ending and non-i.i.d. stream of tasks

» models are updated incrementally

OPPORTUNITY: we might not live in the worst-case adversarial setting

» Is the v-dominated online learning setting realistic and tractable?
» If so, can we design and analyze algorithms specifically for this setting?

e.g. a minimax optimal algorithm might not be optimal in this setting
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