Nearest neighbor for realizable online classification

Sanjoy Dasgupta and Geelon So (2023)

Geelon So, agso@eng.ucsd.edu EnCORE Student Social — Mar 20, 2023

THE WEATHER CHANNEL'S TASK

THE WEATHER CHANNEL'S TASK

Each day:

▶ receive current atmospheric data

THE WEATHER CHANNEL'S TASK

Each day:

- ▶ receive current atmospheric data
- ▶ predict tomorrow's weather

THE WEATHER CHANNEL'S TASK

Each day:

- ▶ receive current atmospheric data
- predict tomorrow's weather
- ► observe actual weather

THE WEATHER CHANNEL'S TASK

Each day:

- receive current atmospheric data
- predict tomorrow's weather
- ► observe actual weather
- ► incur ire of viewers if wrong

NEAREST NEIGHBOR ALGORITHM

remember all past conditions + weather outcomes

NEAREST NEIGHBOR ALGORITHM

- remember all past conditions + weather outcomes
- > predict weather according to the most similar conditions in memory

SETTING Let (\mathcal{X}, ρ) be a metric space.

SETTING Let (\mathcal{X}, ρ) be a metric space.

NEAREST NEIGHBOR ALGORITHM

SETTING Let (\mathcal{X}, ρ) be a metric space.

NEAREST NEIGHBOR ALGORITHM

• remember all past data points $\{(x_1, y_1), \ldots, (x_t, y_t)\}$

SETTING Let (\mathcal{X},ρ) be a metric space.

NEAREST NEIGHBOR ALGORITHM

- ▶ remember all past data points $\{(x_1, y_1), \dots, (x_t, y_t)\}$
- ▶ given query *x*, find most similar data point in memory

$$\mathrm{NN}(x) = \operatorname*{arg\,min}_{ au} \,
ho(x, x_{ au})$$

SETTING Let (\mathcal{X},ρ) be a metric space.

NEAREST NEIGHBOR ALGORITHM

- ▶ remember all past data points $\{(x_1, y_1), \dots, (x_t, y_t)\}$
- ▶ given query *x*, find most similar data point in memory

$$\mathrm{NN}(x) = \operatorname*{arg\,min}_{ au} \
ho(x, x_{ au})$$

predict using corresponding label

$$\hat{y}(x) = y_{\mathrm{NN}(x)}$$

Behavior of online nearest neighbor

QUESTION

When is the *nearest neighbor rule* a reasonable **online prediction strategy**?

- For t = 1, 2, ...
 - \blacktriangleright receive instance x_t

- For t = 1, 2, ...
 - \blacktriangleright receive instance x_t
 - **>** predict label \hat{y}_t

- For t = 1, 2, ...
 - **receive** instance x_t
 - **>** predict label \hat{y}_t
 - **• observe** true label y_t

- For t = 1, 2, ...
 - **receive** instance x_t
 - **>** predict label \hat{y}_t
 - **• observe** true label y_t
 - ▶ incur loss $\ell(x_t, y_t, \hat{y}_t)$

REALIZABILITY ASSUMPTION

The true labels are generated by some underlying function $f : \mathcal{X} \to \mathcal{Y}$,

 $y_t = f(x_t).$

GOAL

Make fewer and fewer mistakes over time.

GOAL

Make fewer and fewer mistakes over time. Formally:

$$\underbrace{\operatorname{er}_T := \frac{1}{T} \sum_{t=1}^T \ell(x_t, y_t, \hat{y}_t) \to 0}_{\text{achieve vanishing error rate}}.$$

Connection to regret

In the usual goal in the online learning setting is to achieve sublinear regret:

$$\operatorname{regret}_T := \sum_{t=1}^T \ell(x_t, y_t, \hat{y}_t) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(x_t, y_t, h(x_t)).$$

Connection to regret

In the usual goal in the online learning setting is to achieve sublinear regret:

$$\operatorname{regret}_T := \sum_{t=1}^T \ell(x_t, y_t, \hat{y}_t) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(x_t, y_t, h(x_t)).$$

▶ In the realizable setting, if \mathcal{H} is non-parametric (e.g. all nearest neighbor classifiers), no mistakes are made by any optimal $h \in \mathcal{H}$ on $(x_1, y_1), \ldots, (x_T, y_T)$.

Connection to regret

In the usual goal in the online learning setting is to achieve sublinear regret:

$$\operatorname{regret}_T := \sum_{t=1}^T \ell(x_t, y_t, \hat{y}_t) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(x_t, y_t, h(x_t)).$$

- ▶ In the realizable setting, if \mathcal{H} is non-parametric (e.g. all nearest neighbor classifiers), no mistakes are made by any optimal $h \in \mathcal{H}$ on $(x_1, y_1), \ldots, (x_T, y_T)$.
- ▶ Thus, sublinear regret is equivalent to vanishing error rate.

Difficulty of realizable online learning

• The sequence of instances x_t do not come i.i.d. from some distribution.

Difficulty of realizable online learning

- \blacktriangleright The sequence of instances x_t do not come i.i.d. from some distribution.
- \blacktriangleright In the worst-case, each x_t is selected so that learner makes a mistake each time.

Negative example: learning the sign function

GOAL

Learn the sign function $f(x) := \begin{cases} + & x \ge 0 \\ - & x < 0 \end{cases}$

Negative example: learning the sign function

GOAL

Learn the sign function $f(x) := \begin{cases} + & x \ge 0 \\ - & x < 0 \end{cases}$

EXAMPLE. A worst-case sequence where the nearest neighbor rule errs every time.

Negative example: learning the sign function

EXAMPLE. A worst-case sequence where the nearest neighbor rule errs every time.
Negative example: learning the sign function

Learn the sign function $f(x) := \begin{cases} + & x \ge 0 \\ - & x < 0 \end{cases}$

EXAMPLE. A worst-case sequence where the nearest neighbor rule errs every time.

• The sequence alternate signs and the nearest neighbor of x_{t+1} is x_t out of x_1, \ldots, x_t .

Negative example: learning the sign function

GOAL

Learn the sign function $f(x) := \begin{cases} + & x \ge 0 \\ - & x < 0 \end{cases}$

EXAMPLE. A worst-case sequence where the nearest neighbor rule errs every time.

- The sequence alternate signs and the nearest neighbor of x_{t+1} is x_t out of x_1, \ldots, x_t .
- Mistake rate fails to go to zero despite the mistake set shrinking exponentially fast.

Generalized negative result

SETTING

Let (\mathcal{X}, ρ) be a totally bounded metric space and $f : \mathcal{X} \to \{-, +\}$.

Proposition (Non-convergence in the worst-case)

There is a sequence of instances $(x_t)_t$ on which the nearest neighbor error rate is bounded away from zero if and only if there is no positive separation between classes:

$$\inf_{f(x)\neq f(x')} \rho(x,x') = 0.$$

Proof idea: can always find arbitrarily close pairs (x, x') with opposite signs
can select sequence so that x_{2t} is closest to x_{2t-1}, which has the opposite sign

The worst-case adversary is too powerful—learning may not be possible in this setting.

ISSUE: the adversary can compute/construct test instances with arbitrary precision.

The worst-case adversary is too powerful—learning may not be possible in this setting.

ISSUE: the adversary can compute/construct test instances with arbitrary precision.

The worst-case adversary is too powerful—learning may not be possible in this setting.

ISSUE: the adversary can compute/construct test instances with arbitrary precision.

- ▶ a real adversary may be limited in:
 - ▶ information,

The worst-case adversary is too powerful-learning may not be possible in this setting.

ISSUE: the adversary can compute/construct test instances with arbitrary precision.

- ▶ a real adversary may be limited in:
 - ▶ information,
 - computational power,

The worst-case adversary is too powerful-learning may not be possible in this setting.

ISSUE: the adversary can compute/construct test instances with arbitrary precision.

- ▶ a real adversary may be limited in:
 - ▶ information,
 - computational power,
 - > access to hard instances.

This work

RESEARCH QUESTION

Under what general conditions is realizable online learning possible?

This work

RESEARCH QUESTION

Under what general conditions is realizable online learning possible?

▶ How much do we need to relax the worst-case adversary?

Spielman and Teng (2004) initiated the analysis of algorithms beyond the worst-case.

Spielman and Teng (2004) initiated the analysis of algorithms beyond the worst-case.

► Worst-case analysis:

> Show that there exists at least one hard problem instance.

Spielman and Teng (2004) initiated the analysis of algorithms beyond the worst-case.

- ► Worst-case analysis:
 - > Show that there exists at least one hard problem instance.
 - > This can fail to capture the actual behavior of the algorithm in practice.

Spielman and Teng (2004) initiated the analysis of algorithms beyond the worst-case.

- ► Worst-case analysis:
 - > Show that there exists at least one hard problem instance.
 - > This can fail to capture the actual behavior of the algorithm in practice.

► Non-worst-case analysis:

> Introduce a (probability) measure over problem instances.

Spielman and Teng (2004) initiated the analysis of algorithms beyond the worst-case.

► Worst-case analysis:

- > Show that there exists at least one hard problem instance.
- > This can fail to capture the actual behavior of the algorithm in practice.

► Non-worst-case analysis:

- > Introduce a (probability) measure over problem instances.
- > Show that almost all problems are easy (the hard instances have measure zero).
 - Or, problems are easy with high probability/on average.

SMOOTHED ADVERSARY LOOP

For t = 1, 2, ...

SMOOTHED ADVERSARY LOOP

For t = 1, 2, ...

• select test distribution μ_t over all instances \mathcal{X}

SMOOTHED ADVERSARY LOOP

For t = 1, 2, ...

- select test distribution μ_t over all instances \mathcal{X}
- draw test instance $x_t \sim \mu_t$

SMOOTHED ADVERSARY LOOP

For t = 1, 2, ...

• select test distribution μ_t over all instances \mathcal{X}

- draw test instance $x_t \sim \mu_t$
- **observe** (fully/partially) learner's internal state after update

SMOOTHED ADVERSARY LOOP

For t = 1, 2, ...

• select test distribution μ_t over all instances \mathcal{X}

- draw test instance $x_t \sim \mu_t$
- **observe** (fully/partially) learner's internal state after update

The smoothed online setting is also studied by Rakhlin et al. (2011); Haghtalab et al. (2020).

The smoothed adversary framework interpolates between:
the i.i.d. setting: µt is fixed for all time t

▶ The smoothed adversary framework interpolates between:

- **b** the i.i.d. setting: μ_t is fixed for all time *t*
- **b** the worst-case setting: μ_t may be point masses

Example: Gaussian perturbation model

GAUSSIAN-SMOOTHED ADVERSARY:

 \blacktriangleright adversary selects \overline{x}

Example: Gaussian perturbation model

GAUSSIAN-SMOOTHED ADVERSARY:

- \blacktriangleright adversary selects \overline{x}
- test instance *x* is a perturbed version $\overline{x} + \xi$ where $\xi \sim \mathcal{N}(0, \sigma^2 I)$, so:

$$\mu = \mathcal{N}(\bar{x}, \sigma^2 I).$$

Example: σ -smoothed adversary

$\sigma\textsc{-smoothed}$ adversary:

 \blacktriangleright let ν be an underlying distribution over \mathcal{X}

Example: σ -smoothed adversary

$\sigma\textsc{-smoothed}$ adversary:

- $\blacktriangleright \quad \text{let } \nu \text{ be an underlying distribution over } \mathcal{X}$
- the adversary can select any distribution μ satisfying:

$$\mu(A) \le \frac{1}{\sigma} \cdot \nu(A),$$

for all $A \subset \mathcal{X}$ measurable.

In this work, we generalize both by the ν -dominated adversary.

► INTUITION: the dominated adversary cannot place a constant probability mass on an arbitrarily small region of problem instances.

In this work, we generalize both by the ν -dominated adversary.

- ► INTUITION: the dominated adversary cannot place a constant probability mass on an arbitrarily small region of problem instances.
- **SETTING:** let (\mathcal{X}, ν) be a measure space.

In this work, we generalize both by the ν -dominated adversary.

- ► INTUITION: the dominated adversary cannot place a constant probability mass on an arbitrarily small region of problem instances.
- **SETTING:** let (\mathcal{X}, ν) be a measure space.

Definition (Dominated adversary)

The measure ν uniformly dominates a family \mathcal{M} of probability distributions on \mathcal{X} if for all $\varepsilon > 0$ there exists $\delta > 0$ such that:

$$\nu(A) < \delta \quad \Longrightarrow \quad \mu(A) < \varepsilon,$$

for all $A \subset \mathcal{X}$ measurable and distribution $\mu \in \mathcal{M}$.

In this work, we generalize both by the ν -dominated adversary.

- ► INTUITION: the dominated adversary cannot place a constant probability mass on an arbitrarily small region of problem instances.
- **SETTING:** let (\mathcal{X}, ν) be a measure space.

Definition (Dominated adversary)

The measure ν uniformly dominates a family \mathcal{M} of probability distributions on \mathcal{X} if for all $\varepsilon > 0$ there exists $\delta > 0$ such that:

$$\nu(A) < \delta \quad \Longrightarrow \quad \mu(A) < \varepsilon,$$

for all $A \subset \mathcal{X}$ measurable and distribution $\mu \in \mathcal{M}$. We say that adversary is ν -dominated if at all times t it selects μ_t from a family of distributions uniformly dominated by ν .

SETTING

Suppose that the instance space $\mathcal X$ consists of countably many well-separated clusters

SETTING

Suppose that the instance space ${\mathcal X}$ consists of countably many well-separated clusters

 \blacktriangleright within-cluster distances \ll between-cluster distances

SETTING

Suppose that the instance space ${\mathcal X}$ consists of countably many well-separated clusters

- ▶ within-cluster distances ≪ between-cluster distances
- the labels for each cluster is pure (all positive or all negative labels).

SETTING

Suppose that the instance space $\mathcal X$ consists of countably many well-separated clusters

- ▶ within-cluster distances ≪ between-cluster distances
- the labels for each cluster is pure (all positive or all negative labels).

CONVERGENCE RESULT FOR WELL-SEPARATED CLUSTERS

Let ν be a finite measure on \mathcal{X} .

CONVERGENCE RESULT FOR WELL-SEPARATED CLUSTERS

Let ν be a finite measure on \mathcal{X} . The nearest neighbor learner achieves vanishing error rate against any ν -dominated adversary.
Proof sketch.

▶ Split \mathcal{X} into two pieces $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$, where:

- ▶ Split X into two pieces $X_{easy} \cup X_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is a finite union of clusters

- ▶ Split X into two pieces $X_{easy} \cup X_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is a finite union of clusters
 - $\triangleright \ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$

- ▶ Split X into two pieces $X_{easy} \cup X_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is a finite union of clusters
 - $\triangleright \ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .

- ▶ Split X into two pieces $X_{easy} \cup X_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is a finite union of clusters
 - $\triangleright \ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .
- ▶ Nearest neighbor can only make finitely many mistakes on \mathcal{X}_{easy} .

- ▶ Split X into two pieces $X_{easy} \cup X_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is a finite union of clusters
 - $\triangleright \ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .
- ▶ Nearest neighbor can only make finitely many mistakes on \mathcal{X}_{easy} .
 - These mistakes contribute nothing to the asymptotic mistake rate.

- ▶ Split X into two pieces $X_{easy} \cup X_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is a finite union of clusters
 - $\triangleright \ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .
- Nearest neighbor can only make finitely many mistakes on X_{easy}.
 These mistakes contribute nothing to the asymptotic mistake rate.
- The ν -dominated adversary selects points from $\mathcal{X}_{\text{small}}$ at rate $\mu(\mathcal{X}_{\text{small}}) < \varepsilon$.

- ▶ Split X into two pieces $X_{easy} \cup X_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is a finite union of clusters
 - $\triangleright \ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .
- Nearest neighbor can only make finitely many mistakes on X_{easy}.
 These mistakes contribute nothing to the asymptotic mistake rate.
- ► The ν-dominated adversary selects points from X_{small} at rate μ(X_{small}) < ε.
 ► By the law of large number, at most an ε-fraction of (x_t)_t comes from X_{small}.

- ▶ Split X into two pieces $X_{easy} \cup X_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is a finite union of clusters
 - $\triangleright \ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .
- Nearest neighbor can only make finitely many mistakes on X_{easy}.
 These mistakes contribute nothing to the asymptotic mistake rate.
- ► The ν-dominated adversary selects points from X_{small} at rate μ(X_{small}) < ε.
 ► By the law of large number, at most an ε-fraction of (x_t)_t comes from X_{small}.
- Thus, the asymptotic mistake rate is upper bounded by ε almost surely.

- ▶ Split X into two pieces $X_{easy} \cup X_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is a finite union of clusters
 - $\triangleright \ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .
- Nearest neighbor can only make finitely many mistakes on X_{easy}.
 These mistakes contribute nothing to the asymptotic mistake rate.
- ► The ν-dominated adversary selects points from X_{small} at rate μ(X_{small}) < ε.
 ► By the law of large number, at most an ε-fraction of (x_t)_t comes from X_{small}.
- $\blacktriangleright\,$ Thus, the asymptotic mistake rate is upper bounded by ε almost surely.
 - Simultaneously apply upper bound for a countable collection of $\varepsilon_k \downarrow 0$.

Proof sketch.

- ▶ Split X into two pieces $X_{easy} \cup X_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is a finite union of clusters
 - $\triangleright \ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .
- Nearest neighbor can only make finitely many mistakes on X_{easy}.
 These mistakes contribute nothing to the asymptotic mistake rate.
- ► The ν-dominated adversary selects points from X_{small} at rate μ(X_{small}) < ε.
 ► By the law of large number, at most an ε-fraction of (x_t)_t comes from X_{small}.
- Thus, the asymptotic mistake rate is upper bounded by *ε* almost surely.
 Simultaneously apply upper bound for a countable collection of *ε_k* ↓ 0.

The asymptotic mistake rate is zero.

Generalizing the argument

The argument works even if the clusters are not well-separated.

Generalizing the argument

The argument works even if the clusters are not well-separated.

KEY PROPERTY USED

The nearest neighbor learner makes at most one mistake per cluster.

The argument works even if the clusters are not well-separated.

KEY PROPERTY USED

The nearest neighbor learner makes at most one mistake per mutually-labeling set.

• We introduce the device of **mutually-labeling sets** $U \subset \mathcal{X}$ satisfying the property:

interpoint distances in U < distance to points with different labels.

Mutually-labeling set

Generalizing argument

Definition (Mutually-labeling set)

A subset $U \subset \mathcal{X}$ is mutually labeling if for all $x, x' \in U$:

where margin(x) is the smallest distance between x and points with different labels:

 $\operatorname{margin}(x) = \inf \{ \rho(x, \overline{x}) : f(x) \neq f(\overline{x}) \}.$

SETTING

Let (\mathcal{X}, ρ, ν) be a space equipped with a separable metric ρ and a finite Borel measure ν .

SETTING

Let (\mathcal{X}, ρ, ν) be a space equipped with a separable metric ρ and a finite Borel measure ν .

• Let $f : \mathcal{X} \to \mathcal{Y}$ have decision boundary $\partial \mathcal{X} := { margin(x) = 0 }$.

SETTING

Let (\mathcal{X}, ρ, ν) be a space equipped with a separable metric ρ and a finite Borel measure ν .

- Let $f : \mathcal{X} \to \mathcal{Y}$ have decision boundary $\partial \mathcal{X} := { margin(x) = 0 }$.
- Assume $\partial \mathcal{X}$ has ν -measure zero.
 - ▶ e.g. The decision boundary is not a space-filling curve.

SETTING

Let (\mathcal{X}, ρ, ν) be a space equipped with a separable metric ρ and a finite Borel measure ν .

- Let $f : \mathcal{X} \to \mathcal{Y}$ have decision boundary $\partial \mathcal{X} := { margin(x) = 0 }$.
- Assume $\partial \mathcal{X}$ has ν -measure zero.
 - ▶ e.g. The decision boundary is not a space-filling curve.

Theorem (Convergence of nearest neighbor)

The nearest neighbor rule achieves vanishing mistake rate against a ν -dominated adversary:

$$\lim_{T\to\infty} \frac{1}{T} \sum_{t=1}^T \mathbb{1}\{\hat{y}_t \neq y_t\} = 0 \quad \text{a.s.}$$

Proof sketch.

Sufficiently small open balls around non-boundary points are mutually-labeling.

- Sufficiently small open balls around non-boundary points are mutually-labeling.
- There is an a.e.-countable cover of \mathcal{X} by these balls:

- Sufficiently small open balls around non-boundary points are mutually-labeling.
- \blacktriangleright There is an a.e.-countable cover of ${\mathcal X}$ by these balls:
 - ▶ Use separability of \mathcal{X} and that $\partial \mathcal{X}$ has measure zero.

- Sufficiently small open balls around non-boundary points are mutually-labeling.
- \blacktriangleright There is an a.e.-countable cover of ${\mathcal X}$ by these balls:
 - ▶ Use separability of \mathcal{X} and that $\partial \mathcal{X}$ has measure zero.
- ▶ Decompose X into $X_{easy} \cup X_{small}$ like before:

- Sufficiently small open balls around non-boundary points are mutually-labeling.
- \blacktriangleright There is an a.e.-countable cover of ${\mathcal X}$ by these balls:
 - ▶ Use separability of \mathcal{X} and that $\partial \mathcal{X}$ has measure zero.
- ▶ Decompose \mathcal{X} into $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$ like before:
 - \triangleright \mathcal{X}_{easy} is a finite union of these balls.

- Sufficiently small open balls around non-boundary points are mutually-labeling.
- There is an a.e.-countable cover of \mathcal{X} by these balls:
 - ▶ Use separability of \mathcal{X} and that $\partial \mathcal{X}$ has measure zero.
- ▶ Decompose X into $X_{easy} \cup X_{small}$ like before:
 - \triangleright \mathcal{X}_{easy} is a finite union of these balls.
 - $\triangleright \ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$

Proof sketch.

- Sufficiently small open balls around non-boundary points are mutually-labeling.
- There is an a.e.-countable cover of \mathcal{X} by these balls:
 - ▶ Use separability of \mathcal{X} and that $\partial \mathcal{X}$ has measure zero.
- ▶ Decompose X into $X_{easy} \cup X_{small}$ like before:
 - \triangleright \mathcal{X}_{easy} is a finite union of these balls.
 - $\succ \mathcal{X}_{\text{small}} \text{ contains very little mass } \nu(\mathcal{X}_{\text{small}}) < \delta.$

By prior argument, the mistake rate converges to zero almost surely.

UPSHOT

1. The nearest neighbor rule works fine against the ν -dominated adversary.

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - > Along the way, we obtained a nice analytic tool (mutually-labeling sets).

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - > Along the way, we obtained a nice analytic tool (mutually-labeling sets).
- 2. The argument generalizes to other certain types of online learners (see paper).

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - > Along the way, we obtained a nice analytic tool (mutually-labeling sets).
- 2. The argument generalizes to other certain types of online learners (see paper).
 We give a sufficient condition to online learning against a dominated adversary.

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - > Along the way, we obtained a nice analytic tool (mutually-labeling sets).
- 2. The argument generalizes to other certain types of online learners (see paper).We give a sufficient condition to online learning against a dominated adversary.

QUESTIONS

Does the ν-dominated adversary balance between generality and tractability well?

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - > Along the way, we obtained a nice analytic tool (mutually-labeling sets).
- 2. The argument generalizes to other certain types of online learners (see paper).We give a sufficient condition to online learning against a dominated adversary.

QUESTIONS

- Does the ν-dominated adversary balance between generality and tractability well?
- Can the arguments still hold when there is benign label noise?

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - > Along the way, we obtained a nice analytic tool (mutually-labeling sets).
- 2. The argument generalizes to other certain types of online learners (see paper).We give a sufficient condition to online learning against a dominated adversary.

QUESTIONS

- Does the ν-dominated adversary balance between generality and tractability well?
- Can the arguments still hold when there is benign label noise?
- ▶ What do meaningful rates of convergence look like?

Big picture: smoothed analysis for online learning

Many applications of machine learning happen in the **online** setting:

Big picture: smoothed analysis for online learning

Many applications of machine learning happen in the online setting:

never-ending and non-i.i.d. stream of tasks
Many applications of machine learning happen in the online setting:

- never-ending and non-i.i.d. stream of tasks
- models are updated incrementally

Many applications of machine learning happen in the online setting:

- never-ending and non-i.i.d. stream of tasks
- ▶ models are updated incrementally

OPPORTUNITY: we might not live in the worst-case adversarial setting

Many applications of machine learning happen in the online setting:

- never-ending and non-i.i.d. stream of tasks
- models are updated incrementally

OPPORTUNITY: we might not live in the worst-case adversarial setting

▶ Is the ν -dominated online learning setting realistic and tractable?

Many applications of machine learning happen in the online setting:

- never-ending and non-i.i.d. stream of tasks
- models are updated incrementally

OPPORTUNITY: we might not live in the worst-case adversarial setting

- ▶ Is the ν -dominated online learning setting realistic and tractable?
- ► If so, can we design and analyze algorithms specifically for this setting?
 - e.g. a minimax optimal algorithm might not be optimal in this setting

Thank you

ACKNOWLEDGEMENTS

Joint work with Sanjoy Dasgupta.

This work is under review, but send me an email for paper/further discussion: *agso@eng.ucsd.edu*.

References

- Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis of online and differentially private learning. *Advances in Neural Information Processing Systems*, 33:9203–9215, 2020.
- Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Stochastic and constrained adversaries. *arXiv preprint arXiv:1104.5070*, 2011.
- Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. *Journal of the ACM (JACM)*, 51(3):385–463, 2004.