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[. Review of SDEs on Euclidean space
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Ordinary calculus

We can compute the value of X; if we know its rate of change, by solving the ODE:

dXt — b(t, Xt> dt
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Stochastic calculus

If there is white noise throughout the process, we have the SDE:
dXt = a(t, Xt) dBt + b(t, Xt) dt
———— ————
white noise deterministic drift

where B; is a model of white noise (here and throughout, Brownian motion).

» Need to define an appropriate notion of a stochastic integral:

[ 565,
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Stochastic integral

A natural way to define the integral is as a limit of simple (step) functions:

, N
/0 f(s)dB; = lim > f(r;)- (B, — B,_,).

N—oo 4

» Construct a step function by holding it constant at f(7;) over the interval [t;_1, t;).
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[to and Stratonovich integrals

Unlike the Riemann-Stieltjes integral, the choice of 7; makes a difference:

» When 7; = tj_;, we obtain the Ito integral, /f(t) dB;.

Since it does not ‘look ahead into the future’, it has the intuitive stochastic property of

being a martingale:
t
E {/ f(1) dBt} =0.
0

However, the chain rule operates differently:

4 (%) = VF(X) dX, + 5 X HF(X,) dX;

» When 7; = “=/=%, we obtain the Stratonovich integral, /f(t) o dB;.

It is no longer a martingale, but the chain rule obeys the rules of ordinary calculus.
It is possible to transform these different integrals into each other.
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Semimartinagles

We know how to take ordinary integrals and integrals driven by Brownian motion:

/f(t) dt and /f(t) dB;.
The largest class of integrators that the Ito or Stratonovich integrals can be defined are

called semimartingales.

» If Z, is a semimartinagle, then we can define the stochastic integral:

/ £(1) dz.
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Diffusion process

Definition (Hsu (2002))

Adiffusion process X; on RN is given by:
» a locally-Lipschitz diffusion coefficient o : RN — RN*¢,
» a driving R*-semimartingale Z,,

where the integral form of X; is given by the Ito integral:

t
X, =X +/ o(X,) dZ.
0
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Usual form of diffusion

Example

The following stochastic process:
dXt = a(Xt) dBt + b(Xt> dt

is given by o(X;) = (a(X:), b(X;)) and Z; = (B, 1)".
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An intuitive analogy

t
X, = Xy + / o(X;) dZ
JO

» X is the position of the car at time .
» Z; is the input to the steering wheel/pedal at time t.

» o(X;) specifies how the input is converted into an
instantaneous change in position.
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Looking ahead: stochastic calculus on manifolds

What happens if we’re not driving on a flat surface but a curved surface?
» Define calculus on manifolds (i.e. nonlinear spaces).

» Carry out the same driving analogy to define stochastic processes on manifolds.
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[I. Basic notions regarding smooth manifolds
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Calculus on nonlinear spaces?

The directional derivative D,f on Euclidean space E is defined:

Duf(x) — lim f(x+ tU) —f(X)

, Vx,u€E.
£10 h ke

» Notice that x + tu assumes the existence of some linear structure.

» On a nonlinear space, how to specify a direction? What should replace “x + tu”?
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Smooth manifolds

Generally speaking, a manifold is a topological space that locally resembles Eu-
clidean space. A smooth manifold is a manifold M for which this resemblance
is sharp enough to permit the establishment of partial differential equation—in
fact, all the essential features of calculus—on M.

O’Neill (1983)
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General sketch

Introducing a smooth structure onto a space S:
» Relate S to R” by assigning coordinates £(p) € R”" to points p € S.

» Define smoothness of functions on S with respect to the coordinate functions.

Example
Consider the upper half of the unit circle ST in R%. Parametrize it by 0 : (0,7) — ST C R?,

0(u) = [COS “} .

sin u

We can say that f : ST — R is smooth iff f o 6 : (0, 7) — R is smooth.
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Coordinate systems

Definition (O’Neill (1983))
A coordinate system or chart on a topological space S is a continuous map
€ : U — £(U) with continuous inverse, where U C S and £(U) C R" are open sets.

» If for each p € U, we write:

we say that x!, ..., x" are the coordinate functions of £.
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Coordinate systems
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Figure 1: A chart £ on the space S assigns coordinates to points on S.
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Smooth compatibility

Let: U — &(U)andn: V — n(V) be two charts. Their transition maps are defined:

notl E(UNV)—=n(UNV)
Eonlin(UNV)=E&UNV).

We say that £ and 1 are smoothly compatible if their transition maps are smooth.
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Smooth compatibility
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Figure 2: Two charts £ and 7 are smoothly compatible if their transition maps
are smooth (in the Euclidean sense).
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Smooth manifold

Definition
An atlas A on a topological space S is a collection of smoothly compatible charts such that

foreach p € S, there is a chart (§, U) such that U contains p.

Definition
A smooth manifold M is a (Hausdorff) space equipped with an atlas A.

» If the charts in /A map to open sets in R", we say that M is n-dimensional.
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Smooth mappings

Smooth functions can then be defined with respect to the coordinate functions.
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Smooth maps to R
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Figure 3: A map f : M — R is smooth if f o £~! is smooth for all charts £ € A.
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Smooth maps between manifolds

N

R

'1(\/)

Figure 4: A map ¢ : M — N is smooth if n o f o £~! is smooth for all charts
& € Apand € Ap. We say that ¢ is a diffeomorphism if it is smooth
and has smooth inverse.
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Tangent vectors

» Let p € M. Want to define T,(M) to be directions we can travel along on M at p.

» Equivalently, we can ask how fast do the values of smooth functions f € C*(M)
change at p along certain directions?

We can define tangent vectors as directional derivatives.
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Axiomatizing the directional derivative

We can axiomatize the derivative as a linear operator satisfying the product rule:
Definition (O’Neill (1983))

Let p be a point on M. A tangent vector to M at p is a real-valued function
v:C®(M) — R that is:

» R-linear: v(af + bg) = av(f) + bv(g)

» Leibnizian: v(fg) = v(f)g(p) + f(p)v(g)
foralla,b e Randf,g € C®(M).

The set of all tangent vectors T,(M) at p is called the tangent space at p, and is made a
vector space by usual functional addition and scalar multiplication.

Read: v(f) is the directional derivative of f along v.
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Directional derivatives via coordinates
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Figure 5: We can take directional derivatives by mapping to the coordinates.

Define 0,»’p as the directional derivative:

o) = 20 = "5 ep),

where u!, ..., u" are the natural coordinate functions of R".

O(f &™)

26/48



The basis theorem

Theorem (O’Neill (1983))

If¢ = (x',...,x") is a coordinate system in M at p, then its coordinate vectors
(o7} P an’pform a basis for the tangent space Ty(M).

P
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Tangent space
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Figure 6: If we embed M into an ambient Euclidean space, the coordinate
vectors 8i|p are the instantaneous direction we are moving at p when

traveling at unit speed along the coordinate lines.
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A spaceship analogy

Imagine flying a spaceship through curved space M.

» When you are at position p € M, the input into the
joystick is a choice of tangent vector v € T,(M).
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Smooth vector fields

A vector field X is an assignment of each p € M to a tangent vector X(p) € T,(M).
» X is smooth if for all f € C°°(M), the function Xf is smooth, Xf € C>°(M).

Xf(p) = “derivative of f along the X(p) direction at p”

Figure 7: Two vector fields, one smooth (left) and one not (right).
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Connecting the tangent spaces

In Euclidean space, all of its tangent spaces T,(R") are canonically isomorphic to R".

» If we lived on a flat map, we can identify at any point on the map a north direction.

But on a general manifold M, there isn’t a natural isomorphism between different
tangent spaces T,(M) and Ty(M).

» If we’re traveling on a smooth manifold, we could say whether we are traveling on a
smooth path, but there is no canonical way to quantify how smooth that path is.

» For example, you couldn’t say you’ve been traveling along a fixed direction (i.e.
smooth to the point that there is no change in your direction).

31/48



Connections, or covariant derivatives

We would like to define a notion of taking directional derivatives of vector fields.

» In Euclidean space, if X and Y are vector fields, then the derivative of Y with
respect to X is given:

Y(p+X(p) — Y(p)
VxY(p) = ltligl ; .

Issue one: p + tX(p) is not sensible on manifolds, since p € M but tX(p) € T,(M).

Issue two: Y(p') — Y(p) is not defined since T,(M) and T,y (M) are two linear spaces.

» For manifolds, we need to make a choice for how to take derivatives of vector fields.
That is, we need to choose which vector fields correspond to ‘constant’ vector fields.
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Axiomatizing the covariant derivative

Similar to how we can define the directional derivative for real-valued functions, we
axiomatize the covariant derivative. Let I'(TM) be the set of smooth vector fields.
Definition

A connection or a covariant derivative V : I'(TM) x I'(TM) — I'(TM) is an
R-linear map that is:

» C°°(M)-linear in the first argument: VY = fVxY
» Leibnizian: Vx(fY) = fVxY + X(f)Y.
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Covariant derivatives via coordinates

Fix a coordinate system & at p and let 0,

Recall that the coordinate vectors form a basis on T,(M).
» Since V‘p : Ty(M) X Ty(M) — Tp(M) is linear, we can describe a connection by
its Christoffel symbol I, which is defined:'
Vo, 0; = rk

ij

Ok

"We’ll use the Einstein summation convention, so that:

k=1

b ,3,!‘1) € T,(M) be the coordinate vectors.
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Parallel

Definition
A vector field X is said to be parallel along the curve x; on M if:

VQ'QX(X}) =0.
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Parallel transport

Proposition (Gallier (2018))

Let M be a smooth manifold and let V be a connection on M. For every C*-curve x; in M
and for every v € T, (M), there is a unique parallel vector field X along x such that

X(t) = wv.
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Geodesics

Definition (Hsu (2002))
A curve x; on M is called a geodesic if its tangent vector field is parallel to itself. That is,

v;'(tj('t = 0.
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Looking back: the big picture

—_

. We would like to do calculus on nonlinear spaces.

N

. The spaces we direct our attention to are smooth manifolds.

Coordinate systems give us ways to locally map back to Euclidean space.
3. A basic question of calculus is how to take directional derivatives.
We could compute using local coordinates, 01 f(p), ..., Onf (p).

Basis theorem implies we can take an algebraic definition, giving us tangent spaces.

4. A next question was how to take derivatives of vector fields.

A covariant derivative is a choice we make to define how directional vectors in
different tangent spaces are related.
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Revisiting the spaceship analogy

When flying a spaceship with a joystick, the tangent direction indicated on the joystick
dashboard corresponds to the instantaneous direction that the spaceship travels.

» If we introduce a connection, that intuitively means that we can say that ‘very
smooth curves’ are those on which we don’t need to shift our joysticks very much.

» Parellel vector fields along a curve correspond to the direction we would turn if we
pointed the joystick in that direction.

» Traveling along geodesics mean just pointing the joystick forward.

39/48



Frames of reference

We can make the relationship between the joystick and the instantaneous direction
more explicit by introducing a frame.

Definition
Aframe u at p € M is a linear isomorphism,

u:R" = Ty(M).
Denote the set of frames at p by F (M),

» We can think of R" as the possible inputs to the spaceship. A frame is a choice of
how those inputs are translated into directions on the manifold.

» Ifey,..., ey is the coordinate basis of R", then ue, ..., ue, is a basis of T,(M).

40/48



Frame bundle

Definition
The frame bundle F (M) is the disjoint union of frames over M,

FM) = | | FIM)p.
pPEM

» Intuitively, this is a choice of position p € M and an orientation of the spaceship.
» The frame bundle can be made into a manifold of dimension n + n?.

The first n dimensions correspond to p.
The latter n* dimensions correspond to a choice of frame u € F(M),,.
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Smooth paths in the (orthonormal) frame bundle

Let’s fix a frame of reference R" inside the spaceship traveling on M.

» A smooth path on F(M) corresponds to the spaceship traveling on a smooth path
through M while possibly spinning/twisting about its center smoothly.

» Given a smooth path x; on M and an initial orientation uy € F(M)y,, thereis a

unique way to produce a smooth path u; on F(M) such that the spaceship does
not twist as it travels on x;.

This curve u; is called the horizontal lift of x;.
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Anti-developments

Imagine two spaceships: (i) the first travels on M, while (ii) the second travels on R".
» Whatever inputs are fed in the first ship are also transmitted to the second.

» As the first spaceship travels on a smooth curve x; € M, the second travels on the
analogous curve z; € R".

» Assuming neither spaceships twists as they travel, then the curves x; and z; are in
one-to-one correspondence through u;, € F(M).

The curve z; is called the anti-development of u,.
The curve u, is called the development of z,.
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[1l. Looking ahead to stochastic calculus
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Stochastic developments

From the theory of smooth manifolds, we know how to develop a smooth curve z; € R”
to a smooth curve x;, € M.

» We can extend this procedure to semimartingales on R", leading to a stochastic
development on F(M).

» The projection of the stochastic development on (M) down to M leads to the
notion of a semimartingale on M.
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Martingales on manifolds

Definition (Hsu (2002))

Let M be a smooth manifold equipped with a connection V. An M-valued semimartingale
X; is called a V -martingale if its antidevelopment Z; with respect to V on R" is a (local)
martingale.
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Brownian motion on manifolds

Definition (Hsu (2002))

An M-valued stochastic process X; is called a (Riemannian) Brownian motion if its
anti-development is standard Brownian motion on Euclidean space.
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