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I. Review of SDEs on Euclidean space
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Ordinary calculus

We can compute the value of Xt if we know its rate of change, by solving the ODE:

dXt = b(t,Xt) dt.
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Stochastic calculus

If there is white noise throughout the process, we have the SDE:

dXt = a(t,Xt) dBt︸ ︷︷ ︸
white noise

+ b(t,Xt) dt︸ ︷︷ ︸
deterministic drift

where Bt is a model of white noise (here and throughout, Brownian motion).

I Need to define an appropriate notion of a stochastic integral:∫ t

0
f (s) dBs.
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Stochastic integral

A natural way to define the integral is as a limit of simple (step) functions:∫ t

0
f (s) dBs = lim

N→∞

N∑
j=1

f (τj) ·
(
Btj − Btj−1

)
.

I Construct a step function by holding it constant at f (τj) over the interval [tj−1, tj).
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Ito and Stratonovich integrals
Unlike the Riemann-Stieltjes integral, the choice of τj makes a di�erence:

I When τj = tj−1, we obtain the Ito integral,
∫

f (t) dBt .

I Since it does not ‘look ahead into the future’, it has the intuitive stochastic property of
being a martingale:

E
[∫ t

0
f (t) dBt

]
= 0.

I However, the chain rule operates di�erently:

df (Xt) = ∇f (Xt) dXt +
1
2
dXT

t Hf (Xt) dXt

I When τj =
tj−tj−1

2 , we obtain the Stratonovich integral,
∫

f (t) ◦ dBt .

I It is no longer a martingale, but the chain rule obeys the rules of ordinary calculus.
I It is possible to transform these di�erent integrals into each other.
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Semimartinagles

We know how to take ordinary integrals and integrals driven by Brownian motion:∫
f (t) dt and

∫
f (t) dBt .

The largest class of integrators that the Ito or Stratonovich integrals can be defined are
called semimartingales.

I If Zt is a semimartinagle, then we can define the stochastic integral:∫
f (t) dZt .
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Di�usion process

Definition (Hsu (2002))
A di�usion process Xt on RN is given by:

I a locally-Lipschitz di�usion coe�icient σ : RN → RN×`,

I a driving R`-semimartingale Zt ,

where the integral form of Xt is given by the Ito integral:

Xt = X0 +

∫ t

0
σ(Xs) dZs.
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Usual form of di�usion

Example
The following stochastic process:

dXt = a(Xt) dBt + b(Xt) dt

is given by σ(Xt) =
(
a(Xt), b(Xt)

)
and Zt = (Bt , t)T.
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An intuitive analogy

Xt = X0 +

∫ t

0
σ(Xs) dZs

I Xt is the position of the car at time t.

I Zt is the input to the steering wheel/pedal at time t.

I σ(Xt) specifies how the input is converted into an
instantaneous change in position.
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Looking ahead: stochastic calculus on manifolds

What happens if we’re not driving on a flat surface but a curved surface?

I Define calculus on manifolds (i.e. nonlinear spaces).

I Carry out the same driving analogy to define stochastic processes on manifolds.
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II. Basic notions regarding smooth manifolds
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Calculus on nonlinear spaces?

The directional derivative Duf on Euclidean space E is defined:

Duf (x) = lim
t↓0

f (x + tu)− f (x)

h
, ∀x, u ∈ E.

I Notice that x + tu assumes the existence of some linear structure.

I On a nonlinear space, how to specify a direction? What should replace “x + tu”?
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Smooth manifolds

“ Generally speaking, a manifold is a topological space that locally resembles Eu-
clidean space. A smooth manifold is a manifoldM for which this resemblance
is sharp enough to permit the establishment of partial di�erential equation—in
fact, all the essential features of calculus—onM.

O’Neill (1983)
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General sketch

Introducing a smooth structure onto a space S :

I Relate S to Rn by assigning coordinates ξ(p) ∈ Rn to points p ∈ S .

I Define smoothness of functions on S with respect to the coordinate functions.

Example
Consider the upper half of the unit circle S> in R2. Parametrize it by θ : (0, π)→ S> ⊂ R2,

θ(u) =

[
cos u
sin u

]
.

We can say that f : S> → R is smooth i� f ◦ θ : (0, π)→ R is smooth.
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Coordinate systems

Definition (O’Neill (1983))
A coordinate system or chart on a topological space S is a continuous map
ξ : U → ξ(U ) with continuous inverse, where U ⊂ S and ξ(U ) ⊂ Rn are open sets.

I If for each p ∈ U , we write:

ξ(p) =
(
x1(p), . . . , xn(p)

)
,

we say that x1, . . . , xn are the coordinate functions of ξ.
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Coordinate systems

Figure 1: A chart ξ on the space S assigns coordinates to points on S .
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Smooth compatibility

Let ξ : U → ξ(U ) and η : V → η(V ) be two charts. Their transition maps are defined:

η ◦ ξ−1 : ξ(U ∩ V )→ η(U ∩ V )

ξ ◦ η−1 : η(U ∩ V )→ ξ(U ∩ V ).

We say that ξ and η are smoothly compatible if their transition maps are smooth.
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Smooth compatibility

Figure 2: Two charts ξ and η are smoothly compatible if their transition maps
are smooth (in the Euclidean sense).
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Smooth manifold

Definition
An atlas A on a topological space S is a collection of smoothly compatible charts such that
for each p ∈ S , there is a chart (ξ,U ) such that U contains p.

Definition
A smooth manifoldM is a (Hausdor�) space equipped with an atlas A.

I If the charts in A map to open sets in Rn, we say thatM is n-dimensional.
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Smooth mappings

Smooth functions can then be defined with respect to the coordinate functions.
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Smooth maps to R

Figure 3: A map f :M→ R is smooth if f ◦ ξ−1 is smooth for all charts ξ ∈ A.
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Smooth maps between manifolds

Figure 4: A map φ :M→N is smooth if η ◦ f ◦ ξ−1 is smooth for all charts
ξ ∈ AM and η ∈ AN . We say that φ is a di�eomorphism if it is smooth
and has smooth inverse.
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Tangent vectors

I Let p ∈M. Want to define Tp(M) to be directions we can travel along onM at p.
I Equivalently, we can ask how fast do the values of smooth functions f ∈ C∞(M)

change at p along certain directions?
I We can define tangent vectors as directional derivatives.
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Axiomatizing the directional derivative

We can axiomatize the derivative as a linear operator satisfying the product rule:

Definition (O’Neill (1983))
Let p be a point onM. A tangent vector toM at p is a real-valued function
v : C∞(M)→ R that is:

I R-linear: v(af + bg) = av(f ) + bv(g)

I Leibnizian: v(fg) = v(f )g(p) + f (p)v(g)

for all a, b ∈ R and f , g ∈ C∞(M).

The set of all tangent vectors Tp(M) at p is called the tangent space at p, and is made a
vector space by usual functional addition and scalar multiplication.

Read: v(f ) is the directional derivative of f along v.
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Directional derivatives via coordinates

Figure 5: We can take directional derivatives by mapping to the coordinates.
Define ∂i

∣∣
p as the directional derivative:

∂if (p) =
∂f
∂x i

(p) =
∂(f ◦ ξ−1)

∂ui
(ξp),

where u1, . . . , un are the natural coordinate functions of Rn.
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The basis theorem

Theorem (O’Neill (1983))
If ξ = (x1, . . . , xn) is a coordinate system inM at p, then its coordinate vectors
∂1
∣∣
p, . . . , ∂n

∣∣
p form a basis for the tangent space Tp(M).
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Tangent space

Figure 6: If we embedM into an ambient Euclidean space, the coordinate
vectors ∂i

∣∣
p are the instantaneous direction we are moving at p when

traveling at unit speed along the coordinate lines.
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A spaceship analogy

Imagine flying a spaceship through curved spaceM.

I When you are at position p ∈M, the input into the
joystick is a choice of tangent vector v ∈ Tp(M).
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Smooth vector fields

A vector field X is an assignment of each p ∈M to a tangent vector X(p) ∈ Tp(M).

I X is smooth if for all f ∈ C∞(M), the function Xf is smooth, Xf ∈ C∞(M).

Xf (p) = “derivative of f along the X(p) direction at p”

Figure 7: Two vector fields, one smooth (le�) and one not (right).
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Connecting the tangent spaces

In Euclidean space, all of its tangent spaces Tp(Rn) are canonically isomorphic to Rn.

I If we lived on a flat map, we can identify at any point on the map a north direction.

But on a general manifoldM, there isn’t a natural isomorphism between di�erent
tangent spaces Tp(M) and Tq(M).

I If we’re traveling on a smooth manifold, we could say whether we are traveling on a
smooth path, but there is no canonical way to quantify how smooth that path is.

I For example, you couldn’t say you’ve been traveling along a fixed direction (i.e.
smooth to the point that there is no change in your direction).

31 / 48



Connections, or covariant derivatives

We would like to define a notion of taking directional derivatives of vector fields.

I In Euclidean space, if X and Y are vector fields, then the derivative of Y with
respect to X is given:

∇XY(p) = lim
t↓0

Y
(
p + tX(p)

)
− Y(p)

t
.

I Issue one: p + tX(p) is not sensible on manifolds, since p ∈M but tX(p) ∈ Tp(M).
I Issue two: Y(p′)− Y(p) is not defined since Tp(M) and Tp′(M) are two linear spaces.

I For manifolds, we need to make a choice for how to take derivatives of vector fields.
I That is, we need to choose which vector fields correspond to ‘constant’ vector fields.
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Axiomatizing the covariant derivative

Similar to how we can define the directional derivative for real-valued functions, we
axiomatize the covariant derivative. Let Γ(TM) be the set of smooth vector fields.

Definition
A connection or a covariant derivative∇ : Γ(TM)× Γ(TM)→ Γ(TM) is an
R-linear map that is:

I C∞(M)-linear in the first argument: ∇fXY = f∇XY

I Leibnizian: ∇X (fY) = f∇XY + X(f )Y .
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Covariant derivatives via coordinates

Fix a coordinate system ξ at p and let ∂1
∣∣
p, . . . , ∂n

∣∣
p ∈ Tp(M) be the coordinate vectors.

Recall that the coordinate vectors form a basis on Tp(M).

I Since∇
∣∣
p : Tp(M)× Tp(M)→ Tp(M) is linear, we can describe a connection by

its Christo�el symbol Γ, which is defined:1

∇∂i∂j = Γk
ij∂k.

1We’ll use the Einstein summation convention, so that:

Γk
ij∂k ≡

n∑
k=1

Γk
ij∂k.
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Parallel

Definition
A vector field X is said to be parallel along the curve xt onM if:

∇ẋtX(xt) = 0.
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Parallel transport

Proposition (Gallier (2018))
LetM be a smooth manifold and let∇ be a connection onM. For every C1-curve xt inM
and for every v ∈ Txt (M), there is a unique parallel vector field X along x such that

X(t) = v.
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Geodesics

Definition (Hsu (2002))
A curve xt onM is called a geodesic if its tangent vector field is parallel to itself. That is,

∇ẋt ẋt = 0.
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Looking back: the big picture

1. We would like to do calculus on nonlinear spaces.
2. The spaces we direct our a�ention to are smooth manifolds.

I Coordinate systems give us ways to locally map back to Euclidean space.

3. A basic question of calculus is how to take directional derivatives.
I We could compute using local coordinates, ∂1f (p), . . . , ∂nf (p).
I Basis theorem implies we can take an algebraic definition, giving us tangent spaces.

4. A next question was how to take derivatives of vector fields.
I A covariant derivative is a choice we make to define how directional vectors in

di�erent tangent spaces are related.
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Revisiting the spaceship analogy

When flying a spaceship with a joystick, the tangent direction indicated on the joystick
dashboard corresponds to the instantaneous direction that the spaceship travels.

I If we introduce a connection, that intuitively means that we can say that ‘very
smooth curves’ are those on which we don’t need to shi� our joysticks very much.

I Parellel vector fields along a curve correspond to the direction we would turn if we
pointed the joystick in that direction.

I Traveling along geodesics mean just pointing the joystick forward.
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Frames of reference

We can make the relationship between the joystick and the instantaneous direction
more explicit by introducing a frame.

Definition
A frame u at p ∈M is a linear isomorphism,

u : Rn → Tp(M).

Denote the set of frames at p by F(M)p.

I We can think of Rn as the possible inputs to the spaceship. A frame is a choice of
how those inputs are translated into directions on the manifold.

I If e1, . . . , en is the coordinate basis of Rn, then ue1, . . . , uen is a basis of Tp(M).
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Frame bundle

Definition
The frame bundle F(M) is the disjoint union of frames overM,

F(M) =
⊔
p∈M
F(M)p.

I Intuitively, this is a choice of position p ∈M and an orientation of the spaceship.
I The frame bundle can be made into a manifold of dimension n + n2.

I The first n dimensions correspond to p.
I The la�er n2 dimensions correspond to a choice of frame u ∈ F(M)p.
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Smooth paths in the (orthonormal) frame bundle
Let’s fix a frame of reference Rn inside the spaceship traveling onM.

I A smooth path on F(M) corresponds to the spaceship traveling on a smooth path
throughM while possibly spinning/twisting about its center smoothly.

I Given a smooth path xt onM and an initial orientation u0 ∈ F(M)x0 , there is a
unique way to produce a smooth path ut on F(M) such that the spaceship does
not twist as it travels on xt .
I This curve ut is called the horizontal li� of xt .
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Anti-developments

Imagine two spaceships: (i) the first travels onM, while (ii) the second travels on Rn.

I Whatever inputs are fed in the first ship are also transmi�ed to the second.

I As the first spaceship travels on a smooth curve xt ∈M, the second travels on the
analogous curve zt ∈ Rn.

I Assuming neither spaceships twists as they travel, then the curves xt and zt are in
one-to-one correspondence through ut ∈ F(M).
I The curve zt is called the anti-development of ut .
I The curve ut is called the development of zt .
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III. Looking ahead to stochastic calculus
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Stochastic developments

From the theory of smooth manifolds, we know how to develop a smooth curve zt ∈ Rn

to a smooth curve xt ∈M.

I We can extend this procedure to semimartingales on Rn, leading to a stochastic
development on F(M).

I The projection of the stochastic development on F(M) down toM leads to the
notion of a semimartingale onM.
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Martingales on manifolds

Definition (Hsu (2002))
LetM be a smooth manifold equipped with a connection∇. AnM-valued semimartingale
Xt is called a∇-martingale if its antidevelopment Zt with respect to∇ on Rn is a (local)
martingale.
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Brownian motion on manifolds

Definition (Hsu (2002))
AnM-valued stochastic process Xt is called a (Riemannian) Brownian motion if its
anti-development is standard Brownian motion on Euclidean space.
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