# Stochastic calculus on manifolds

Part I: SDEs on Euclidean space / Basic notions for smooth manifolds

Geelon So, agso@eng.ucsd.edu Sampling/optimization reading group — August 17, 2021 I. Review of SDEs on Euclidean space

# Ordinary calculus

We can compute the value of  $X_t$  if we know its rate of change, by solving the ODE:

 $dX_t = b(t, X_t) dt.$ 

### Stochastic calculus

If there is white noise throughout the process, we have the SDE:

$$dX_t = \underbrace{a(t, X_t) \, dB_t}_{\text{white noise}} + \underbrace{b(t, X_t) \, dt}_{\text{deterministic drift}}$$

where  $B_t$  is a model of white noise (here and throughout, Brownian motion).

▶ Need to define an appropriate notion of a **stochastic integral**:

$$\int_0^t f(s) \, dB_s$$

## Stochastic integral

A natural way to define the integral is as a limit of simple (step) functions:

$$\int_0^t f(s) \, dB_s = \lim_{N \to \infty} \sum_{j=1}^N f(\tau_j) \cdot \left( B_{t_j} - B_{t_{j-1}} \right).$$

• Construct a step function by holding it constant at  $f(\tau_j)$  over the interval  $[t_{j-1}, t_j)$ .

## Ito and Stratonovich integrals

Unlike the Riemann-Stieltjes integral, the choice of  $\tau_j$  makes a difference:

- When  $\tau_j = t_{j-1}$ , we obtain the **Ito integral**,  $\int f(t) dB_t$ .
  - Since it does not 'look ahead into the future', it has the intuitive stochastic property of being a martingale:

$$\mathbb{E}\left[\int_0^t f(t)\,dB_t\right]=0.$$

► However, the chain rule operates differently:

$$df(X_t) = \nabla f(X_t) \, dX_t + \frac{1}{2} dX_t^{\mathsf{T}} \, \mathbf{H} f(X_t) \, dX_t$$

• When  $\tau_j = \frac{t_j - t_{j-1}}{2}$ , we obtain the **Stratonovich integral**,  $\int f(t) \circ dB_t$ .

It is no longer a martingale, but the chain rule obeys the rules of ordinary calculus.

It is possible to transform these different integrals into each other.

### Semimartinagles

We know how to take ordinary integrals and integrals driven by Brownian motion:

$$\int f(t) dt$$
 and  $\int f(t) dB_t$ .

The largest class of integrators that the Ito or Stratonovich integrals can be defined are called **semimartingales**.

• If  $Z_t$  is a semimartinagle, then we can define the stochastic integral:

$$\int f(t) \, dZ_t.$$

# **Diffusion process**

#### Definition (Hsu (2002))

A diffusion process  $X_t$  on  $\mathbb{R}^N$  is given by:

- a locally-Lipschitz diffusion coefficient  $\sigma : \mathbb{R}^N \to \mathbb{R}^{N \times \ell}$ ,
- a driving  $\mathbb{R}^{\ell}$ -semimartingale  $Z_t$ ,

where the integral form of  $X_t$  is given by the Ito integral:

$$X_t = X_0 + \int_0^t \sigma(X_s) \, dZ_s$$

## Usual form of diffusion

#### Example

The following stochastic process:

 $dX_t = a(X_t) \, dB_t + b(X_t) \, dt$ 

is given by  $\sigma(X_t) = (a(X_t), b(X_t))$  and  $Z_t = (B_t, t)^{\mathsf{T}}$ .

# An intuitive analogy

$$X_t = X_0 + \int_0^t \sigma(X_s) \, dZ_s$$

- $\triangleright$  *X<sub>t</sub>* is the position of the car at time *t*.
- $\triangleright$  *Z<sub>t</sub>* is the input to the steering wheel/pedal at time *t*.
- σ(X<sub>t</sub>) specifies how the input is converted into an instantaneous change in position.



# Looking ahead: stochastic calculus on manifolds

What happens if we're not driving on a flat surface but a curved surface?

- Define calculus on manifolds (i.e. nonlinear spaces).
- Carry out the same driving analogy to define stochastic processes on manifolds.

II. Basic notions regarding smooth manifolds

## Calculus on nonlinear spaces?

The **directional derivative**  $D_u f$  on Euclidean space *E* is defined:

$$D_u f(x) = \lim_{t \downarrow 0} \frac{f(x + tu) - f(x)}{h}, \quad \forall x, u \in E.$$

• Notice that x + tu assumes the existence of some linear structure.

• On a nonlinear space, how to specify a direction? What should replace "x + tu"?

## Smooth manifolds

Generally speaking, a manifold is a topological space that locally resembles Euclidean space. A smooth manifold is a manifold  $\mathcal{M}$  for which this resemblance is sharp enough to permit the establishment of partial differential equation—in fact, all the essential features of calculus—on  $\mathcal{M}$ .

*O'Neill (1983)* 

## General sketch

Introducing a smooth structure onto a space S:

- ▶ Relate S to  $\mathbb{R}^n$  by assigning coordinates  $\xi(p) \in \mathbb{R}^n$  to points  $p \in S$ .
- $\blacktriangleright$  Define smoothness of functions on  ${\cal S}$  with respect to the coordinate functions.

#### Example

Consider the upper half of the unit circle  $S^{\top}$  in  $\mathbb{R}^2$ . Parametrize it by  $\theta : (0, \pi) \to S^{\top} \subset \mathbb{R}^2$ ,

$$\theta(u) = \begin{bmatrix} \cos u \\ \sin u \end{bmatrix}.$$

We can say that  $f: S^{\top} \to \mathbb{R}$  is smooth iff  $f \circ \theta : (0, \pi) \to \mathbb{R}$  is smooth.

#### Definition (O'Neill (1983))

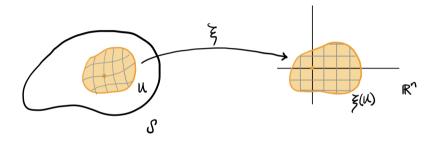
A coordinate system or chart on a topological space S is a continuous map  $\xi : U \to \xi(U)$  with continuous inverse, where  $U \subset S$  and  $\xi(U) \subset \mathbb{R}^n$  are open sets.

• If for each  $p \in U$ , we write:

$$\xi(p) = (x^1(p), \dots, x^n(p)),$$

we say that  $x^1, \ldots, x^n$  are the **coordinate functions** of  $\xi$ .

### Coordinate systems



**Figure 1**: A chart  $\xi$  on the space S assigns coordinates to points on S.

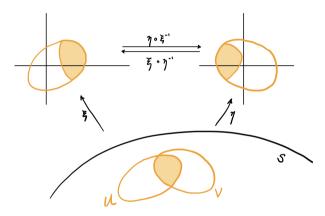
# Smooth compatibility

Let  $\xi : U \to \xi(U)$  and  $\eta : V \to \eta(V)$  be two charts. Their **transition maps** are defined:

$$\eta \circ \xi^{-1} : \xi(U \cap V) \to \eta(U \cap V)$$
  
$$\xi \circ \eta^{-1} : \eta(U \cap V) \to \xi(U \cap V).$$

We say that  $\xi$  and  $\eta$  are **smoothly compatible** if their transition maps are smooth.

# Smooth compatibility



**Figure 2**: Two charts  $\xi$  and  $\eta$  are smoothly compatible if their transition maps are smooth (in the Euclidean sense).

#### Definition

An **atlas** A on a topological space S is a collection of smoothly compatible charts such that for each  $p \in S$ , there is a chart  $(\xi, U)$  such that U contains p.

#### Definition

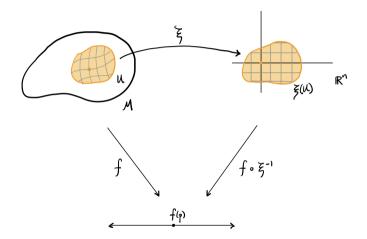
A **smooth manifold**  $\mathcal{M}$  is a (Hausdorff) space equipped with an atlas  $\mathcal{A}$ .

▶ If the charts in  $\mathcal{A}$  map to open sets in  $\mathbb{R}^n$ , we say that  $\mathcal{M}$  is *n*-dimensional.

## Smooth mappings

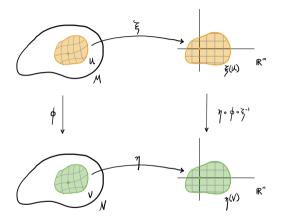
Smooth functions can then be defined with respect to the coordinate functions.

### Smooth maps to $\mathbb{R}$



**Figure 3:** A map  $f : \mathcal{M} \to \mathbb{R}$  is smooth if  $f \circ \xi^{-1}$  is smooth for all charts  $\xi \in \mathcal{A}$ .

# Smooth maps between manifolds



**Figure 4**: A map  $\phi : \mathcal{M} \to \mathcal{N}$  is smooth if  $\eta \circ f \circ \xi^{-1}$  is smooth for all charts  $\xi \in \mathcal{A}_{\mathcal{M}}$  and  $\eta \in \mathcal{A}_{\mathcal{N}}$ . We say that  $\phi$  is a **diffeomorphism** if it is smooth and has smooth inverse.

### **Tangent vectors**

- ▶ Let  $p \in \mathcal{M}$ . Want to define  $T_p(\mathcal{M})$  to be directions we can travel along on  $\mathcal{M}$  at p.
- Equivalently, we can ask how fast do the values of smooth functions  $f \in C^{\infty}(\mathcal{M})$  change at *p* along certain directions?
  - > We can define **tangent vectors** as **directional derivatives**.

# Axiomatizing the directional derivative

We can axiomatize the derivative as a linear operator satisfying the product rule:

### Definition (O'Neill (1983))

*Let* p *be a point on*  $\mathcal{M}$ *. A* **tangent vector** *to*  $\mathcal{M}$  *at* p *is a real-valued function*  $v : C^{\infty}(\mathcal{M}) \to \mathbb{R}$  *that is:* 

$$\blacktriangleright \ \mathbb{R}\text{-linear: } v(af + bg) = av(f) + bv(g)$$

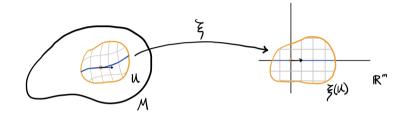
• Leibnizian: 
$$v(fg) = v(f)g(p) + f(p)v(g)$$

for all  $a, b \in \mathbb{R}$  and  $f, g \in C^{\infty}(\mathcal{M})$ .

The set of all tangent vectors  $T_p(\mathcal{M})$  at p is called the **tangent space** at p, and is made a vector space by usual functional addition and scalar multiplication.

**Read:** v(f) is the directional derivative of f along v.

## Directional derivatives via coordinates



**Figure 5**: We can take directional derivatives by mapping to the coordinates. Define  $\partial_i|_p$  as the directional derivative:

$$\partial_i f(p) = \frac{\partial f}{\partial x^i}(p) = \frac{\partial (f \circ \xi^{-1})}{\partial u^i}(\xi p),$$

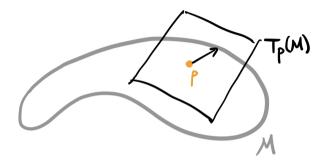
where  $u^1, \ldots, u^n$  are the natural coordinate functions of  $\mathbb{R}^n$ .

## The basis theorem

#### Theorem (O'Neill (1983))

If  $\xi = (x^1, \dots, x^n)$  is a coordinate system in  $\mathcal{M}$  at p, then its coordinate vectors  $\partial_1|_p, \dots, \partial_n|_p$  form a basis for the tangent space  $T_p(\mathcal{M})$ .

## Tangent space



**Figure 6**: If we embed  $\mathcal{M}$  into an ambient Euclidean space, the coordinate vectors  $\partial_i |_p$  are the instantaneous direction we are moving at p when traveling at unit speed along the coordinate lines.

# A spaceship analogy

Imagine flying a spaceship through curved space  $\mathcal{M}$ .

When you are at position *p* ∈ *M*, the input into the joystick is a choice of tangent vector *v* ∈ *T<sub>p</sub>*(*M*).



### Smooth vector fields

A vector field X is an assignment of each  $p \in \mathcal{M}$  to a tangent vector  $X(p) \in T_p(\mathcal{M})$ .  $\blacktriangleright$  X is smooth if for all  $f \in C^{\infty}(\mathcal{M})$ , the function Xf is smooth,  $Xf \in C^{\infty}(\mathcal{M})$ .

Xf(p) = "derivative of *f* along the X(p) direction at *p*"

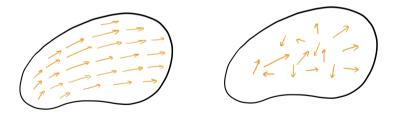


Figure 7: Two vector fields, one smooth (left) and one not (right).

# Connecting the tangent spaces

In Euclidean space, all of its tangent spaces  $T_p(\mathbb{R}^n)$  are canonically isomorphic to  $\mathbb{R}^n$ .

▶ If we lived on a flat map, we can identify at any point on the map a *north* direction.

But on a general manifold  $\mathcal{M}$ , there isn't a natural isomorphism between different tangent spaces  $T_p(\mathcal{M})$  and  $T_q(\mathcal{M})$ .

- If we're traveling on a smooth manifold, we could say whether we are traveling on a smooth path, but there is no canonical way to quantify *how smooth* that path is.
- For example, you couldn't say you've been traveling along a fixed direction (i.e. smooth to the point that there is no change in your direction).

## Connections, or covariant derivatives

We would like to define a notion of taking directional derivatives of vector fields.

► In Euclidean space, if *X* and *Y* are vector fields, then the derivative of *Y* with respect to *X* is given:

$$\nabla_X Y(p) = \lim_{t \downarrow 0} \frac{Y(p + tX(p)) - Y(p)}{t}.$$

► Issue one: p + tX(p) is not sensible on manifolds, since p ∈ M but tX(p) ∈ T<sub>p</sub>(M).
► Issue two: Y(p') - Y(p) is not defined since T<sub>p</sub>(M) and T<sub>p'</sub>(M) are two linear spaces.

- ▶ For manifolds, we need to make a choice for how to take derivatives of vector fields.
  - > That is, we need to choose which vector fields correspond to 'constant' vector fields.

Similar to how we can define the directional derivative for real-valued functions, we axiomatize the covariant derivative. Let  $\Gamma(T\mathcal{M})$  be the set of smooth vector fields.

#### Definition

A connection or a covariant derivative  $\nabla : \Gamma(T\mathcal{M}) \times \Gamma(T\mathcal{M}) \rightarrow \Gamma(T\mathcal{M})$  is an  $\mathbb{R}$ -linear map that is:

- $C^{\infty}(\mathcal{M})$ -linear in the first argument:  $\nabla_{fX}Y = f\nabla_X Y$
- Leibnizian:  $\nabla_X(fY) = f\nabla_X Y + X(f)Y$ .

### Covariant derivatives via coordinates

Fix a coordinate system  $\xi$  at p and let  $\partial_1|_p, \ldots, \partial_n|_p \in T_p(\mathcal{M})$  be the coordinate vectors. Recall that the coordinate vectors form a basis on  $T_p(\mathcal{M})$ .

Since  $\nabla|_p : T_p(\mathcal{M}) \times T_p(\mathcal{M}) \to T_p(\mathcal{M})$  is linear, we can describe a connection by its **Christoffel symbol**  $\Gamma$ , which is defined:<sup>1</sup>

$$\nabla_{\partial_i}\partial_j = \Gamma^k_{ij}\partial_k.$$

$$\Gamma^k_{ij}\partial_k \equiv \sum_{k=1}^n \Gamma^k_{ij}\partial_k$$

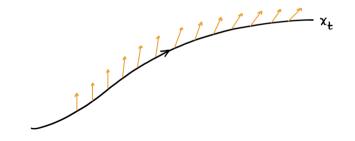
<sup>&</sup>lt;sup>1</sup>We'll use the Einstein summation convention, so that:

## Parallel

#### Definition

A vector field X is said to be **parallel** along the curve  $x_t$  on  $\mathcal{M}$  if:

$$\nabla_{\dot{x}_t} X(x_t) = 0.$$



### Parallel transport

#### Proposition (Gallier (2018))

Let  $\mathcal{M}$  be a smooth manifold and let  $\nabla$  be a connection on  $\mathcal{M}$ . For every  $C^1$ -curve  $x_t$  in  $\mathcal{M}$  and for every  $v \in T_{x_t}(\mathcal{M})$ , there is a unique parallel vector field X along x such that

$$X(t) = v.$$

### Geodesics

### Definition (Hsu (2002))

A curve  $x_t$  on  $\mathcal{M}$  is called a **geodesic** if its tangent vector field is parallel to itself. That is,

 $\nabla_{\dot{x}_t} \dot{x}_t = 0.$ 

# Looking back: the big picture

- 1. We would like to do **calculus on nonlinear spaces**.
- 2. The spaces we direct our attention to are **smooth manifolds**.
  - > Coordinate systems give us ways to locally map back to Euclidean space.
- 3. A basic question of calculus is how to take **directional derivatives**.
  - ▶ We could compute using local coordinates,  $\partial_1 f(p), \ldots, \partial_n f(p)$ .
  - ▶ Basis theorem implies we can take an algebraic definition, giving us tangent spaces.
- 4. A next question was how to take **derivatives of vector fields**.
  - A covariant derivative is a choice we make to define how directional vectors in different tangent spaces are related.

# Revisiting the spaceship analogy

When flying a spaceship with a joystick, the tangent direction indicated on the joystick dashboard corresponds to the instantaneous direction that the spaceship travels.

- If we introduce a connection, that intuitively means that we can say that 'very smooth curves' are those on which we don't need to shift our joysticks very much.
- Parellel vector fields along a curve correspond to the direction we would turn if we pointed the joystick in that direction.
- ► Traveling along geodesics mean just pointing the joystick forward.

# Frames of reference

We can make the relationship between the joystick and the instantaneous direction more explicit by introducing a *frame*.

### Definition

A **frame** u at  $p \in M$  is a linear isomorphism,

 $u:\mathbb{R}^n\to T_p(\mathcal{M}).$ 

Denote the set of frames at p by  $\mathcal{F}(\mathcal{M})_p$ .

- ▶ We can think of ℝ<sup>n</sup> as the possible inputs to the spaceship. A frame is a choice of how those inputs are translated into directions on the manifold.
- ▶ If  $e_1, \ldots, e_n$  is the coordinate basis of  $\mathbb{R}^n$ , then  $ue_1, \ldots, ue_n$  is a basis of  $T_p(\mathcal{M})$ .

## Frame bundle

#### Definition

*The* **frame bundle**  $\mathcal{F}(\mathcal{M})$  *is the disjoint union of frames over*  $\mathcal{M}$ *,* 

$$\mathcal{F}(\mathcal{M}) = \bigsqcup_{p \in \mathcal{M}} \mathcal{F}(\mathcal{M})_p$$

- ▶ Intuitively, this is a choice of position  $p \in M$  and an orientation of the spaceship.
- ▶ The frame bundle can be made into a manifold of dimension  $n + n^2$ .
  - ▶ The first *n* dimensions correspond to *p*.
  - ▶ The latter  $n^2$  dimensions correspond to a choice of frame  $u \in \mathcal{F}(\mathcal{M})_p$ .

# Smooth paths in the (orthonormal) frame bundle

Let's fix a frame of reference  $\mathbb{R}^n$  inside the spaceship traveling on  $\mathcal{M}$ .

- A smooth path on *F*(*M*) corresponds to the spaceship traveling on a smooth path through *M* while possibly spinning/twisting about its center smoothly.
- ► Given a smooth path x<sub>t</sub> on M and an initial orientation u<sub>0</sub> ∈ F(M)<sub>x0</sub>, there is a unique way to produce a smooth path u<sub>t</sub> on F(M) such that the spaceship does not twist as it travels on x<sub>t</sub>.
  - > This curve  $u_t$  is called the **horizontal lift** of  $x_t$ .



# Anti-developments

Imagine two spaceships: (i) the first travels on  $\mathcal{M}$ , while (ii) the second travels on  $\mathbb{R}^n$ .

- ▶ Whatever inputs are fed in the first ship are also transmitted to the second.
- ▶ As the first spaceship travels on a smooth curve  $x_t \in M$ , the second travels on the analogous curve  $z_t \in \mathbb{R}^n$ .
- Assuming neither spaceships twists as they travel, then the curves  $x_t$  and  $z_t$  are in one-to-one correspondence through  $u_t \in \mathcal{F}(\mathcal{M})$ .
  - > The curve  $z_t$  is called the **anti-development** of  $u_t$ .
  - The curve  $u_t$  is called the **development** of  $z_t$ .

III. Looking ahead to stochastic calculus

From the theory of smooth manifolds, we know how to develop a smooth curve  $z_t \in \mathbb{R}^n$  to a smooth curve  $x_t \in \mathcal{M}$ .

- We can extend this procedure to semimartingales on ℝ<sup>n</sup>, leading to a stochastic development on F(M).
- ► The projection of the stochastic development on *F*(*M*) down to *M* leads to the notion of a semimartingale on *M*.

## Definition (Hsu (2002))

Let  $\mathcal{M}$  be a smooth manifold equipped with a connection  $\nabla$ . An  $\mathcal{M}$ -valued semimartingale  $X_t$  is called a  $\nabla$ -martingale if its antidevelopment  $Z_t$  with respect to  $\nabla$  on  $\mathbb{R}^n$  is a (local) martingale.

# Brownian motion on manifolds

### Definition (Hsu (2002))

An M-valued stochastic process  $X_t$  is called a (Riemannian) Brownian motion if its anti-development is standard Brownian motion on Euclidean space.

## References

Jean H Gallier. Lecture notes for CIS 610 Advanced Geometric Methods in Computer Science: Connections on manifolds. *https://www.cis.upenn.edu/~cis610/cis610-18-sl12.pdf*, 2018.

Elton P Hsu. *Stochastic analysis on manifolds*. Number 38. American Mathematical Soc., 2002. Barrett O'Neill. *Semi-Riemannian geometry with applications to relativity*. Academic press, 1983.