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I. Characterizations of Brownian motion on Rn
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Brownian motion: as random paths

Definition (Brownian motion)
An Rn-stochastic process (Xx

t )t≥0 is Brownian motion with X0 = x if:

(i) it has continuous sample paths (that is, t 7→ Xt is continuous),

(ii) Xt − Xs for t ≥ s is normally distributed with mean zero and covariance (t − s)In.

In other words, we can define Brownian motion as:

I a Markov process with continuous paths and transition kernel:

p(t, x, y) =

(
1
2πt

)n/2
exp

(
−|x − y|2

2t

)
.

I Notation: let Px denote the probability law over sample paths X x
t in C(Rn) and let

Ex be integration w.r.t. Px .
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Brownian motion: as seen by smooth functions

We can also characterize Brownian motion by the behavior of f (Xt) for f ∈ C∞(Rn).

I Recall that this was how we motivated the infinitesimal generator,

Lf (x) := lim
t↓0

Exf (Xt)− f (x)

t
=

1
2

∆f (x),

where ∆ =
∑ ∂2

∂x2i
is the Laplace operator.
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Brownian motion: as seen by smooth functions

Characterizations of Brownian motion. If for all f ∈ C∞(Rn), any of the following hold:

I Dynkin’s formula

Exf (Xt) = f (x) +

∫ t

0
Lf (Xs) ds.

I Ito’s formula, (a ‘microscopic refinement’ of Dynkin’s)

f (Xt) = f (x) +

∫ t

0
∇f (Xs)

>dXs +

∫ t

0
Lf (Xs) ds.

I Solution to the martingale problem, (in between Dynkin’s and Ito’s)

M f
t := f (Xt)− f (x)−

∫ t

0
Lf (Xs) ds

Xt is Brownian motion if M f
t is a martingale.
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Brownian motion: as seen by smooth functions

This view of using smooth functions as test functions to describe Brownian motion
means we can extend stochastic analysis to manifolds.

I Brownian motion Xt on a smooth manifoldM can be described through f (Xt).
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II. Stochastic processes on manifolds
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Semimartingales on R`

Definition
An R`-stochastic process Zt is a semimartingale if it has a decomposition:

Zt = Mt + At ,

where Mt is a martingale and At is a càdlàg adapted process with bounded variation.

Recall that semimartingales are the largest class of stochastic integrators that make
sense for the Ito or Stratonovich integrals:

I If Zt is an R`-semimartingale and V : Rn → Rn×` is a nice enough vector field, then:

Xt = X0 +

∫ t

0
V (Xs) dZs Yt = Y0 +

∫ t

0
V (Ys) ◦ dZs

are defined, and Xt and Yt are semimartingales.
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Semimartingales on smooth manifolds

Definition
LetM be a smooth manifold. A continuous, adaptedM-valued stochastic process Xt is a
M-valued semimartingale if f (Xt) is an R-semimartingale for all f ∈ C∞(M).
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Ito’s formula for Stratonovich SDEs

Let V1, . . . ,V` : Rn → Rn are smooth vector fields and Zt an R`-semimartingale. Let Xt
be the solution to the Stratonovich SDE:

dXt = Vα(Xs) ◦ dZαt .

Then Ito’s formula states that for f ∈ C∞(Rn),

df (Xt) = Vαf (Xs) ◦ dZαt ,

where Vαf (x) is the directional derivative of f at x in the Vα direction.

I The equivalent process defined as an Ito SDE would satisfy:

df (Xt) = Vαf (Xt)dZt +
1
2
∇Vβ

Vαf (Xs)d〈Zα,Zβ〉t .
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SDEs on smooth manifolds

If V1, . . .V` ∈ Γ(TM) are smooth vector fields onM and Zt an R` semimartingale, we
would like an appropriate definition for the stochastic di�erential equation:

dXt = Vα(Xt) ◦ dZαt .

I We define anM-semimartingale Xt to be a solution to the above SDE if it satisfies
Ito’s formula. That is, for all f ∈ C∞(M),

df (Xt) = Vαf (Xt) ◦ dZαt .
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Existence and uniqueness

Theorem (Hsu (2002))
There is a unique solution to dXt = Vα(Xt) ◦ dZαt up to its explosion time.

I Pass to Euclidean case via Whitney’s embedding theorem.
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Review: Riemannian manifold
LetM be an n-Riemannian manifold with 〈 · , · 〉 its Riemannian metric.
I The tangent space TpM is the set of tangent vectors at p.

I TpM is a linear space with dim(TpM) = n.
I If ξ = (x1, . . . , xn) :M→ Rn is a coordinate system at p, then ∂1, . . . , ∂n form a basis.

I The metric describes the distance between two points p and p + ds.
I The Levi-Civita connection∇ describes how to take derivatives. If X , Y ∈ Γ(TM)

are smooth vector fields, then:

∇XY = the change of Y along the X direction.

I We say that a vector field Y is parallel along a curve xt if:

∇ẋY = 0.

I Since taking derivatives is linear, it su�ices to describe∇ using a basis. The
Christo�el symbol gives∇ in local coordinates:

∇∂i∂j = Γk
ij∂k.
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Review: orthonormal frame bundle
A frame at p ∈M is an isomorphism u : Rn → TpM is orthonormal if:〈

uei, uej
〉

= δij.

I That is, u is a choice of orthonormal basis on TpM.
I The orthonormal frame bundle O(M) is the set of all orthonormal frames, which

can be made a smooth manifold of dimension n + n(n + 1)/2.
I The tangent space TuO(M) can be decomposed:

TuO(M) = HuO(M)⊕ VuO(M),

whereHuO(M) are the horizontal vectors corresponding to moving tangent alongM
and VuO(M) are the vertical vectors corresponding to rotating the frame.

I Given a vector field X onM there is a unique horizontal vector fields X∗, called its
horizontal li�, such that π∗X∗ = X where π : O(M)→M is the projection map.

I Given a smooth curve xt and initial frame u0 at x0, the horizontal li� of xt is the
unique curve ut in O(M) such that for any v ∈ Rn, utv is parallel along xt .
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Example: one-dimensional case

LetM = R with the usual (global) coordinate system.

I Let∇ be a connection onM with:

∇∂∂(x) = Γ(x)∂.

I Consider the curve xt = t. Let u0s = s∂ be the initial frame. What is the horizontal
li� of xt with initial frame u0?
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Example: one-dimensional case

To describe a frame u, we just need to specify (x, u) the point x ∈M and the basis
vector u∂ (we’ve overloaded the notation u to denote the frame and the coordinate).

I Under this choice of coordinates, u0 7→ (0, 1).

I The condition that ut is parallel to itself is to say:

0 = ∇∂(ut∂) = utΓ(t) + ∂(ut),

where ∂(ut) = u̇t . This implies ut is described by the coordinates (t, ut), where:

ut = exp

(
−
∫ t

0
Γ(s) ds

)
.
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Review: anti-development

Given a smooth curve xt onM, let ut be the horizontal li� with initial frame u0.

I Notice that ut : Rn → TxtM and ẋt ∈ TxtM.

I The anti-development of the curve xt is the curve wt in Rn,

wt =

∫ t

0
u−1s ẋs ds.

I Recall the spaceship+joystick analogy. Then wt is the curve that the joystick traces
out to move the spaceship on the curve xt .
I The development of a curve wt in Rn is the reverse process to construct xt (the

spaceship develops the input to its joystick into a path in space).
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Example: one-dimensional case
Returning to our earlier example, what is the development of the curve xt = t?
I Since ẋt = ∂, we have:

u−1t ẋt = exp
(
G(t)

)
,

where G(t) =

∫ t

0
Γ(s) ds.

I It follows that the anti-development is:

wt =

∫ t

0
eG(s) ds.

I Checking with intuition: suppose Γ ≡ 1, so that:

∇∂∂ = 1.

I Suppose you’re travelling along the curve xt and to go unit speed, you need to push
the joystick forward some amount. To maintain that speed, you need to push the
joystick more proportional to the amount it is already pushed. Indeed, wt = et .
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Semimartingales on the frame bundle

Let u ∈ O(M) be a frame, so that u : Rn → TpM.

I Let Hi be the horizontal vector field where Hi(u) is the li� of uei ∈ TpM at u.

I In the following, we consider the SDE on the frame bundle:

dUt =

n∑
i=1

Hi(Ut) ◦ dW i
t = H(Ut) ◦ dWt .

19 / 35



Extending horizontal li�s and developments to semimartingales

“ As expected, for semimartingales stochastic development and horizontal li� are
obtained by solving stochastic di�erential equations driven by either R-valued
orM-valued semimartingales. But unlike the case of smooth curves, these
equations are not local at a fixed time.

Hsu (2002), p. 44
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Stochastic anti-developments and horizontal li�s

Definition (Anti-development)
An O(M)-semimartingale Ut is horizontal if there exists semimartingale Wt such that:

dUt = H(Ut) ◦ dWt .

The unique Wt is called the anti-development of Ut .

Definition (Development)
Given Wt , the solution Ut to the above SDE is called the development of Wt .

Definition (Horizontal li�)
Let Xt be aM-semimartingale. An O(M)-semimartingale Ut is a horizontal li� of Xt if
its projection is Xt ,

πUt = Xt .
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The correspondences

W ∈ Rn development−−−−−−−−−⇀↽−−−−−−−−−
anti-development

U ∈ O(M)
projection−−−−−−−−−⇀↽−−−−−−−−−

horizontal lift
X ∈M

I development from existence + uniqueness theorem for SDEs on manifolds

I projection from π : O(M)→M

For the remaining correspondences, assume thatM is a closed submanifold of RN (note
that Nash’s embedding theorem states that it is always possible to isometrically embed
a Riemannian manifold into Euclidean space).

I We end up with an anti-development W in RN for some N possibly larger than n.

I A construction with local charts possible, but technically unwieldy (Hsu, 2008).
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Stochastic anti-development and horizontal li�

Theorem (Theorem 2.3.4, Hsu (2002))
A horizontal semimartingale Ut on the frame bundle O(M) has a unique
anti-development Wt .

Theorem (Theorem 2.3.5, Hsu (2002))
Suppose that Xt is a semimartingale onM and U0 ∈ O(M) with πU0 = X0.
Then there is a unique horizontal li� Ut of Xt starting from U0.
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Example: one-dimensional case

I The horizontal li� of Xt is given by:

Ut =
(
Xt , e−G(Xt)

)
,

where G(x) =

∫ x

0
Γ(s) ds.

I The anti-development of Ut is:

Wt =

∫ t

0
eG(Xs) ds.
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The correspondence in equations

Proposition (Proposition 2.3.8, Hsu (2002))
Let Xt be aM-semimartingale with initial condition X0 satisfying:

dXt = Vα(Xt) ◦ dZαt .

Let V ∗α be the horizontal li� of Vα to O(M). Then:

(i) the horizontal li� Ut of Xt with initial frame U0 is a solution to:

dUt = V ∗α(Ut) ◦ dZαt ,

(ii) the anti-development of Xt is given by:

Wt =

∫ t

0
U−1s Vα(Xs) ◦ dZ t

α.
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Eells-Elworhthy-Malliavin construction of Brownian motion

If Wt is Brownian motion on Rn, then its development Ut which is the solution to:

dUt = Hα(Ut) ◦ dWα
t

is horizontal Brownian motion on O(M).

I The projection Xt = πUt is Brownian motion onM.
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Martingales on manifolds

LetM be a Riemannian manifold equipped with the Levi-Civita connection∇.

Definition
AnM-valued semimartingale Xt is a ∇-martingale if its anti-development Wt with
respect to ∇ is a (local) martingale.
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Characterization of martingales

Proposition (Proposition 2.5.2, Hsu (2002))
AnM-semimartingale Xt is a ∇-martingale if and only if for f ∈ C∞(M):

M f
t := f (Xt)− f (X0)−

∫ t

0

1
2
∇2f (Xs)(dXs, dXs)

is a local martingale (in the usual sense).
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Proof of proposition

I (⇒). Show that if Xt is a∇-martingale, then M f
t is a martingale .

I Li� Xt to Ut and li� f :M→ R to f̃ : O(M)→ R.
I Apply Ito’s formula to f̃ (Ut).

I (⇐). Show that if M f
t is a martingale for all smooth f , then Xt is a ∇-martingale.

I AssumeM is embedded into Euclidean space.
I Consider f to be the coordinate function f (x) = x.
I Claim: the anti-development Wt can be computed as:

Wt =

∫ t

0
VsdM

f
t ,

for some process Vs . If M f
t is a local martingale, then so is Wt .
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Di�usion processes

Let L be a smooth second-order elliptic (not necessarily non-degenerate) operator onM.

Definition
An adapted stochastic process Xt is called a L-di�usion process if Xt is anM-valued
semimartingale and:

M f
t = f (Xt)− f (X0)−

∫ t

0
Lf (Xs) ds

is a local martingale for all f ∈ C∞(M).
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Gradients, divergences, and the Laplace-Beltrami operator
Given a Riemannian manifold, define the following:

I the gradient grad f of a function is the dual of the di�erential df

I the divergence divX of a vector field is the contraction of the (1, 1)-tensor ∇X .

I the Laplace-Beltrami operator ∆M is defined:

∆M = div grad f .

Proposition
For any orthonormal basis {bi} of TpM,

∆Mf = trace∇2f =

n∑
i=1
∇2f (bi, bi).
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Bochner’s horizontal Laplacian

Recall that Hi are the horizontal vector fields where Hi(u) is the li� of uei ∈ TpM at u.

I The Bochner’s horizontal Laplacian is defined:

∆O(M) =

n∑
i=1

H 2
i .

Proposition
The Bochner’s horizontal Laplacian ∆O(M) is the li� of the Laplace-Beltrami operator ∆M

to O(M). That is, if f ∈ C∞(M), let f̃ be the li� to O(M). Then:

∆Mf (x) = ∆O(M)f̃ (u),

where πu = x.
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Characterization of Brownian motion

Proposition (Proposition 3.2.1, Hsu (2002))
Let Xt be anM-semimartingale. The following are equivalent:

(i) Xt is a (Riemannian) Brownian motion.

(ii) Xt is an 1
2∆M-di�usion process. That is, for all f ∈ C∞(M),

M f
t = f (Xt)− f (X0)−

∫ t

0

1
2

∆Mf (Xs) ds

is a local martingale.

(iii) The anti-development Wt of Xt is standard Euclidean Brownian motion.
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Characterization of horizontal Brownian motion

Proposition (Proposition 3.2.2, Hsu (2002))
Let Ut be an O(M)-semimartingale. The following are equivalent:

(i) Ut is a horizontal Brownian motion on O(M).

(ii) Ut is an 1
2∆O(M)-di�usion process.

(iii) Ut is horizontal whose projection Xt = πUt is Brownian motion onM.

(iv) Ut is horizontal whose anti-development is standard Euclidean Brownian motion.
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