# Stochastic calculus on manifolds 

Part II: Brownian motion on manifolds
Geelon So, agso@eng.ucsd.edu
Sampling/optimization reading group - August 31, 2021
I. Characterizations of Brownian motion on $\mathbb{R}^{n}$

## Brownian motion: as random paths

## Definition (Brownian motion)

An $\mathbb{R}^{n}$-stochastic process $\left(X_{t}^{x}\right)_{t \geq 0}$ is Brownian motion with $X_{0}=x$ if:
(i) it has continuous sample paths (that is, $t \mapsto X_{t}$ is continuous),
(ii) $X_{t}-X_{s}$ for $t \geq s$ is normally distributed with mean zero and covariance $(t-s) \mathrm{I}_{n}$.

In other words, we can define Brownian motion as:

- a Markov process with continuous paths and transition kernel:

$$
p(t, x, y)=\left(\frac{1}{2 \pi t}\right)^{n / 2} \exp \left(-\frac{|x-y|^{2}}{2 t}\right)
$$

- Notation: let $P^{x}$ denote the probability law over sample paths $X_{t}^{x}$ in $C\left(\mathbb{R}^{n}\right)$ and let $E^{x}$ be integration w.r.t. $P^{x}$.


## Brownian motion: as seen by smooth functions

We can also characterize Brownian motion by the behavior of $f\left(X_{t}\right)$ for $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$.

- Recall that this was how we motivated the infinitesimal generator,

$$
L f(x):=\lim _{t \downarrow 0} \frac{E^{x} f\left(X_{t}\right)-f(x)}{t}=\frac{1}{2} \Delta f(x),
$$

where $\Delta=\sum \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplace operator.

## Brownian motion: as seen by smooth functions

Characterizations of Brownian motion. If for all $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$, any of the following hold:

- Dynkin's formula

$$
E^{x} f\left(X_{t}\right)=f(x)+\int_{0}^{t} L f\left(X_{s}\right) d s
$$

- Ito's formula, (a 'microscopic refinement' of Dynkin's)

$$
f\left(X_{t}\right)=f(x)+\int_{0}^{t} \nabla f\left(X_{s}\right)^{\top} d X_{s}+\int_{0}^{t} L f\left(X_{s}\right) d s
$$

- Solution to the martingale problem, (in between Dynkin's and Ito's)

$$
M_{t}^{f}:=f\left(X_{t}\right)-f(x)-\int_{0}^{t} L f\left(X_{s}\right) d s
$$

$X_{t}$ is Brownian motion if $M_{t}^{f}$ is a martingale.

## Brownian motion: as seen by smooth functions

This view of using smooth functions as test functions to describe Brownian motion means we can extend stochastic analysis to manifolds.

- Brownian motion $X_{t}$ on a smooth manifold $\mathcal{M}$ can be described through $f\left(X_{t}\right)$.
II. Stochastic processes on manifolds


## Semimartingales on $\mathbb{R}^{\ell}$

## Definition

An $\mathbb{R}^{\ell}$-stochastic process $Z_{t}$ is a semimartingale if it has a decomposition:

$$
Z_{t}=M_{t}+A_{t},
$$

where $M_{t}$ is a martingale and $A_{t}$ is a càdlàg adapted process with bounded variation.
Recall that semimartingales are the largest class of stochastic integrators that make sense for the Ito or Stratonovich integrals:

- If $Z_{t}$ is an $\mathbb{R}^{\ell}$-semimartingale and $V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times \ell}$ is a nice enough vector field, then:

$$
X_{t}=X_{0}+\int_{0}^{t} V\left(X_{s}\right) d Z_{s} \quad Y_{t}=Y_{0}+\int_{0}^{t} V\left(Y_{s}\right) \circ d Z_{s}
$$

are defined, and $X_{t}$ and $Y_{t}$ are semimartingales.

## Semimartingales on smooth manifolds

## Definition

Let $\mathcal{M}$ be a smooth manifold. A continuous, adapted $\mathcal{M}$-valued stochastic process $X_{t}$ is a $\mathcal{M}$-valued semimartingale if $f\left(X_{t}\right)$ is an $\mathbb{R}$-semimartingale for all $f \in C^{\infty}(\mathcal{M})$.

## Ito's formula for Stratonovich SDEs

Let $V_{1}, \ldots, V_{\ell}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are smooth vector fields and $Z_{t}$ an $\mathbb{R}^{\ell}$-semimartingale. Let $X_{t}$ be the solution to the Stratonovich SDE:

$$
d X_{t}=V_{\alpha}\left(X_{s}\right) \circ d Z_{t}^{\alpha} .
$$

Then Ito's formula states that for $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
d f\left(X_{t}\right)=V_{\alpha} f\left(X_{s}\right) \circ d Z_{t}^{\alpha}
$$

where $V_{\alpha} f(x)$ is the directional derivative of $f$ at $x$ in the $V_{\alpha}$ direction.

- The equivalent process defined as an Ito SDE would satisfy:

$$
d f\left(X_{t}\right)=V_{\alpha} f\left(X_{t}\right) d Z_{t}+\frac{1}{2} \nabla_{V_{\beta}} V_{\alpha} f\left(X_{s}\right) d\left\langle Z^{\alpha}, Z^{\beta}\right\rangle_{t}
$$

## SDEs on smooth manifolds

If $V_{1}, \ldots V_{\ell} \in \Gamma(T \mathcal{M})$ are smooth vector fields on $\mathcal{M}$ and $Z_{t}$ an $\mathbb{R}^{\ell}$ semimartingale, we would like an appropriate definition for the stochastic differential equation:

$$
d X_{t}=V_{\alpha}\left(X_{t}\right) \circ d Z_{t}^{\alpha}
$$

- We define an $\mathcal{M}$-semimartingale $X_{t}$ to be a solution to the above SDE if it satisfies Ito's formula. That is, for all $f \in C^{\infty}(\mathcal{M})$,

$$
d f\left(X_{t}\right)=V_{\alpha} f\left(X_{t}\right) \circ d Z_{t}^{\alpha} .
$$

## Existence and uniqueness

Theorem (Hsu (2002))
There is a unique solution to $d X_{t}=V_{\alpha}\left(X_{t}\right) \circ d Z_{t}^{\alpha}$ up to its explosion time.

- Pass to Euclidean case via Whitney's embedding theorem.


## Review: Riemannian manifold

Let $\mathcal{M}$ be an $n$-Riemannian manifold with $\langle\cdot, \cdot\rangle$ its Riemannian metric.

- The tangent space $T_{p} \mathcal{M}$ is the set of tangent vectors at $p$.
- $T_{p} \mathcal{M}$ is a linear space with $\operatorname{dim}\left(T_{p} \mathcal{M}\right)=n$.
- If $\xi=\left(x^{1}, \ldots, x^{n}\right): \mathcal{M} \rightarrow \mathbb{R}^{n}$ is a coordinate system at $p$, then $\partial_{1}, \ldots, \partial_{n}$ form a basis.
- The metric describes the distance between two points $p$ and $p+d s$.
- The Levi-Civita connection $\nabla$ describes how to take derivatives. If $X, Y \in \Gamma(T \mathcal{M})$ are smooth vector fields, then:

$$
\nabla_{X} Y=\text { the change of } Y \text { along the } X \text { direction. }
$$

- We say that a vector field $Y$ is parallel along a curve $x_{t}$ if:

$$
\nabla_{\dot{x}} Y=0 .
$$

- Since taking derivatives is linear, it suffices to describe $\nabla$ using a basis. The Christoffel symbol gives $\nabla$ in local coordinates:

$$
\nabla_{\partial_{i}} \partial_{j}=\Gamma_{i j}^{k} \partial_{k}
$$

## Review: orthonormal frame bundle

A frame at $p \in \mathcal{M}$ is an isomorphism $u: \mathbb{R}^{n} \rightarrow T_{p} \mathcal{M}$ is orthonormal if:

$$
\left\langle u e_{i}, u e_{j}\right\rangle=\delta_{i j} .
$$

- That is, $u$ is a choice of orthonormal basis on $T_{p} \mathcal{M}$.
- The orthonormal frame bundle $\mathcal{O}(\mathcal{M})$ is the set of all orthonormal frames, which can be made a smooth manifold of dimension $n+n(n+1) / 2$.
- The tangent space $T_{u} \mathcal{O}(\mathcal{M})$ can be decomposed:

$$
T_{u} \mathcal{O}(\mathcal{M})=\mathcal{H}_{u} \mathcal{O}(\mathcal{M}) \oplus \mathcal{V}_{u} \mathcal{O}(\mathcal{M})
$$

where $\mathcal{H}_{u} \mathcal{O}(\mathcal{M})$ are the horizontal vectors corresponding to moving tangent along $\mathcal{M}$ and $\mathcal{V}_{u} \mathcal{O}(\mathcal{M})$ are the vertical vectors corresponding to rotating the frame.
$\Rightarrow$ Given a vector field $X$ on $\mathcal{M}$ there is a unique horizontal vector fields $X^{*}$, called its horizontal lift, such that $\pi_{*} X^{*}=X$ where $\pi: \mathcal{O}(\mathcal{M}) \rightarrow \mathcal{M}$ is the projection map.

- Given a smooth curve $x_{t}$ and initial frame $u_{0}$ at $x_{0}$, the horizontal lift of $x_{t}$ is the unique curve $u_{t}$ in $\mathcal{O}(\mathcal{M})$ such that for any $v \in \mathbb{R}^{n}, u_{t} v$ is parallel along $x_{t}$.


## Example: one-dimensional case

Let $\mathcal{M}=\mathbb{R}$ with the usual (global) coordinate system.

- Let $\nabla$ be a connection on $\mathcal{M}$ with:

$$
\nabla_{\partial} \partial(x)=\Gamma(x) \partial .
$$

- Consider the curve $x_{t}=t$. Let $u_{0} s=s \partial$ be the initial frame. What is the horizontal lift of $x_{t}$ with initial frame $u_{0}$ ?


## Example: one-dimensional case

To describe a frame $u$, we just need to specify $(x, u)$ the point $x \in \mathcal{M}$ and the basis vector $u \partial$ (we've overloaded the notation $u$ to denote the frame and the coordinate).

- Under this choice of coordinates, $u_{0} \mapsto(0,1)$.
- The condition that $u_{t}$ is parallel to itself is to say:

$$
0=\nabla_{\partial}\left(u_{t} \partial\right)=u_{t} \Gamma(t)+\partial\left(u_{t}\right),
$$

where $\partial\left(u_{t}\right)=\dot{u}_{t}$. This implies $u_{t}$ is described by the coordinates $\left(t, u_{t}\right)$, where:

$$
u_{t}=\exp \left(-\int_{0}^{t} \Gamma(s) d s\right)
$$

## Review: anti-development

Given a smooth curve $x_{t}$ on $\mathcal{M}$, let $u_{t}$ be the horizontal lift with initial frame $u_{0}$.

- Notice that $u_{t}: \mathbb{R}^{n} \rightarrow T_{x_{t}} \mathcal{M}$ and $\dot{x}_{t} \in T_{x_{t}} \mathcal{M}$.
- The anti-development of the curve $x_{t}$ is the curve $w_{t}$ in $\mathbb{R}^{n}$,

$$
w_{t}=\int_{0}^{t} u_{s}^{-1} \dot{x}_{s} d s
$$

- Recall the spaceship+joystick analogy. Then $w_{t}$ is the curve that the joystick traces out to move the spaceship on the curve $x_{t}$.
- The development of a curve $w_{t}$ in $\mathbb{R}^{n}$ is the reverse process to construct $x_{t}$ (the spaceship develops the input to its joystick into a path in space).


## Example: one-dimensional case

Returning to our earlier example, what is the development of the curve $x_{t}=t$ ?

- Since $\dot{x}_{t}=\partial$, we have:

$$
u_{t}^{-1} \dot{x}_{t}=\exp (G(t))
$$

where $G(t)=\int_{0}^{t} \Gamma(s) d s$.

- It follows that the anti-development is:

$$
w_{t}=\int_{0}^{t} e^{G(s)} d s
$$

- Checking with intuition: suppose $\Gamma \equiv 1$, so that:

$$
\nabla_{\partial} \partial=1
$$

- Suppose you're travelling along the curve $x_{t}$ and to go unit speed, you need to push the joystick forward some amount. To maintain that speed, you need to push the joystick more proportional to the amount it is already pushed. Indeed, $w_{t}=e^{t}$.


## Semimartingales on the frame bundle

Let $u \in \mathcal{O}(\mathcal{M})$ be a frame, so that $u: \mathbb{R}^{n} \rightarrow T_{p} \mathcal{M}$.

- Let $H_{i}$ be the horizontal vector field where $H_{i}(u)$ is the lift of $u e_{i} \in T_{p} \mathcal{M}$ at $u$.
- In the following, we consider the SDE on the frame bundle:

$$
d U_{t}=\sum_{i=1}^{n} H_{i}\left(U_{t}\right) \circ d W_{t}^{i}=H\left(U_{t}\right) \circ d W_{t} .
$$

## Extending horizontal lifts and developments to semimartingales

As expected, for semimartingales stochastic development and horizontal lift are obtained by solving stochastic differential equations driven by either $\mathbb{R}$-valued or $\mathcal{M}$-valued semimartingales. But unlike the case of smooth curves, these equations are not local at a fixed time.

Hsu (2002), p. 44

## Stochastic anti-developments and horizontal lifts

## Definition (Anti-development)

An $\mathcal{O}(\mathcal{M})$-semimartingale $U_{t}$ is horizontal if there exists semimartingale $W_{t}$ such that:

$$
d U_{t}=H\left(U_{t}\right) \circ d W_{t}
$$

The unique $W_{t}$ is called the anti-development of $U_{t}$.
Definition (Development)
Given $W_{t}$, the solution $U_{t}$ to the above SDE is called the development of $W_{t}$.
Definition (Horizontal lift)
Let $X_{t}$ be a $\mathcal{M}$-semimartingale. An $\mathcal{O}(\mathcal{M})$-semimartingale $U_{t}$ is a horizontal lift of $X_{t}$ if its projection is $X_{t}$,

$$
\pi U_{t}=X_{t}
$$

## The correspondences

$$
W \in \mathbb{R}^{n} \underset{\text { anti-development }}{\stackrel{\text { development }}{\rightleftharpoons}} U \in \mathcal{O}(\mathcal{M}) \underset{\text { horizontal lift }}{\stackrel{\text { projection }}{\rightleftharpoons}} X \in \mathcal{M}
$$

- development from existence + uniqueness theorem for SDEs on manifolds
- projection from $\pi: \mathcal{O}(\mathcal{M}) \rightarrow \mathcal{M}$

For the remaining correspondences, assume that $\mathcal{M}$ is a closed submanifold of $\mathbb{R}^{N}$ (note that Nash's embedding theorem states that it is always possible to isometrically embed a Riemannian manifold into Euclidean space).

- We end up with an anti-development $W$ in $\mathbb{R}^{N}$ for some $N$ possibly larger than $n$.
- A construction with local charts possible, but technically unwieldy (Hsu, 2008).


## Stochastic anti-development and horizontal lift

Theorem (Theorem 2.3.4, Hsu (2002))
A horizontal semimartingale $U_{t}$ on the frame bundle $\mathcal{O}(\mathcal{M})$ has a unique anti-development $W_{t}$.

Theorem (Theorem 2.3.5, Hsu (2002))
Suppose that $X_{t}$ is a semimartingale on $\mathcal{M}$ and $U_{0} \in \mathcal{O}(\mathcal{M})$ with $\pi U_{0}=X_{0}$. Then there is a unique horizontal lift $U_{t}$ of $X_{t}$ starting from $U_{0}$.

## Example: one-dimensional case

- The horizontal lift of $X_{t}$ is given by:

$$
U_{t}=\left(X_{t}, e^{-G\left(X_{t}\right)}\right),
$$

where $G(x)=\int_{0}^{x} \Gamma(s) d s$.

- The anti-development of $U_{t}$ is:

$$
W_{t}=\int_{0}^{t} e^{G\left(X_{s}\right)} d s
$$

## The correspondence in equations

Proposition (Proposition 2.3.8, Hsu (2002))
Let $X_{t}$ be a $\mathcal{M}$-semimartingale with initial condition $X_{0}$ satisfying:

$$
d X_{t}=V_{\alpha}\left(X_{t}\right) \circ d Z_{t}^{\alpha}
$$

Let $V_{\alpha}^{*}$ be the horizontal lift of $V_{\alpha}$ to $\mathcal{O}(\mathcal{M})$. Then:
(i) the horizontal lift $U_{t}$ of $X_{t}$ with initial frame $U_{0}$ is a solution to:

$$
d U_{t}=V_{\alpha}^{*}\left(U_{t}\right) \circ d Z_{t}^{\alpha},
$$

(ii) the anti-development of $X_{t}$ is given by:

$$
W_{t}=\int_{0}^{t} U_{s}^{-1} V^{\alpha}\left(X_{s}\right) \circ d Z_{\alpha}^{t}
$$

## Eells-Elworhthy-Malliavin construction of Brownian motion

If $W_{t}$ is Brownian motion on $\mathbb{R}^{n}$, then its development $U_{t}$ which is the solution to:

$$
d U_{t}=H_{\alpha}\left(U_{t}\right) \circ d W_{t}^{\alpha}
$$

is horizontal Brownian motion on $\mathcal{O}(\mathcal{M})$.

- The projection $X_{t}=\pi U_{t}$ is Brownian motion on $\mathcal{M}$.


## Martingales on manifolds

Let $\mathcal{M}$ be a Riemannian manifold equipped with the Levi-Civita connection $\nabla$.

## Definition

An $\mathcal{M}$-valued semimartingale $X_{t}$ is a $\nabla$-martingale if its anti-development $W_{t}$ with respect to $\nabla$ is a (local) martingale.

## Characterization of martingales

## Proposition (Proposition 2.5.2, Hsu (2002))

An $\mathcal{M}$-semimartingale $X_{t}$ is a $\nabla$-martingale if and only if for $f \in C^{\infty}(\mathcal{M})$ :

$$
M_{t}^{f}:=f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} \frac{1}{2} \nabla^{2} f\left(X_{s}\right)\left(d X_{s}, d X_{s}\right)
$$

is a local martingale (in the usual sense).

## Proof of proposition

- $(\Rightarrow)$. Show that if $X_{t}$ is a $\nabla$-martingale, then $M_{t}^{f}$ is a martingale .

L Lift $X_{t}$ to $U_{t}$ and lift $f: \mathcal{M} \rightarrow \mathbb{R}$ to $\tilde{f}: \mathcal{O}(\mathcal{M}) \rightarrow \mathbb{R}$.

- Apply Ito's formula to $\tilde{f}\left(U_{t}\right)$.
- $(\Leftarrow)$. Show that if $M_{t}^{f}$ is a martingale for all smooth $f$, then $X_{t}$ is a $\nabla$-martingale.
- Assume $\mathcal{M}$ is embedded into Euclidean space.
- Consider $f$ to be the coordinate function $f(x)=x$.
- Claim: the anti-development $W_{t}$ can be computed as:

$$
W_{t}=\int_{0}^{t} V_{s} d M_{t}^{f}
$$

for some process $V_{s}$. If $M_{t}^{f}$ is a local martingale, then so is $W_{t}$.

## Diffusion processes

Let $L$ be a smooth second-order elliptic (not necessarily non-degenerate) operator on $\mathcal{M}$.
Definition
An adapted stochastic process $X_{t}$ is called a L-diffusion process if $X_{t}$ is an $\mathcal{M}$-valued semimartingale and:

$$
M_{t}^{f}=f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} L f\left(X_{s}\right) d s
$$

is a local martingale for all $f \in C^{\infty}(\mathcal{M})$.

## Gradients, divergences, and the Laplace-Beltrami operator

Given a Riemannian manifold, define the following:

- the gradient $\operatorname{grad} f$ of a function is the dual of the differential $d f$
- the divergence div $X$ of a vector field is the contraction of the $(1,1)$-tensor $\nabla X$.
- the Laplace-Beltrami operator $\Delta_{\mathcal{M}}$ is defined:

$$
\Delta_{\mathcal{M}}=\operatorname{div} \operatorname{grad} f
$$

Proposition
For any orthonormal basis $\left\{b_{i}\right\}$ of $T_{p} \mathcal{M}$,

$$
\Delta_{\mathcal{M} f}=\operatorname{trace} \nabla^{2} f=\sum_{i=1}^{n} \nabla^{2} f\left(b_{i}, b_{i}\right)
$$

## Bochner's horizontal Laplacian

Recall that $H_{i}$ are the horizontal vector fields where $H_{i}(u)$ is the lift of $u e_{i} \in T_{p} \mathcal{M}$ at $u$.

- The Bochner's horizontal Laplacian is defined:

$$
\Delta_{\mathcal{O}(\mathcal{M})}=\sum_{i=1}^{n} H_{i}^{2}
$$

## Proposition

The Bochner's horizontal Laplacian $\Delta_{\mathcal{O}(\mathcal{M})}$ is the lift of the Laplace-Beltrami operator $\Delta_{\mathcal{M}}$ to $\mathcal{O}(\mathcal{M})$. That is, iff $\in C^{\infty}(\mathcal{M})$, let $\tilde{f}$ be the lift to $\mathcal{O}(\mathcal{M})$. Then:

$$
\Delta_{\mathcal{M}} f(x)=\Delta_{\mathcal{O}(\mathcal{M})} \tilde{f}(u)
$$

where $\pi u=x$.

## Characterization of Brownian motion

Proposition (Proposition 3.2.1, Hsu (2002))
Let $X_{t}$ be an $\mathcal{M}$-semimartingale. The following are equivalent:
(i) $X_{t}$ is a (Riemannian) Brownian motion.
(ii) $X_{t}$ is an $\frac{1}{2} \Delta_{\mathcal{M}}$-diffusion process. That is, for all $f \in C^{\infty}(\mathcal{M})$,

$$
M_{t}^{f}=f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} \frac{1}{2} \Delta_{\mathcal{M}} f\left(X_{s}\right) d s
$$

is a local martingale.
(iii) The anti-development $W_{t}$ of $X_{t}$ is standard Euclidean Brownian motion.

## Characterization of horizontal Brownian motion

Proposition (Proposition 3.2.2, Hsu (2002))
Let $U_{t}$ be an $\mathcal{O}(\mathcal{M})$-semimartingale. The following are equivalent:
(i) $U_{t}$ is a horizontal Brownian motion on $\mathcal{O}(\mathcal{M})$.
(ii) $U_{t}$ is an $\frac{1}{2} \Delta_{\mathcal{O}(\mathcal{M})}$-diffusion process.
(iii) $U_{t}$ is horizontal whose projection $X_{t}=\pi U_{t}$ is Brownian motion on $\mathcal{M}$.
(iv) $U_{t}$ is horizontal whose anti-development is standard Euclidean Brownian motion.

## References

Elton P Hsu. Stochastic analysis on manifolds. Number 38. American Mathematical Soc., 2002.
Elton P Hsu. A brief introduction to Brownian motion on a Riemannian manifold. Lecture Notes, 2008.

