Stochastic differential equations

Basic results

Ito stochastic differential equation

Definition

Let $(B_t)_{t\geq 0}$ be Brownian motion. A stochastic process $(X_t)_{t\geq 0}$ is a solution to the **Ito stochastic differential equation**

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$$

if for all $t \geq 0$ and X_0 ,

$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s.$$

We call any such solution an Ito process.

Existence and uniqueness

Conditions from ODEs

Question: what conditions can we impose on b and σ to ensure that there exists a unique solution to the following SDE:

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$$

Counterexample: existence

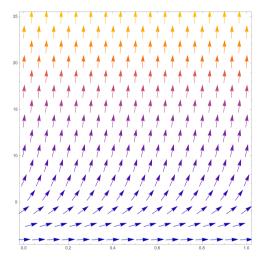


Figure 1: The solution for the ODE $dX_t = X_t^2 dt$ and $X_0 = 1$ explodes.

Counterexample: existence

The following ODE does not have a global solution:

$$\frac{dX_t}{dt} = X_t^2 \quad \text{and} \quad X_0 = 1.$$

It has the unique solution for $t \in [0, 1)$.

$$X_t = \frac{1}{1-t}.$$

▶ Introducing a **growth condition** $|b(t,x)| \le K(1+|x|)$ ensures that the solution to the ODE does not *explode*.¹

¹We denote the norm of $x \in \mathbb{R}^n$ by |x|.

Counterexample: uniqueness

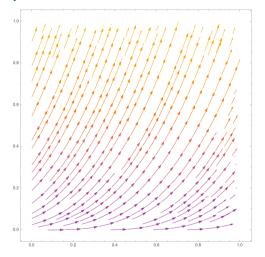


Figure 2: Streamlines of the ODE $dX_t = 3X_t^{2/3}dt$.

Counterexample: uniqueness

The following ODE has more than one solution:

$$\frac{dX_t}{dt} = 3X_t^{2/3} \quad \text{and} \quad X_0 = 0.$$

For any a > 0, the following function is a solution:

$$X_t = \begin{cases} 0 & t \le a \\ (t-a)^3 & t > a. \end{cases}$$

▶ Introducing a **Lipschitz condition** $|b(t, x) - b(t, y)| \le L|x - y|$ ensures that any solution to the ODE is unique.

An existence and uniqueness result for SDEs

Theorem (Theorem 5.2.1, Øksendal (2003))

Let T > 0. Let $b : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ and $\sigma : [0, T] \times \mathbb{R}^n \to \mathbb{R}^{n \times m}$ be measurable. Suppose that b and σ satisfy:

- ▶ growth condition: $|b(t,x)| + |\sigma(t,x)| \le K(1+|x|)$
- ► Lipschitz condition: $|b(t,x) b(t,y)| + |\sigma(t,x) \sigma(t,y)| \le L|x-y|$.

Further, suppose Z and $(B_t)_{t\geq 0}$ are independent with $E[|Z|^2]<\infty$. Then, the SDE

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$$

with $X_0 = Z$ on the time interval $t \in [0, T]$ has a unique t-continuous solution $X_t(\omega)$ such that $X_t(\omega)$ is adapted to the filtration \mathcal{F}_t^Z generated by Z and $(B_s)_{0 \le s \le t}$, and such that:

$$E\left[\int_0^T |X_t|^2 dt\right] < \infty.$$

Uniqueness of solutions

Givens: $dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$ with:

▶ Lipschitz condition: $|b(t, x) - b(t, y)| + |\sigma(t, x) - \sigma(t, y)| \le L|x - y|$.

Proof idea: Let X_t and \widehat{X}_t be solutions.

▶ Apply *Ito isometry* and *Lipschitz condition* to show that:

$$E\left[|X_t-\widehat{X}_t|^2\right]=0.$$

▶ This implies that for any $t \ge 0$,

$$P\left[|X_t - \widehat{X}_t| = 0\right] = 1.$$

- ▶ This simultaneously holds for countable number of $t \in \mathbb{Q} \cap [0, T]$.
- ▶ Uniqueness follows from continuity of $t \mapsto |X_t \widehat{X}_t|$.

Existence of solutions

Givens: $dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$ with:

- ▶ growth condition: $|b(t,x)| + |\sigma(t,x)| \le K(1+|x|)$
- ▶ Lipschitz condition: $|b(t, x) b(t, y)| + |\sigma(t, x) \sigma(t, y)| \le L|x y|$.

Proof idea:

► Construct sequence $(Y_t^{(k)})_{k \in \mathbb{N}}$ inductively by:

$$Y_t^{(0)} = X_0$$
 and $Y_t^{(k+1)} = X_0 + \int_0^t b(s, Y_s^{(k)}) dt + \int_0^t \sigma(s, Y_s^{(k)}) dB_s$.

- ▶ Show that $(Y_t^{(k)})_{k \in \mathbb{N}}$ is a Cauchy sequence in $L^2([0,T] \times \Omega; \lambda \times P)$.
- ▶ Set $X_t = \lim_{k \to \infty} Y_t^{(k)}$ and show that X_t satisfies SDE and can be continuous.

Solutions of SDEs are Markov process

Markov processes

Definition

A stochastic process $(X_t)_{t\geq 0}$ is **Markov** with respect to a filtration $(\mathcal{F}_t)_{t\geq 0}$ if

- \triangleright X_t is adapted to the filtration, and
- ▶ for any s > t, the conditional independence holds, $X_s \perp \!\!\! \perp \mathcal{F}_t | X_t$.

Solutions are Markov

Proposition

Let $(B_t)_{t\geq 0}$ be Brownian motion and let $(\mathcal{F}_t)_{t\geq 0}$ be its natural filtration. Let $(X_t)_{t\geq 0}$ be a solution to an SDE satisfying the conditions of the existence/uniqueness theorem,

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t.$$

Then, $(X_t)_{t\geq 0}$ is Markov with respect to $(\mathcal{F}_t)_{t\geq 0}$.

Change of variables: Ito's formula

The infinitesimal: $dB_t^2 = dt$ and $dB_t^{2+N} = 0$

Recall that we can think of dB_t as an *infinitesimal of order* $\frac{1}{2}$, in the sense:

$$\int_0^T f(t,\omega) dB_t(\omega)^2 = \int_0^T f(t,\omega) dt \quad \text{and} \quad \int_0^T f(t,\omega) dB_t(\omega)^{2+N} = 0 \quad (N > 0),$$

for arbitrary adapted function f. Here, the integral is defined:

$$\int_0^T f(t,\omega) \, dB_t(\omega)^{2+N} = \lim_{n \to \infty} \sum_{\Pi_{-}} f(t_{i-1},\omega) \, [B_{t_i}(\omega) - B_{t_{i-1}}(\omega)]^{2+N},$$

where Π_n is a partition $0 = t_0 < t_1 < \dots < t_n = T$ such that $\lim_{n \to \infty} \|\Pi_n\| = 0$. Recall that $\|\Pi_n\| = \max_k t_k - t_{k-1}$.

Ito formula intuition

Let $dX_t = u(t, X_t) dt + v(t, X_t) dB_t$. Consider the Taylor expansion:

$$df(X_t) = f(X_t + dX_t) - f(X_t)$$

$$= f(X_t)dX_t + \frac{1}{2}f''(X_t)dX_t^2 + \cdots$$

$$= f'(X_t)\{u dt + v dB_t\} + \frac{1}{2}f''(X_t) v^2 dB_t^2,$$

where all higher-order terms have been discarded. Apply $dB_t^2 = dt$ to obtain:

$$df(X_t) = \left\{ uf' + \frac{1}{2}v^2f'' \right\} dt + vf' dB_t.$$

Ito formula

Theorem (1-dimensional Ito formula, Øksendal (2003))

Let X_t be an Ito process given by $dX_t = u(t, X_t) dt + v(t, X_t) dB_t$. Let $Y_t = f(t, X_t)$ where f is twice continuously differentiable. Then Y_t is an Ito process given by:

$$dY_t = \frac{\partial f}{\partial t}(t, X_t)dt + \frac{\partial f}{\partial x}(t, X_t)dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(t, X_t)dX_t^2$$

Ito formula

Theorem (The general Ito formula, Øksendal (2003))

Let X_t be an Ito process given by $dX_t = u(t, X_t) dt + v(t, X_t) dB_t$. Let $Y_t = f(t, X_t)$ where $f: [0, \infty) \times \mathbb{R}^n \to \mathbb{R}^p$ is C^2 . Then Y_t is an Ito process whose kth component $Y_t^{(k)}$ is given by:

$$dY_t^{(k)} = \frac{\partial f_k}{\partial t}(t, X_t)dt + \sum_{i=1}^n \frac{\partial f_k}{\partial x_i}(t, X_t)dX_t^{(i)} + \frac{1}{2} \sum_{i,j} \frac{\partial^2 f_k}{\partial x_i \partial x_j}(t, X_t)dX_idX_j,$$

where $dB_i dB_j = \delta_{ij} dt$ and $dB_i dt = dt dB_i = 0$.

Application: Ornstein-Uhlenbeck process

Ornstein-Uhlenbeck process

Definition

The **Ornstein-Uhlenbeck process** is a stochastic process $(X_t)_{t\geq 0}$ satisfying the Ito SDE:

$$dX_t = -kX_t dt + \sqrt{D} dB_t.$$

- ▶ We can think of it as a continuous random walk that tends to revert back to zero.
- ► A physical example is a spring with thermal fluctuations.

Change of variables

Let $(X_t)_{t\geq 0}$ be the Ornstein-Uhlenbeck process, so that $dX_t = -kX_tdt + \sqrt{D}dB_t$. Set $Y_t = X_te^{kt}$. Apply the Ito formula:

$$dY_t = \frac{\partial f}{\partial t}(t, X_t)dt + \frac{\partial f}{\partial x}(t, X_t)dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(t, X_t)dX_t^2$$

= $kX_t e^{kt} dt + e^{kt} dX_t$
= $kX_t e^{kt} dt - kX_t e^{kt} dt + \sqrt{D}e^{kt} dB_t$.

Therefore, $d(X_t e^{kt}) = \sqrt{D}e^{kt}dB_t$.

Integrate

Integrating the SDE $d(X_t e^{kt}) = \sqrt{D}e^{kt}dB_t$, we obtain:

$$X_t = X_0 e^{-kt} + \sqrt{D} \int_0^t e^{-k(t-s)} dB_s.$$

▶ If X_0 is Gaussian or deterministic, then X_t is Gaussian,

$$\mathbb{E}[X_t] = \mathbb{E}[X_0]e^{-kt}$$
 and $\operatorname{Var}[X_t] = \operatorname{Var}[X_0]e^{-2kt} + \frac{D}{2k}$,

by independence of the two terms of X_t and Ito isometry.²

²See also (Gardiner, 1985).

References

Crispin W Gardiner. Handbook of stochastic methods. Springer Berlin, 1985.

Bernt Øksendal. Stochastic differential equations: an introduction with applications. Springer, 2003.