Sequential kernel herding: Frank-Wolfe for particle filtering

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach (Lacoste-Julien et al., 2015)

Geelon So, agso@eng.ucsd.edu Sampling/optimization reading group — June 2, 2021

Localization problem

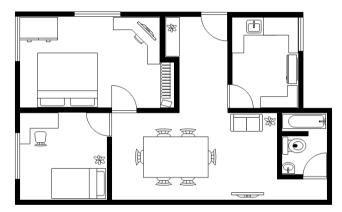


Figure 1: Suppose you're dropped into a new location. Given a map, can you explore your surroundings to figure out where on the map you are?

Figure 2: Estimate your initial position X_0 with a uniform prior $\pi(x_0)$.

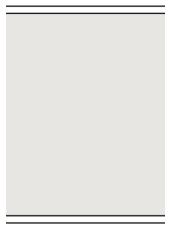


Figure 3: Opening your eyes, you see an image Y_0 , which is a blank wall.

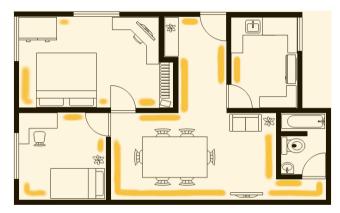


Figure 4: Having seen Y_0 , you can update your posterior $p(x_0 | Y_0)$. A darker color corresponds to greater probability.

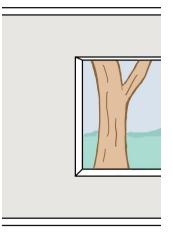


Figure 5: You move to the right, and now see a new image Y_1 , a part of a window.

Figure 6: Having seen Y_1 , update your posterior $p(x_0, x_1 | Y_0, Y_1)$.

Localization problem

Setting

- \blacktriangleright X is set of possible positions and orientations (unknown without GPS/compass)
- $\blacktriangleright~\mathcal{Y}$ is the set of possible images you can see in the house

Problem

• After seeing Y_1, \ldots, Y_t , estimate posterior distribution on X_1, \ldots, X_t ,

 $p(x_{0:t} \mid Y_{0:t}).$

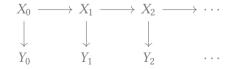
State-space models (SSM)

Definition

A **state-space model**, or a general state-space hidden Markov model, is a probabilistic model on the state space \mathcal{X} and observation space \mathcal{Y} satisfying:

 $X_t \mid X_{0:(t-1)} \sim p(X_t \mid X_{t-1})$ $Y_t \mid X_{0:t} \sim p(Y_t \mid X_t),$

where $X_t \in \mathcal{X}$ and $Y_t \in \mathcal{Y}$ are the latent state variable and observation at time t.



The filtering problem

Filtering problem: given observations $Y_{0:t}$ from an SSM, estimate the posterior:

 $p(x_{0:t} \mid Y_{0:t}).$

Computational issue

▶ The normalization term for computing Bayes' rule is often intractable:

$$p(\mathbf{x}_{0:t+1} \mid Y_{0:t+1}) = \frac{p(Y_{t+1} \mid x_{t+1})p(\mathbf{x}_{t+1} \mid x_t)p(\mathbf{x}_{0:t} \mid Y_{0:t})}{\int_{\mathcal{X}} p(Y_{t+1} \mid x'_{t+1})p(\mathbf{x}'_{t+1} \mid x_t)p(\mathbf{x}_{0:t} \mid Y_{0:t}) d\mathbf{x}'_{t+1}}.$$

$$p(\mathbf{x}_{0:t+1} \mid \mathbf{Y}_{0:t+1}) = \frac{p(Y_{t+1} \mid x_{t+1})p(\mathbf{x}_{t+1} \mid x_t)p(\mathbf{x}_{0:t} \mid Y_{0:t})}{\int_{\mathcal{X}} p(Y_{t+1} \mid x'_{t+1})p(\mathbf{x}'_{t+1} \mid x_t)p(\mathbf{x}_{0:t} \mid Y_{0:t}) d\mathbf{x}'_{t+1}},$$

$$r_{t+1}(\mathbf{x}_{0:t+1}) = \frac{p(Y_{t+1} \mid \mathbf{x}_{t+1})p(\mathbf{x}'_{t+1} \mid x_t)r_t(\mathbf{x}_{0:t})}{\int_{\mathcal{X}} p(Y_{t+1} \mid \mathbf{x}'_{t+1})p(\mathbf{x}'_{t+1} \mid x_t)r_t(\mathbf{x}_{0:t})},$$

$$r_{t+1}(\mathbf{x}_{0:t+1}) = \frac{p(Y_{t+1} \mid \mathbf{x}_{t+1})p(\mathbf{x}_{t+1} \mid \mathbf{x}_t)r_t(\mathbf{x}_{0:t})}{r_{t+1}},$$

10/37

Particle filter

Main idea: approximate the joint predictive distribution

$$p_{t+1}(x_{0:t+1}) = p(x_{t+1} \mid x_t) p(x_{0:t} \mid Y_{0:t})$$

using a finite i.i.d. sample $X_{0:t}^{(i)}, \ldots X_{0:t+1}^{(N)}$,

$$\hat{p}_{t+1}(x_{0:t+1}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{0:t+1}^{(i)}}(x_{0:t+1}).$$

 \blacktriangleright To obtain closer approximation, increase sample size N.

Particle filter algorithm

Algorithm Particle filter (* sequential Monte Carlo algorithm *) Input: SSM $p(x_{t+1} | x_t)$ and observation likelihood $o_t(x_t) := p(Y_t | x_t)$ Initialize: prior distribution $\tilde{p}_0(x_0) := \pi(x_0)$

- 1. **for** $t = 0, 1, 2, \ldots$,
- 2. **do** sample data point $X_{0:t}^{(1)}, \ldots, X_{0:t}^{(N)} \sim \tilde{p}_t$ and set:

$$\hat{p}_t(x_{0:t}) = \frac{1}{N} \sum_{i=1}^N \delta_{X_{0:t}^{(i)}}(x_{0:t}).$$

3. estimate joint filtering distribution $\hat{r}_t(x_{0:t}) = \frac{o_t(x_t)\hat{p}_t(x_{1:t})}{\mathbb{E}_{\hat{p}_t}[o_t]}$ to compute:

$$\tilde{p}_{t+1}(x_{t+1}, x_{0:t}) := p(x_{t+1} \mid x_t) \hat{r}_t(x_{0:t}).$$

Particle filter visualization

Figure 7: The particle filter algorithm approximates $p_{t+1}(x_{t+1}, x_{0:t})$ using samples $\hat{p}_{t+1}(x_{t+1}, x_{0:t})$; we need compute $p(Y_{t+1} | x_{t+1})$ only on those *N* particles.

Quality of approximator

Question: how large does sample size *N* have to be to get a good estimate?

▶ For our purposes, we want to get a good estimate:

$$\hat{r}_t(x_{0:t}) = rac{p(Y_t \mid x_t)\hat{p}_t(x_{1:t})}{\mathbb{E}_{\hat{p}_t}[p(Y_t \mid x_t)]}.$$

- We need \hat{p}_t close to p_t in the sense $\mathbb{E}_{\hat{p}_t}[f] \approx \mathbb{E}_{p_t}[f]$, for functions $p(Y_t \mid x_t)$ and $\mathbf{1}_{x_{1:t}}$.
- ► Hoeffding's implies approximation error decreases rate:

$$\left| \mathop{\mathbb{E}}_{\hat{p}_t} [f] - \mathop{\mathbb{E}}_{p_t} [f] \right| = O\left(rac{1}{\sqrt{N}}
ight).$$

Improving the estimator

Remark: estimating p_t using N i.i.d. draws may be wasteful

▶ instead of uniformly weighting N i.i.d. draws to construct \hat{p}_t ,

$$\hat{p}_t = \frac{1}{N} \sum_{i=1}^N \delta_{X_{1:t}^{(i)}}$$

can cleverly select and weight a handful of representatives? Intuitively, we might want to select points from the modes of the distribution.

Setting: if computing $p(Y_t | x_t)$ is expensive, we can try to get the approximation error to decrease faster than $\frac{1}{\sqrt{N}}$ by spending some additional compute to construct a clever:

$$\hat{p}_t = \sum_{i=1}^N w^{(i)} \delta_{X_{1:t}^{(i)}}$$

Interlude: the kernel herding algorithm

Herding algorithm

66 Herding can be used to subselect a small collections of 'super-samples' from a much larger set of MCMC samples...In theory we would only need \sqrt{N} samples to obtain the same order of error as N i.i.d. samples.

Chen et al. (2012)

Herding visualization

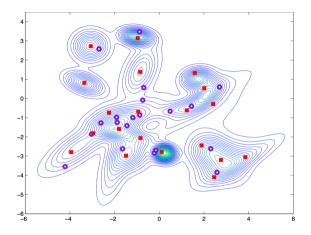


Figure 8: First 20 samples (i) from herding (red squares), and (ii) from i.i.d. draws (purple circles), Chen et al. (2012).

Approximating integrals

Problem: let \mathcal{X} be a probability space with distribution p. We would like to approximate for a class of real-valued functions $f \in \mathcal{H}$,

$$\mathbb{E}_{p}[f] \approx \sum_{i=1}^{N} w^{(i)} f(X^{(i)}) = \mathbb{E}_{\hat{p}}[f]$$

for a set of points $X^{(1)},\ldots,X^{(N)}\in\mathcal{X}$ and nonnegative weights $\sum w^{(i)}=$ 1. That is,

$$\hat{p} = \sum_{i=1}^{N} w^{(i)} \delta_{X^{(i)}}$$

• One choice is to let $X^{(i)}$'s be i.i.d. draws and $w^{(i)} = \frac{1}{N}$.

Reproducing kernel Hilbert space (RKHS)

Components of an RKHS

• Let $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel,

 $\kappa(x, x') =$ similarity between *x* and *x'*.

▶ Then, there exists an inner product space \mathcal{H} and feature map $\phi : \mathcal{X} \to \mathcal{H}$ such that:

$$\kappa(\mathbf{x}, \mathbf{x}') = \left\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \right\rangle_{\mathcal{H}}$$

 \blacktriangleright *H* can be viewed as a family of real-valued functions *f* on *X*,

$$f(\mathbf{x}) \equiv \langle f, \phi(\mathbf{x}) \rangle.$$

Approximating integrals on an RKHS

Problem: let \mathcal{H} be an RKHS with respect to a fixed distribution p on \mathcal{X} . Construct \hat{p} ,

$$\hat{p} = \sum_{i=1}^N w^{(i)} \delta_{X^{(i)}}$$

such that the *maximum mean discrepancy* is minimized:

$$\mathrm{MMD}(p,\hat{p}) := \sup_{\substack{f \in \mathcal{H} \\ \|f\|_{\mathcal{H}} \le 1}} \left| \underset{p}{\mathbb{E}}[f] - \underset{\hat{p}}{\mathbb{E}}[f] \right|$$

Mean element

Notice that
$$\mathbb{E}_p[f] = \mathbb{E}_p[\langle f, \phi(x) \rangle] = \langle f, \mathbb{E}_p[\phi(x)] \rangle.$$

Define the **mean element** by:

$$\mu(p) = \mathop{\mathbb{E}}_{p}[\phi(x)].$$

► The maximum mean discrepancy is precisely:

$$\mathrm{MMD}(p,\hat{p}) = \sup_{\substack{f \in \mathcal{H} \\ \|f\|_{\mathcal{H}} \le 1}} \left| \left\langle f, \, \mu(p) - \mu(\hat{p}) \, \right\rangle \right| = \|\mu(p) - \mu(\hat{p})\|_{\mathcal{H}},$$

where $\|\cdot\|_{\mathcal{H}}$ is the operator norm.

Takeaway: on an RKHS, to bound the discrepancy $|\mathbb{E}_p[f] - \mathbb{E}_{\hat{p}}[f]|$, just optimize:

$$\frac{1}{2} \|\mu(p) - \mu(\hat{p})\|_{\mathcal{H}}^2.$$

Frank-Wolfe optimization (or, kernel herding)

Optimization problem

▶ Let $\mathcal{M} \subset \mathcal{H}$ be the marginal polytope, $\mathcal{M} := cl(conv(\phi(\mathcal{X})))$.

• Optimization objective: $\mathcal{J}(g) := \frac{1}{2} \|\mu(p) - g\|_{\mathcal{H}}^2$.

$$\min_{g\in\mathcal{M}}\,\mathcal{J}(g).$$

Frank-Wolfe algorithm: a gradient descent algorithm

► At each iteration k, optimize *linearization*:

$$\overline{g}_{k+1} \leftarrow \operatorname*{arg\,min}_{g \in \mathcal{M}} \langle \mathcal{J}'(g_k), g \rangle.$$

 \blacktriangleright Then update with learning rate γ_{k+1} ,

$$g_{k+1} \leftarrow (1 - \gamma_{k+1})g_k + \gamma_{k+1}\overline{g}_{k+1}$$

Properties of Frank-Wolfe

▶ When a linear function is optimized over a polytope, one of the vertices is an optimum. Thus, one of φ(X) optimizes:

$$\min_{x \in \mathcal{X}} \left\langle \mathcal{J}'(g_k), \phi(x) \right\rangle = \min_{g \in \mathcal{M}} \left\langle \mathcal{J}'(g_k), g \right\rangle.$$

• The Frank-Wolfe algorithm can just maintain set $\{w^{(i)}, X^{(i)}\}$ for:

$$g_{k+1} = \sum_{i=1}^{k+1} w^{(i)} \phi(X^{(i)}) = \mathop{\mathbb{E}}_{\hat{p}}[\phi(x)].$$

N.B. \mathcal{H} can be very high or even infinite dimensional.

Kernel herding algorithm

Algorithm Kernel herding (* super-sampling algorithm *) Input: distribution p, setting $\mathcal{J}(g) = \frac{1}{2} ||\mu(p) - g||_{\mathcal{H}}^2$ Initialize: $g_0 = 0$ 1. for k = 0, 1, 2, ..., N - 12. do solve $X^{(k+1)} \leftarrow \underset{x \in \mathcal{X}}{\arg \min} \langle \mathcal{J}'(g_k), \phi(x) \rangle$

3. update
$$g_{k+1} \leftarrow (1 - \gamma_{k+1})g_k + \gamma_{k+1}\phi(X^{(k+1)})$$

4. set
$$w^{(k+1)} \leftarrow \gamma_{k+1}$$
 and $w^{(i)} \leftarrow (1 - \gamma_k) w^{(i)}$ for $i = 1, \dots, t$

5. **return** estimator
$$\hat{p} \leftarrow \sum_{i \in [N]} w^{(i)} \delta_{X^{(i)}}$$

Approximate vertex search

Algorithm Kernel herding (* super-sampling algorithm *) Input: distribution *p*, setting $\mathcal{J}(g) = \frac{1}{2} ||\mu(p) - g||_{\mathcal{H}}^2$ Initialize: $g_0 = 0$

1. **for** $k = 0, 1, 2, \dots, N-1$

2. **do solve**
$$X^{(k+1)} \leftarrow \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \left\langle \mathcal{J}'(g_k), \phi(x) \right\rangle$$

3. update
$$g_{k+1} \leftarrow (1 - \gamma_{k+1})g_k + \gamma_{k+1}\phi(X^{(k+1)})$$

4. set
$$w^{(k+1)} \leftarrow \gamma_{k+1}$$
 and $w^{(i)} \leftarrow (1 - \gamma_k) w^{(i)}$ for $i = 1, \dots, t$

5. **return** estimator
$$\hat{p} \leftarrow \sum_{i \in [N]} w^{(i)} \delta_{X^{(i)}}$$

Question: how do we solve $X^{(k+1)} \leftarrow \underset{x \in \mathcal{X}}{\operatorname{arg min}} \langle \mathcal{J}'(g_k), \phi(x) \rangle$?

Rates using approximate vertex search

In the following theorem, assume:

- $\mu(p)$ is in the interior of \mathcal{M} , so there is some r > 0 such that $B(\mu(p), r) \subset \mathcal{M}$.
- ▶ M is bounded, so there is some R > 0 such that $||g|| \le R$ for all $g \in M$.

Theorem (Lacoste-Julien et al. (2015))

Consider the kernel herding algorithm where an approximate vertex search is used:

$$\left\langle \mathcal{J}'(g_k), \overline{g}_{k+1} \right\rangle \leq \min_{g \in \mathcal{M}} \left\langle \mathcal{J}'(g_k), g \right\rangle + \delta,$$

where $\overline{g}_{k+1} = \phi(X^{(k+1)})$ and $\delta \ge 0$. If g_{k+1} is updated with learning rate $\gamma_{k+1} = \frac{1}{k+1}$, then we obtain fast rates of convergence, $\mathcal{J}(g_k) = O\left(\frac{1}{k^2}\right)$. Specifically,

$$||g_k - \mu(p)|| \le \frac{1}{k} \frac{2R^2}{r} + \frac{\delta}{r}.$$

Proof of theorem

- **0.** Notation: let $\mu_p = \mu(p)$.
- 1. Note that since $f(g) = \frac{1}{2} ||\mu_p g||^2$, minimizing the linear approximation at g_k is equivalent to minimizing:

$$\min_{g\in\mathcal{M}} \langle g_k - \mu_p, g - \mu_p \rangle.$$

This objective is linear in the displacement from μ_p .

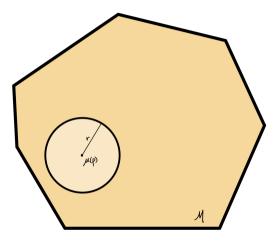


Figure 9: The polytope \mathcal{M} contains the ball $B(\mu_p, r)$.

2. It follows that optimum is upper bounded:

$$\min_{g \in \mathcal{M}} \left\langle g_k - \mu_p, g - \mu_p \right\rangle \le \min_{g \in B(\mu_p, r)} \left\langle g_k - \mu_p, g - \mu_p \right\rangle$$
$$= -r \|g_k - \mu_p\|.$$

3. If we are guaranteed δ -accuracy, then:

$$\left\langle g_k - \mu_p, \overline{g}_{k+1} - \mu_p \right\rangle \leq -r \|g_k - \mu_p\| + \delta.$$

4. Using the learning rate $\gamma_{k+1} = \frac{1}{k+1}$ in update:

$$g_{k+1} \leftarrow (1 - \gamma_{k+1})g_k + \gamma_{k+1}\overline{g}_{k+1}$$

we can compute explicitly:

$$\|g_{k+1} - \mu_p\|^2 = \frac{1}{(k+1)^2} \|(\overline{g}_{k+1} - \mu_p) + k(g_k - \mu_p)\|^2.$$

5. Rearrange the terms:

$$\|(k+1)(g_{k+1}-\mu_p)\|^2 = \|(\overline{g}_{k+1}-\mu_p)+k(g_k-\mu_p)\|^2.$$

$$\|(k+1)(g_{k+1}-\mu_p)\|^2 = \|(\overline{g}_{k+1}-\mu_p)+k(g_k-\mu_p)\|^2,$$

where we let $v_k = k(g_k-\mu_p).$

5. Rearrange the terms (from previous page):

$$\|v_{k+1}\|^2 = \|(\overline{g}_{k+1} - \mu_p) + v_k\|^2.$$
 (†)

6. Note that it suffices to prove an upper bound:

$$\|\mathbf{v}_k\| = k\|g_k - \mu_p\| \le \frac{2R^2 + k\delta}{r}$$

to obtain result, $||g_k - \mu_p|| \leq \frac{1}{k} \frac{2R^2 + k\delta}{r}$.

7. Expanding (\dagger) , we get upper bound:

$$\|v_{k+1}\|^2 \le \|v_k\|^2 + 2r\left[rac{2R^2 + k\delta}{r} - \|v_k\|
ight].$$

8. Follows by induction and noting that $\frac{R}{r} \leq 1$.

Sequential kernel herding

Brief recap

1. We would like to solve the filtering problem:

$$r_t(x_{0:t}) = p(x_{0:t} | Y_{0:t}).$$

2. Using the particle filter algorithm, we maintain estimator \hat{p}_{t+1} of predictive distribution:

$$p_{t+1}(x_{0:t+1}) = p(x_{t+1} \mid x_t) p(x_{0:t} \mid Y_{0:t})$$
using *N* i.i.d. draws to get $\hat{p}_{t+1} = \frac{1}{N} \sum_{i \in [N]} \delta_{X^{(i)}}$.

3. Kernel herding suggests that we may be able to use much fewer points to get a good estimator,

$$\hat{p}_{t+1} = \sum_{i \in [N]} w^{(i)} \delta_{X^{(i)}}.$$

Sequential kernel herding algorithm

Algorithm Particle filterSequential kernel herding (* sequential Monte Carlo algorithm *) Input: SSM $p(x_{t+1} | x_t)$ and observation likelihood $o_t(x_t) := p(Y_t | x_t)$ Initialize: prior distribution $\tilde{p}_0(x_0) := \pi(x_0)$

- 1. **for** $t = 0, 1, 2, \ldots,$
- 2. **do** sample data point $X_{0:t}^{(1)}, \ldots, X_{0:t}^{(N)} \sim \tilde{p}_t$ and set:

$$\hat{p}_t(x_{0:t}) = \frac{1}{N} \sum_{i=1}^N \delta_{X_{0:t}^{(i)}}(x_{0:t}).$$

obtain estimator \hat{p}_t from kernel herding algorithm on \tilde{p}_t using N samples

3. estimate joint filtering distribution $\hat{r}_t(x_{0:t}) = \frac{o_t(x_t)\hat{p}_t(x_{1:t})}{\mathbb{E}_{\hat{p}_t}[o_t]}$ to compute:

$$\tilde{p}_{t+1}(x_{t+1}, x_{0:t}) := p(x_{t+1} \mid x_t) \hat{r}_t(x_{0:t}).$$

Consistency of SKH

Theorem (Informal, Lacoste-Julien et al. (2015))

Suppose the following is bounded:

$$\left\|\frac{p(x_{t+1} \mid x_t)p(Y_t \mid x_t)}{\mathbb{E}_p[p(Y_t \mid x_t)]}\right\|_{\mathcal{F}_t \otimes \mathcal{H}_t} \le \rho,$$

where $\mathcal{F}_t : \mathcal{X}_{t+1} \to \mathbb{R}$ and $\mathcal{H}_t : \mathcal{X}_t \to \mathbb{R}$ are function classes. If in the algorithm,

$$\|\mu(\hat{p}_t) - \mu(\tilde{p}_t)\|_{\mathcal{H}_t} \le \varepsilon,$$

then we have after *T* iterations:

$$\|\mu(\hat{p}_T) - \mu(p_T)\|_{\mathcal{H}_T} = \begin{cases} O(\rho^T \varepsilon) & \rho > 1\\ O(T\varepsilon) & \rho = 1\\ O(\varepsilon) & \rho < 1. \end{cases}$$

References

- Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. *arXiv preprint arXiv:1203.3472*, 2012.
- Simon Lacoste-Julien, Fredrik Lindsten, and Francis Bach. Sequential kernel herding: Frank-wolfe optimization for particle filtering. In *Artificial Intelligence and Statistics*, pages 544–552. PMLR, 2015.