
Sequential kernel herding: Frank-Wolfe for particle filtering

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach (Lacoste-Julien et al., 2015)

Geelon So, agso@eng.ucsd.edu
Sampling/optimization reading group — June 2, 2021

1 / 37

Localization problem

Figure 1: Suppose you’re dropped into a new location. Given a map, can you
explore your surroundings to figure out where on the map you are?

2 / 37

Localization example

Figure 2: Estimate your initial position X0 with a uniform prior π(x0).

3 / 37

Localization example

Figure 3: Opening your eyes, you see an image Y0, which is a blank wall.

4 / 37

Localization example

Figure 4: Having seen Y0, you can update your posterior p(x0 | Y0). A
darker color corresponds to greater probability.

5 / 37

Localization example

Figure 5: You move to the right, and now see a new image Y1, a part of a window.

6 / 37

Localization example

Figure 6: Having seen Y1, update your posterior p(x0, x1 | Y0, Y1).

7 / 37

Localization problem

Se�ing
I X is set of possible positions and orientations (unknown without GPS/compass)

I Y is the set of possible images you can see in the house

Problem
I A�er seeing Y1, . . . , Yt , estimate posterior distribution on X1, . . . ,Xt ,

p(x0:t | Y0:t).

8 / 37

State-space models (SSM)

Definition
A state-space model, or a general state-space hidden Markov model, is a probabilistic
model on the state space X and observation space Y satisfying:

Xt |X0:(t−1) ∼ p(Xt |Xt−1)

Yt |X0:t ∼ p(Yt |Xt),

where Xt ∈ X and Yt ∈ Y are the latent state variable and observation at time t.

X0 X1 X2 · · ·

Y0 Y1 Y2 · · ·

9 / 37

The filtering problem
Filtering problem: given observations Y0:t from an SSM, estimate the posterior:

p(x0:t | Y0:t).

Computational issue
I The normalization term for computing Bayes’ rule is o�en intractable:

p(x0:t+1 | Y0:t+1) =
p(Yt+1 | xt+1)p(xt+1 | xt)p(x0:t | Y0:t)∫

X
p(Yt+1 | x′t+1)p(x

′
t+1 | xt)p(x0:t | Y0:t) dx′t+1

.

p(x0:t+1 | Y0:t+1) =
p(Yt+1 | xt+1)p(xt+1 | xt)p(x0:t | Y0:t)∫

X
p(Yt+1 | x′t+1)p(x

′
t+1 | xt)p(x0:t | Y0:t) dx′t+1

,

rt+1(x0:t+1) =
p(Yt+1 | xt+1)p(xt+1 | xt)rt(x0:t)∫

X
p(Yt+1 | x′t+1)p(x

′
t+1 | xt)rt(x0:t) dx′t+1

,

rt+1(x0:t+1) =
p(Yt+1 | xt+1)p(xt+1 | xt)rt(x0:t)∫

X
p(Yt+1 | x′t+1)p(x

′
t+1 | xt)rt(x0:t) dx′t+1

,

rt+1(x0:t+1) =
p(Yt+1 | xt+1)pt+1(xt+1, x0:t)∫

X
p(Yt+1 | x′t+1)pt+1(x′t+1, x0:t) dx

′
t+1

,

where rt(x0:t) = p(x0:t | Y0:t) is the joint filtering
distribution.

where rt(x0:t) = p(x0:t | Y0:t) is the joint filtering
distribution.

where rt(x0:t) = p(x0:t | Y0:t) is the joint filtering
distribution,
and pt+1(xt+1, x0:t) = p(xt+1 | xt)rt(x0:t) is the joint predictive distribution.where
rt(x0:t) = p(x0:t | Y0:t) is the joint filtering distribution,
and pt+1(xt+1, x0:t) = p(xt+1 | xt)rt(x0:t) is the joint predictive distribution.

10 / 37

Particle filter

Main idea: approximate the joint predictive distribution

pt+1(x0:t+1) = p(xt+1 | xt)p(x0:t | Y0:t)

using a finite i.i.d. sample X (i)
0:t , . . .X

(N)
0:t+1,

p̂t+1(x0:t+1) =
1
N

N∑
i=1

δ
X(i)
0:t+1

(x0:t+1).

I To obtain closer approximation, increase sample size N .

11 / 37

Particle filter algorithm

Algorithm Particle filter
(∗ sequential Monte Carlo algorithm ∗)
Input: SSM p(xt+1 | xt) and observation likelihood ot(xt) := p(Yt | xt)
Initialize: prior distribution p̃0(x0) := π(x0)
1. for t = 0, 1, 2, . . . ,
2. do sample data point X (1)

0:t , . . . ,X
(N)
0:t ∼ p̃t and set:

p̂t(x0:t) =
1
N

N∑
i=1

δ
X(i)
0:t
(x0:t).

3. estimate joint filtering distribution r̂t(x0:t) =
ot(xt)p̂t(x1:t)

Ep̂t [ot]
to compute:

p̃t+1(xt+1, x0:t) := p(xt+1 | xt)r̂t(x0:t).

12 / 37

Particle filter visualization

Figure 7: The particle filter algorithm approximates pt+1(xt+1, x0:t)
using samples p̂t+1(xt+1, x0:t); we need compute p(Yt+1 | xt+1) only
on those N particles.

13 / 37

�ality of approximator

�estion: how large does sample size N have to be to get a good estimate?

I For our purposes, we want to get a good estimate:

r̂t(x0:t) =
p(Yt | xt)p̂t(x1:t)
Ep̂t [p(Yt | xt)]

.

I We need p̂t close to pt in the sense E
p̂t
[f] ≈ E

pt
[f], for functions p(Yt | xt) and 1x1:t .

I Hoe�ding’s implies approximation error decreases rate:∣∣∣∣Ep̂t [f]− E
pt
[f]
∣∣∣∣ = O

(
1√
N

)
.

14 / 37

Improving the estimator
Remark: estimating pt using N i.i.d. draws may be wasteful

I instead of uniformly weighting N i.i.d. draws to construct p̂t ,

p̂t =
1
N

N∑
i=1

δ
X(i)
1:t
,

can cleverly select and weight a handful of representatives? Intuitively, we might
want to select points from the modes of the distribution.

Se�ing: if computing p(Yt | xt) is expensive, we can try to get the approximation error
to decrease faster than 1√

N
by spending some additional compute to construct a clever:

p̂t =
N∑
i=1

w(i)δ
X(i)
1:t
.

15 / 37

Interlude: the kernel herding algorithm

16 / 37

Herding algorithm

“ Herding can be used to subselect a small collections of ‘super-samples’ from a
much larger set of MCMC samples...In theory we would only need

√
N samples

to obtain the same order of error as N i.i.d. samples.

Chen et al. (2012)

17 / 37

Herding visualization

Figure 8: First 20 samples (i) from herding (red squares), and
(ii) from i.i.d. draws (purple circles), Chen et al. (2012).

18 / 37

Approximating integrals

Problem: let X be a probability space with distribution p. We would like to
approximate for a class of real-valued functions f ∈ H,

E
p
[f] ≈

N∑
i=1

w(i)f (X (i)) = E
p̂
[f],

for a set of points X (1), . . . ,X (N) ∈ X and nonnegative weights
∑

w(i) = 1. That is,

p̂ =

N∑
i=1

w(i)δX(i) .

I One choice is to let X (i)’s be i.i.d. draws and w(i) = 1
N .

19 / 37

Reproducing kernel Hilbert space (RKHS)

Components of an RKHS
I Let κ : X × X → R be a positive definite kernel,

κ(x, x′) = similarity between x and x′.

I Then, there exists an inner product spaceH and feature map φ : X → H such that:

κ(x, x′) =
〈
φ(x), φ(x′)

〉
H.

I H can be viewed as a family of real-valued functions f on X ,

f (x) ≡
〈
f , φ(x)

〉
.

20 / 37

Approximating integrals on an RKHS

Problem: letH be an RKHS with respect to a fixed distribution p on X . Construct p̂,

p̂ =

N∑
i=1

w(i)δX(i)

such that the maximum mean discrepancy is minimized:

MMD(p, p̂) := sup
f∈H
‖f ‖H≤1

∣∣E
p
[f]− E

p̂
[f]
∣∣

21 / 37

Mean element
Notice that Ep[f] = Ep

[
〈f , φ(x)〉

]
=
〈
f , Ep[φ(x)]

〉
.

I Define the mean element by:

µ(p) = E
p
[φ(x)].

I The maximum mean discrepancy is precisely:

MMD(p, p̂) = sup
f∈H
‖f ‖H≤1

∣∣〈f , µ(p)− µ(p̂) 〉∣∣ = ‖µ(p)− µ(p̂)‖H,
where ‖ · ‖H is the operator norm.

Takeaway: on an RKHS, to bound the discrepancy
∣∣Ep[f]− Ep̂[f]

∣∣, just optimize:

1
2
‖µ(p)− µ(p̂)‖2H.

22 / 37

Frank-Wolfe optimization (or, kernel herding)
Optimization problem
I LetM⊂ H be the marginal polytope,M := cl

(
conv

(
φ(X)

))
.

I Optimization objective: J(g) :=
1
2
‖µ(p)− g‖2H.

min
g∈M

J(g).

Frank-Wolfe algorithm: a gradient descent algorithm

I At each iteration k, optimize linearization:

gk+1 ← argmin
g∈M

〈J ′(gk), g〉.

I Then update with learning rate γk+1,

gk+1 ← (1− γk+1)gk + γk+1gk+1.

23 / 37

Properties of Frank-Wolfe

I When a linear function is optimized over a polytope, one of the vertices is an
optimum. Thus, one of φ(X) optimizes:

min
x∈X

〈
J ′(gk), φ(x)〉 = min

g∈M

〈
J ′(gk), g〉.

I The Frank-Wolfe algorithm can just maintain set
{
w(i),X (i)

}
for:

gk+1 =

k+1∑
i=1

w(i)φ(X (i)) = E
p̂
[φ(x)].

N.B.H can be very high or even infinite dimensional.

24 / 37

Kernel herding algorithm

Algorithm Kernel herding
(∗ super-sampling algorithm ∗)
Input: distribution p, se�ing J(g) = 1

2‖µ(p)− g‖2H
Initialize: g0 = 0
1. for k = 0, 1, 2, . . . ,N − 1

2. do solve X (k+1) ← argmin
x∈X

〈
J ′(gk), φ(x)

〉
3. update gk+1 ← (1− γk+1)gk + γk+1φ(X (k+1))

4. set w(k+1) ← γk+1 and w(i) ← (1− γk)w(i) for i = 1, . . . , t

5. return estimator p̂←
∑
i∈[N]

w(i)δX(i)

25 / 37

Approximate vertex search
Algorithm Kernel herding
(∗ super-sampling algorithm ∗)
Input: distribution p, se�ing J(g) = 1

2‖µ(p)− g‖2H
Initialize: g0 = 0
1. for k = 0, 1, 2, . . . ,N − 1

2. do solve X (k+1) ← argmin
x∈X

〈
J ′(gk), φ(x)

〉
3. update gk+1 ← (1− γk+1)gk + γk+1φ(X (k+1))

4. set w(k+1) ← γk+1 and w(i) ← (1− γk)w(i) for i = 1, . . . , t

5. return estimator p̂←
∑
i∈[N]

w(i)δX(i)

�estion: how do we solve X (k+1) ← argmin
x∈X

〈
J ′(gk), φ(x)

〉
?

�estion: how do
we solve X (k+1) ← argmin

x∈X

〈
J ′(gk), φ(x)

〉
?

I It su�ices to solve this up to accuracy δ,

X (k+1) ≤ argmin
x∈X

〈
J ′(gk), φ(x)

〉
+ δ,

where X (k+1) could be chosen over a set of M search points XM ⊂ X .

26 / 37

Rates using approximate vertex search
In the following theorem, assume:

I µ(p) is in the interior ofM, so there is some r > 0 such that B
(
µ(p), r

)
⊂M.

I M is bounded, so there is some R > 0 such that ‖g‖ ≤ R for all g ∈M.

Theorem (Lacoste-Julien et al. (2015))
Consider the kernel herding algorithm where an approximate vertex search is used:〈

J ′(gk), gk+1
〉
≤ min

g∈M

〈
J ′(gk), g

〉
+ δ,

where gk+1 = φ(X (k+1)) and δ ≥ 0. If gk+1 is updated with learning rate γk+1 =
1

k+1 , then
we obtain fast rates of convergence, J(gk) = O

(1
k2
)
. Specifically,

‖gk − µ(p)‖ ≤
1
k
2R2

r
+
δ

r
.

27 / 37

Proof of theorem

0. Notation: let µp = µ(p).

1. Note that since J(g) = 1
2‖µp − g‖2, minimizing the linear approximation at gk is

equivalent to minimizing:

min
g∈M

〈
gk − µp, g − µp

〉
.

This objective is linear in the displacement from µp.

28 / 37

Proof of theorem (cont.)

Figure 9: The polytopeM contains the ball B
(
µp, r).

29 / 37

Proof of theorem (cont.)

2. It follows that optimum is upper bounded:

min
g∈M

〈
gk − µp, g − µp

〉
≤ min

g∈B
(
µp,r
) 〈gk − µp, g − µp〉

= −r‖gk − µp‖.

3. If we are guaranteed δ-accuracy, then:〈
gk − µp, gk+1 − µp

〉
≤ −r‖gk − µp‖+ δ.

30 / 37

Proof of theorem (cont.)
4. Using the learning rate γk+1 =

1
k+1 in update:

gk+1 ← (1− γk+1)gk + γk+1gk+1,

we can compute explicitly:

‖gk+1 − µp‖2 =
1

(k + 1)2
‖(gk+1 − µp) + k(gk − µp)‖2.

5. Rearrange the terms:

∥∥(k + 1)(gk+1 − µp)
∥∥2 = ∥∥(gk+1 − µp) + k(gk − µp)

∥∥2.
∥∥(k + 1)(gk+1 − µp)

∥∥2 = ∥∥(gk+1 − µp) + k(gk − µp)
∥∥2,

where we let vk = k(gk − µp).∥∥vk+1
∥∥2 = ∥∥(gk+1 − µp) + vk

∥∥2,
where we let vk = k(gk − µp).

31 / 37

Proof of theorem (cont.)

5. Rearrange the terms (from previous page):∥∥vk+1
∥∥2 = ∥∥(gk+1 − µp) + vk

∥∥2. (†)

6. Note that it su�ices to prove an upper bound:

‖vk‖ = k‖gk − µp‖ ≤
2R2 + kδ

r

to obtain result, ‖gk − µp‖ ≤ 1
k
2R2+kδ

r .

7. Expanding (†), we get upper bound:

‖vk+1‖2 ≤ ‖vk‖2 + 2r
[
2R2 + kδ

r
− ‖vk‖

]
.

8. Follows by induction and noting that R
r ≤ 1.

32 / 37

Sequential kernel herding

33 / 37

Brief recap

1. We would like to solve the filtering problem:

rt(x0:t) = p(x0:t | Y0:t).

2. Using the particle filter algorithm, we maintain estimator p̂t+1 of predictive
distribution:

pt+1(x0:t+1) = p(xt+1 | xt)p(x0:t | Y0:t)

using N i.i.d. draws to get p̂t+1 =
1
N

∑
i∈[N]

δX(i) .

3. Kernel herding suggests that we may be able to use much fewer points to get a
good estimator,

p̂t+1 =
∑
i∈[N]

w(i)δX(i) .

34 / 37

Sequential kernel herding algorithm
Algorithm Particle filterSequential kernel herding
(∗ sequential Monte Carlo algorithm ∗)
Input: SSM p(xt+1 | xt) and observation likelihood ot(xt) := p(Yt | xt)
Initialize: prior distribution p̃0(x0) := π(x0)
1. for t = 0, 1, 2, . . . ,
2. do sample data point X (1)

0:t , . . . ,X
(N)
0:t ∼ p̃t and set:

p̂t(x0:t) =
1
N

N∑
i=1

δ
X(i)
0:t
(x0:t).

obtain estimator p̂t from kernel herding algorithm on p̃t using N samples

3. estimate joint filtering distribution r̂t(x0:t) =
ot(xt)p̂t(x1:t)

Ep̂t [ot]
to compute:

p̃t+1(xt+1, x0:t) := p(xt+1 | xt)r̂t(x0:t).

35 / 37

Consistency of SKH
Theorem (Informal, Lacoste-Julien et al. (2015))
Suppose the following is bounded:∥∥∥∥p(xt+1 | xt)p(Yt | xt)

Ep[p(Yt | xt)]

∥∥∥∥
Ft⊗Ht

≤ ρ,

where Ft : Xt+1 → R andHt : Xt → R are function classes. If in the algorithm,∥∥µ(p̂t)− µ(p̃t)‖Ht ≤ ε,

then we have a�er T iterations:

‖µ(p̂T)− µ(pT)‖HT =

O(ρTε) ρ > 1
O(Tε) ρ = 1
O(ε) ρ < 1.

36 / 37

References

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. arXiv preprint
arXiv:1203.3472, 2012.

Simon Lacoste-Julien, Fredrik Lindsten, and Francis Bach. Sequential kernel herding: Frank-wolfe
optimization for particle filtering. In Artificial Intelligence and Statistics, pages 544–552. PMLR, 2015.

37 / 37

	Interlude: the kernel herding algorithm
	Sequential kernel herding
	References

