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1 Max Cut

MAXCUT: given a graph, bipartition the vertices in a way that cuts as many of the edges as possible. Define
maxcut(G) to be the maximum fraction of edges cut by a bipartition.

Erdos gave a randomized algorithm that achieves a 1/2-approximation. Suppose for each vertex, we assign
it to one of the bipartitions according to a fair flip of the coin. Each edge will be cut in exactly half of the
possible partitions, so in expectation, a random bipartition will cut half of all edges. In particular, it must

cut at least a 2maxcut(G) fraction of the edges.

Fact 1 (BS2016). No linear programming relaxation of polynomial-size can have an approximation factor
smaller than 1/2 factor for MAXCUT.

In contrast, using SoS, it is possible to obtain a 0.878 approximation in polynomial time. Before proving
this, we need a little bit of preliminaries. For a graph G, let L be the combinatorial graph Laplacian,
L= D — A, and fg be its associated quadratic form: fg(x) = 2T Lz. That is:
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Each € {0,1}"™ corresponds to a bipartition of the vertices, and fs () measures the number of edges cut by
the bipartition z. Thus, computing maxcut(G) is equivalent to computing:
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As a quick aside, this problem is related to the eigenvalues of L. Indeed, if instead we were to optimize
over the fo-sphere, we could efficiently solve this problem (the solutions being the maximum eigenvector).
Still, we can use the eigenvectors to give an upper bound. Since 1 is in the kernel of L, fg(x) = fa(z + C)
for any constant C. In particular, this allows us to recenter x € {0,1}"™ at its center of mass; let’s call the
recentered points x’.

Those z’s where an equal number of coordinates are 0 and 1 have maximal ¢5-norm of the newly centered
set. The value for such ||2’||3 = n/4. Tt follows that:
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To get a sense of the fraction of edges this is, suppose G is a d-regular graph, in which case, Apax(L) =
d — Amin(A), where A is the adjacency matrix, and |E| = nd/2. Then:
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It’s also not hard to see that since —d < Apin(A) < 0, this bound is not trivial.



1.1 Review of SoS
The pseudo-distribution generalizes a probability distribution by relaxing the nonnegativity condition.

Definition 2 (Pseudo-distribution). A degree d pseudo-distribution over {0, 1}" is a function p : {0,1}" — R
such that it satisfies:
El= Z w(x)-1=1, (normalization)
. z€{0,1}7

and also for all polynomials f : {0,1}" — R of degree at most d/2,

Ef2>0. (relaxed nonnegativity)
o

Fact 3 (SoS Duality). For every function f : {0,1}" — R, and every even d € N, there exists a degree-d
SoS certificate for nonnegativity of f if and only if every degree-d pseudo-distribution pu over {0,1}" satisfies
E, f>0.

Fact 4 (Separation Algorithm for Pseudo-Moments). Let d € N be even. The following set of pseudo-moments

admits a separation algorithm with running time n®(@,
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Corollary 5 (Optimization over polynomial objective). Let f be a function over {0,~1}”, and v be a vector

so that f(x) = (v, (1,2)®9). There is an algorithm that can approzimately minimize E, f in time nO@.

Proof. By definition,
Ef = (v,E(1,2)%9).
o “w

Thus, it suffices to minimize over the linear function y — (v,y) over M . Because M, has a separation
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algorithm of time n , we can use ellipsoid method to approximately minimize also in time n . O

Fact 6 (Quadratic Sampling). For every degree-2 pseudo-distribution p over {0,1}™, there exists a probability

distribution p over R™ with the same first two moments. That is,
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From a lecture by David Steurer: “n°®-time algorithms cannot distinguish between degree-d pseudodis-

tributions and degree-d part of actual distributions.” The overall idea:
1. Optimize over low-degree moments of pseudo-distributions (separation algorithm = efficient)

2. Find distribution with equal low-degree moments

1.2 Using SoS for Approximation

We would like to give certificates of nonnegativity to functions of the form ¢ — fg, for this implies that
maxcut(G) = max fg < ¢

However, to prove such a bound, we might potentially have to test O(2¢) points = € {0,1}%. It turns out that
when ¢ > max f5/0.878, there is an efficient algorithm to produce a certificate. Here is the main theorem:



Theorem 7 (Rounding pseudo-distributions for MAXCUT). For every graph G and degree-2 pseudo-distribution
1 over the hypercube, there exists a probability distribution i’ over the hypercube such that:

E fc > 0.878 - E fc.
W Iz

Furthermore, there exists a randomized polynomial-time algorithm that given the pseudo-distribution p outputs

a sample from p'.
Corollary 8 (MAXCUT approximation). MAXCUT has a polynomial time 0.878-approzimation algorithm.

Proof. By Corollary 5, it is possible to efficiently maximize IEH fc to arbitrary accuracy ¢ > 0 over degree-2
pseudo-distributions u. We obtain a degree-2 pseudo-distribution such that:

IEfG > max(fg) — €.
By Theorem 7, we can efficiently sample from a distribution p’ such that:
E, fa > 0.878 -max(fg) — O(e).
Thus, with high probability, repeat sampling x ~ g’ will return some z such that fg(z) > 0.878 -max(fg). O

Corollary 9 (Degree-2 SoS certificates for MAXCUT). For every graph G with n vertices, there exists a
degree-2 SoS certificate for ¢ — fa(x), where ¢ > max(fg)/0.878.

Proof. Since max(fg) > E,/ fo for all distributions p’, Theorem 7 implies that for all degree-2 pseudo-
distributions,
max(fg) > 0.878 - E fg.
o

By the SoS-duality, Fact 3, this implies that the function:

max fq B
0.878

fa
has a degree-2 SoS certificate. O
Now, the main proof.

Proof of Theorem 7. Without loss of generality, we may assume that p satisfies:
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If it does not, then note that since 7 Lo = (1 — 2)TL(1 — ),

E fo= Z w(z)zT Lo = Z p(l—2)a"Le= E fa.
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Our analysis on fg does not change if we instead consider 3(u(z) 4+ p(1 — z)). Furthermore, this pseudo-
distribution satisfies Equation 1.

By Fact 6, the Quadratic Sampling lemma, we may efficiently sample from the Gaussian probability
distribution & ~ N (IE,L x, IEH mxT) on R™. As each coordinate of £ is centered at é, we can apply a threshold
function coordinate-wise at the value % to generate z’ € {0,1}". In this manner, the Gaussian induces a
probability distribution p’ on the hypercube.

Notice three properties about p’. Consider two vertices, i, j € [n]. Then



o E,(z})? =E,(}) = 1. Thus, Var[z}] = .
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o Cov(z;,zj)=1p=1 (IE# Tz — 1).

o (& &)~ N (% ‘1,7
The following claim implies our result. It is completely geometric. Claim:

o —2)2>0878- E (z; —x)2.
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To show, this, first we claim that:

JE (@)t = L (2)

This is most easily seen by the following diagram: And on the other hand, we have:

~ ~ 1
Ig(xi—zj)z :IEx?—Fz?—Zrixj = §(l—p). (3)
Now, we obtain:
2cos lp ~
E(z — /42274@ ;= ‘2.
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———
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Completing the proof: E,/(x} —2)? > 0.878 - Eu(mi —z;)%

2 Cheeger’s Inequality

Definition 10. Let G be a d-regular graph, with vertex set V.= [n]. For S C V, the expansion ¢g(S) is:
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Notice that there are nd/2 many edges out of a possible n(n — 1)/2 number of edges, on average, a
d/(n — 1) fraction of possible edges are realized. As there are |S|-|V \ S| possible number of edges between a
subset of size |S| and its complement, the denominator gives the expected number of edges between a subset

and its complement.



Definition 11. The expansion ¢(G) of a graph is the minimum ¢c(S) over all S. The min expansion
problem is to find a vertex set S C V that minimizes ¢c(S).

While it’s not obvious how to use SoS on a rational function, like ¢, we have the following theorem:

Theorem 12 (Degree-2 SoS certificate for expansion). For every d-regular graph G with vertex set [n], the
following has a degree-2 SoS certificate:

1

fa(e) ~ 59(G) - S Jal(n a).
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