Sums of Squares Max Cut and Cheeger Lecture Notes

Aaron Geelon So

September 25, 2018

1 Max Cut

MAXCUT: given a graph, bipartition the vertices in a way that cuts as many of the edges as possible. Define $\operatorname{maxcut}(G)$ to be the maximum fraction of edges cut by a bipartition.

Erdös gave a randomized algorithm that achieves a $1 / 2$-approximation. Suppose for each vertex, we assign it to one of the bipartitions according to a fair flip of the coin. Each edge will be cut in exactly half of the possible partitions, so in expectation, a random bipartition will cut half of all edges. In particular, it must cut at least a $\frac{1}{2} \operatorname{maxcut}(G)$ fraction of the edges.

Fact 1 (BS2016). No linear programming relaxation of polynomial-size can have an approximation factor smaller than $1 / 2$ factor for maxcut.

In contrast, using SoS, it is possible to obtain a 0.878 approximation in polynomial time. Before proving this, we need a little bit of preliminaries. For a graph G, let L be the combinatorial graph Laplacian, $L=D-A$, and f_{G} be its associated quadratic form: $f_{G}(x)=x^{T} L x$. That is:

$$
f_{G}(x)=\sum_{(i, j) \in E(G)}\left(x_{i}-x_{j}\right)^{2}
$$

Each $x \in\{0,1\}^{n}$ corresponds to a bipartition of the vertices, and $f_{G}(x)$ measures the number of edges cut by the bipartition x. Thus, computing $\operatorname{maxcut}(G)$ is equivalent to computing:

$$
\max _{x \in\{0,1\}^{n}} f_{G}(x) .
$$

As a quick aside, this problem is related to the eigenvalues of L. Indeed, if instead we were to optimize over the ℓ_{2}-sphere, we could efficiently solve this problem (the solutions being the maximum eigenvector). Still, we can use the eigenvectors to give an upper bound. Since 1 is in the kernel of $L, f_{G}(x)=f_{G}(x+C)$ for any constant C. In particular, this allows us to recenter $x \in\{0,1\}^{n}$ at its center of mass; let's call the recentered points x^{\prime}.

Those x 's where an equal number of coordinates are 0 and 1 have maximal ℓ_{2}-norm of the newly centered set. The value for such $\left\|x^{\prime}\right\|_{2}^{2}=n / 4$. It follows that:

$$
\max _{x \in\{0,1\}^{n}} f_{G}(x) \leq \frac{n}{4} \cdot \lambda_{\max }(L)
$$

To get a sense of the fraction of edges this is, suppose G is a d-regular graph, in which case, $\lambda_{\max }(L)=$ $d-\lambda_{\min }(A)$, where A is the adjacency matrix, and $|E|=n d / 2$. Then:

$$
\max _{x \in\{0,1\}^{n}} f_{G}(x) \leq \frac{n}{4}\left(d-\lambda_{\min }(A)\right)=\frac{1}{2}\left(1-\frac{\lambda_{\min }(A)}{d}\right) \cdot|E| .
$$

It's also not hard to see that since $-d \leq \lambda_{\min }(A)<0$, this bound is not trivial.

1.1 Review of SoS

The pseudo-distribution generalizes a probability distribution by relaxing the nonnegativity condition.
Definition 2 (Pseudo-distribution). A degree d pseudo-distribution over $\{0,1\}^{n}$ is a function $\mu:\{0,1\}^{n} \rightarrow \mathbb{R}$ such that it satisfies:

$$
\begin{equation*}
\underset{\mu}{\underset{\mathbb{E}}{ }} \mathbf{1}=\sum_{x \in\{0,1\}^{n}} \mu(x) \cdot 1=1 \tag{normalization}
\end{equation*}
$$

and also for all polynomials $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ of degree at most $d / 2$,

$$
\underset{\mu}{\widetilde{\mathbb{E}}} f^{2} \geq 0
$$

(relaxed nonnegativity)
Fact 3 (SoS Duality). For every function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, and every even $d \in \mathbb{N}$, there exists a degree- d SoS certificate for nonnegativity of f if and only if every degree-d pseudo-distribution μ over $\{0,1\}^{n}$ satisfies $\widetilde{\mathbb{E}}_{\mu} f \geq 0$.

Fact 4 (Separation Algorithm for Pseudo-Moments). Let $d \in \mathbb{N}$ be even. The following set of pseudo-moments admits a separation algorithm with running time $n^{O(d)}$,

$$
\mathcal{M}_{d}=\left\{\underset{\mu(x)}{\widetilde{\mathbb{E}}}(1, x)^{\otimes d}: \mu \text { is a deg.-d pseudo-dist. over }\{0,1\}^{d}\right\}
$$

Corollary 5 (Optimization over polynomial objective). Let f be a function over $\{0,1\}^{n}$, and v be a vector so that $f(x)=\left\langle v,(1, x)^{\otimes d}\right\rangle$. There is an algorithm that can approximately minimize $\widetilde{\mathbb{E}}_{\mu} f$ in time $n^{O(d)}$.

Proof. By definition,

$$
\underset{\mu}{\widetilde{\mathbb{E}}} f=\left\langle v, \underset{\mu}{\widetilde{\mathbb{E}}}(1, x)^{\otimes d}\right\rangle .
$$

Thus, it suffices to minimize over the linear function $y \mapsto\langle v, y\rangle$ over \mathcal{M}_{d}. Because \mathcal{M}_{d} has a separation algorithm of time $n^{O(d)}$, we can use ellipsoid method to approximately minimize also in time $n^{O(d)}$.

Fact 6 (Quadratic Sampling). For every degree-2 pseudo-distribution μ over $\{0,1\}^{n}$, there exists a probability distribution ρ over \mathbb{R}^{n} with the same first two moments. That is,

$$
\underset{\mu(x)}{\widetilde{\mathbb{E}}}(1, x)^{\otimes 2}=\underset{x \sim \rho}{\mathbb{E}}(1, x)^{\otimes 2}
$$

From a lecture by David Steurer: " $n^{o(d)}$-time algorithms cannot distinguish between degree- d pseudodistributions and degree- d part of actual distributions." The overall idea:

1. Optimize over low-degree moments of pseudo-distributions (separation algorithm \Longrightarrow efficient)
2. Find distribution with equal low-degree moments

1.2 Using SoS for Approximation

We would like to give certificates of nonnegativity to functions of the form $c-f_{G}$, for this implies that

$$
\operatorname{maxcut}(G)=\max f_{G} \leq c
$$

However, to prove such a bound, we might potentially have to test $O\left(2^{d}\right)$ points $x \in\{0,1\}^{d}$. It turns out that when $c \geq \max f_{G} / 0.878$, there is an efficient algorithm to produce a certificate. Here is the main theorem:

Theorem 7 (Rounding pseudo-distributions for MAXCUT). For every graph G and degree-2 pseudo-distribution μ over the hypercube, there exists a probability distribution μ^{\prime} over the hypercube such that:

$$
\underset{\mu^{\prime}}{\mathbb{E}} f_{G} \geq 0.878 \cdot \underset{\mu}{\widetilde{\mathbb{E}}} f_{G} .
$$

Furthermore, there exists a randomized polynomial-time algorithm that given the pseudo-distribution μ outputs a sample from μ^{\prime}.

Corollary 8 (MAXCUT approximation). MAXCUT has a polynomial time 0.878-approximation algorithm.
Proof. By Corollary 5, it is possible to efficiently maximize $\widetilde{\mathbb{E}}_{\mu} f_{G}$ to arbitrary accuracy $\epsilon>0$ over degree-2 pseudo-distributions μ. We obtain a degree-2 pseudo-distribution such that:

$$
\underset{\mu}{\widetilde{\mathbb{E}}} f_{G}>\max \left(f_{G}\right)-\epsilon .
$$

By Theorem 7, we can efficiently sample from a distribution μ^{\prime} such that:

$$
E_{\mu^{\prime}} f_{G} \geq 0.878 \cdot \max \left(f_{G}\right)-O(\epsilon)
$$

Thus, with high probability, repeat sampling $x \sim \mu^{\prime}$ will return some x such that $f_{G}(x) \geq 0.878 \cdot \max \left(f_{G}\right)$.
Corollary 9 (Degree-2 SoS certificates for mAXCUT). For every graph G with n vertices, there exists a degree-2 SoS certificate for $c-f_{G}(x)$, where $c \geq \max \left(f_{G}\right) / 0.878$.

Proof. Since $\max \left(f_{G}\right) \geq \mathbb{E}_{\mu^{\prime}} f_{G}$ for all distributions μ^{\prime}, Theorem 7 implies that for all degree- 2 pseudodistributions,

$$
\max \left(f_{G}\right) \geq 0.878 \cdot \underset{\mu}{\widetilde{\mathbb{E}}} f_{G} .
$$

By the SoS-duality, Fact 3, this implies that the function:

$$
\frac{\max f_{G}}{0.878}-f_{G}
$$

has a degree-2 SoS certificate.
Now, the main proof.
Proof of Theorem 7. Without loss of generality, we may assume that μ satisfies:

$$
\begin{equation*}
\underset{\mu(x)}{\widetilde{\mathbb{E}}} x=\frac{1}{2} \cdot \mathbf{1} . \tag{1}
\end{equation*}
$$

If it does not, then note that since $x^{T} L x=(\mathbf{1}-x)^{T} L(\mathbf{1}-x)$,

$$
\underset{\mu(x)}{\widetilde{\mathbb{E}}} f_{G}=\sum_{x \in\{0,1\}^{n}} \mu(x) x^{T} L x=\sum_{x\{0,1\}^{n}} \mu(\mathbf{1}-x) x^{T} L x=\underset{\mu(\mathbf{1}-x)}{\widetilde{\mathbb{E}}} f_{G}
$$

Our analysis on f_{G} does not change if we instead consider $\frac{1}{2}(\mu(x)+\mu(\mathbf{1}-x))$. Furthermore, this pseudodistribution satisfies Equation 1.

By Fact 6, the Quadratic Sampling lemma, we may efficiently sample from the Gaussian probability distribution $\xi \sim \mathcal{N}\left(\widetilde{\mathbb{E}}_{\mu} x, \widetilde{\mathbb{E}}_{\mu} x x^{T}\right)$ on \mathbb{R}^{n}. As each coordinate of ξ is centered at $\frac{1}{2}$, we can apply a threshold function coordinate-wise at the value $\frac{1}{2}$ to generate $x^{\prime} \in\{0,1\}^{n}$. In this manner, the Gaussian induces a probability distribution μ^{\prime} on the hypercube.

Notice three properties about μ^{\prime}. Consider two vertices, $i, j \in[n]$. Then

- $\mathbb{E}_{\mu}\left(x_{i}^{\prime}\right)^{2}=\mathbb{E}_{\mu}\left(x_{i}^{\prime}\right)=\frac{1}{2}$. Thus, $\operatorname{Var}\left[x_{i}^{\prime}\right]=\frac{1}{4}$.
- $\operatorname{Cov}\left(x_{i}, x_{j}\right)=\frac{1}{4} \rho=\frac{1}{4}\left(\widetilde{\mathbb{E}}_{\mu} x_{i} x_{j}-1\right)$.
- $\left(\xi_{i}, \xi_{j}\right) \sim \mathcal{N}\left(\frac{1}{2} \cdot \mathbf{1}, \frac{1}{4} \cdot\left[\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right]\right)$

The following claim implies our result. It is completely geometric. Claim:

$$
\underset{\mu^{\prime}\left(x^{\prime}\right)}{\mathbb{E}}\left(x_{i}^{\prime}-x_{j}^{\prime}\right)^{2} \geq 0.878 \cdot \underset{\mu(x)}{\widetilde{\mathbb{E}}}\left(x_{i}-x_{j}\right)^{2}
$$

To show, this, first we claim that:

$$
\begin{equation*}
\underset{\mu^{\prime}\left(x^{\prime}\right)}{\mathbb{E}}\left(x_{i}^{\prime}-x_{j}^{\prime}\right)^{2}=\frac{\cos ^{-1} \rho}{\pi} \tag{2}
\end{equation*}
$$

This is most easily seen by the following diagram: And on the other hand, we have:

$$
\begin{equation*}
\underset{\mu}{\underset{\mathbb{E}}{E}}\left(x_{i}-x_{j}\right)^{2}=\underset{\mu}{\widetilde{\mathbb{E}}} x_{i}^{2}+x_{j}^{2}-2 x_{i} x_{j}=\frac{1}{2}(1-\rho) \tag{3}
\end{equation*}
$$

Now, we obtain:

$$
\underset{\mu^{\prime}}{\mathbb{E}}\left(x_{i}^{\prime}-x_{j}^{\prime}\right)^{2}=\underbrace{\frac{2 \cos ^{-1} \rho}{(1-\rho) \pi}}_{\geq 0.878} \cdot \underset{\mu}{\widetilde{\mathbb{E}}}\left(x_{i}-x_{j}\right)^{2}
$$

Completing the proof: $\mathbb{E}_{\mu^{\prime}}\left(x_{i}^{\prime}-x_{j}^{\prime}\right)^{2} \geq 0.878 \cdot \widetilde{\mathbb{E}}_{\mu}\left(x_{i}-x_{j}\right)^{2}$.

2 Cheeger's Inequality

Definition 10. Let G be a d-regular graph, with vertex set $V=[n]$. For $S \subset V$, the expansion $\phi_{G}(S)$ is:

$$
\phi_{G}(S)=\frac{|E(S, V \backslash S)|}{\frac{d}{n} \cdot|S| \cdot|V \backslash S|}
$$

Notice that there are $n d / 2$ many edges out of a possible $n(n-1) / 2$ number of edges, on average, a $d /(n-1)$ fraction of possible edges are realized. As there are $|S| \cdot|V \backslash S|$ possible number of edges between a subset of size $|S|$ and its complement, the denominator gives the expected number of edges between a subset and its complement.

Definition 11. The expansion $\phi(G)$ of a graph is the minimum $\phi_{G}(S)$ over all S. The min expansion problem is to find a vertex set $S \subset V$ that minimizes $\phi_{G}(S)$.

While it's not obvious how to use SoS on a rational function, like ϕ_{G}, we have the following theorem:
Theorem 12 (Degree-2 SoS certificate for expansion). For every d-regular graph G with vertex set [n], the following has a degree-2 SoS certificate:

$$
f_{G}(x)-\frac{1}{2} \phi(G)^{2} \cdot \frac{d}{n}|x|(n-|x|) .
$$

References

[S2014] Steurer, D. "Sum-of-Squares method and approximation algorithms I". Cargese Workshop, 2014. https://www.dsteurer.org/talk/cargese.pdf
[BS2016] Barak, B. Steurer, D. Proof, beliefs, and algorithms through the lens of sum-of-squares. 2016.

