
Sums of Squares Max Cut and Cheeger Lecture Notes

Aaron Geelon So

September 25, 2018

1 Max Cut
maxcut: given a graph, bipartition the vertices in a way that cuts as many of the edges as possible. Define
maxcut(G) to be the maximum fraction of edges cut by a bipartition.

Erdös gave a randomized algorithm that achieves a 1/2-approximation. Suppose for each vertex, we assign
it to one of the bipartitions according to a fair flip of the coin. Each edge will be cut in exactly half of the
possible partitions, so in expectation, a random bipartition will cut half of all edges. In particular, it must
cut at least a 1

2 maxcut(G) fraction of the edges.

Fact 1 (BS2016). No linear programming relaxation of polynomial-size can have an approximation factor
smaller than 1/2 factor for maxcut.

In contrast, using SoS, it is possible to obtain a 0.878 approximation in polynomial time. Before proving
this, we need a little bit of preliminaries. For a graph G, let L be the combinatorial graph Laplacian,
L = D −A, and fG be its associated quadratic form: fG(x) = xTLx. That is:

fG(x) =
∑

(i,j)∈E(G)

(xi − xj)2.

Each x ∈ {0, 1}n corresponds to a bipartition of the vertices, and fG(x) measures the number of edges cut by
the bipartition x. Thus, computing maxcut(G) is equivalent to computing:

max
x∈{0,1}n

fG(x).

As a quick aside, this problem is related to the eigenvalues of L. Indeed, if instead we were to optimize
over the `2-sphere, we could efficiently solve this problem (the solutions being the maximum eigenvector).
Still, we can use the eigenvectors to give an upper bound. Since 1 is in the kernel of L, fG(x) = fG(x+ C)
for any constant C. In particular, this allows us to recenter x ∈ {0, 1}n at its center of mass; let’s call the
recentered points x′.

Those x’s where an equal number of coordinates are 0 and 1 have maximal `2-norm of the newly centered
set. The value for such ‖x′‖2

2 = n/4. It follows that:

max
x∈{0,1}n

fG(x) ≤ n

4 · λmax(L).

To get a sense of the fraction of edges this is, suppose G is a d-regular graph, in which case, λmax(L) =
d− λmin(A), where A is the adjacency matrix, and |E| = nd/2. Then:

max
x∈{0,1}n

fG(x) ≤ n

4 (d− λmin(A)) = 1
2

(
1− λmin(A)

d

)
· |E|.

It’s also not hard to see that since −d ≤ λmin(A) < 0, this bound is not trivial.
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1.1 Review of SoS

The pseudo-distribution generalizes a probability distribution by relaxing the nonnegativity condition.

Definition 2 (Pseudo-distribution). A degree d pseudo-distribution over {0, 1}n is a function µ : {0, 1}n → R
such that it satisfies:

Ẽ
µ

1 =
∑

x∈{0,1}n

µ(x) · 1 = 1, (normalization)

and also for all polynomials f : {0, 1}n → R of degree at most d/2,

Ẽ
µ
f2 ≥ 0. (relaxed nonnegativity)

Fact 3 (SoS Duality). For every function f : {0, 1}n → R, and every even d ∈ N, there exists a degree-d
SoS certificate for nonnegativity of f if and only if every degree-d pseudo-distribution µ over {0, 1}n satisfies
Ẽµ f ≥ 0.

Fact 4 (Separation Algorithm for Pseudo-Moments). Let d ∈ N be even. The following set of pseudo-moments
admits a separation algorithm with running time nO(d),

Md =
{

Ẽ
µ(x)

(1, x)⊗d : µ is a deg.-d pseudo-dist. over {0, 1}d
}
.

Corollary 5 (Optimization over polynomial objective). Let f be a function over {0, 1}n, and v be a vector
so that f(x) = 〈v, (1, x)⊗d〉. There is an algorithm that can approximately minimize Ẽµ f in time nO(d).

Proof. By definition,
Ẽ
µ
f = 〈v, Ẽ

µ
(1, x)⊗d〉.

Thus, it suffices to minimize over the linear function y 7→ 〈v, y〉 over Md. Because Md has a separation
algorithm of time nO(d), we can use ellipsoid method to approximately minimize also in time nO(d).

Fact 6 (Quadratic Sampling). For every degree-2 pseudo-distribution µ over {0, 1}n, there exists a probability
distribution ρ over Rn with the same first two moments. That is,

Ẽ
µ(x)

(1, x)⊗2 = E
x∼ρ

(1, x)⊗2.

From a lecture by David Steurer: “no(d)-time algorithms cannot distinguish between degree-d pseudodis-
tributions and degree-d part of actual distributions.” The overall idea:

1. Optimize over low-degree moments of pseudo-distributions (separation algorithm =⇒ efficient)

2. Find distribution with equal low-degree moments

1.2 Using SoS for Approximation

We would like to give certificates of nonnegativity to functions of the form c− fG, for this implies that

maxcut(G) = max fG ≤ c.

However, to prove such a bound, we might potentially have to test O(2d) points x ∈ {0, 1}d. It turns out that
when c ≥ max fG/0.878, there is an efficient algorithm to produce a certificate. Here is the main theorem:
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Theorem 7 (Rounding pseudo-distributions for maxcut). For every graph G and degree-2 pseudo-distribution
µ over the hypercube, there exists a probability distribution µ′ over the hypercube such that:

E
µ′
fG ≥ 0.878 · Ẽ

µ
fG.

Furthermore, there exists a randomized polynomial-time algorithm that given the pseudo-distribution µ outputs
a sample from µ′.

Corollary 8 (maxcut approximation). maxcut has a polynomial time 0.878-approximation algorithm.

Proof. By Corollary 5, it is possible to efficiently maximize Ẽµ fG to arbitrary accuracy ε > 0 over degree-2
pseudo-distributions µ. We obtain a degree-2 pseudo-distribution such that:

Ẽ
µ
fG > max(fG)− ε.

By Theorem 7, we can efficiently sample from a distribution µ′ such that:

Eµ′fG ≥ 0.878 ·max(fG)−O(ε).

Thus, with high probability, repeat sampling x ∼ µ′ will return some x such that fG(x) ≥ 0.878 ·max(fG).

Corollary 9 (Degree-2 SoS certificates for maxcut). For every graph G with n vertices, there exists a
degree-2 SoS certificate for c− fG(x), where c ≥ max(fG)/0.878.

Proof. Since max(fG) ≥ Eµ′ fG for all distributions µ′, Theorem 7 implies that for all degree-2 pseudo-
distributions,

max(fG) ≥ 0.878 · Ẽ
µ
fG.

By the SoS-duality, Fact 3, this implies that the function:

max fG
0.878 − fG

has a degree-2 SoS certificate.

Now, the main proof.

Proof of Theorem 7. Without loss of generality, we may assume that µ satisfies:

Ẽ
µ(x)

x = 1
2 · 1. (1)

If it does not, then note that since xTLx = (1− x)TL(1− x),

Ẽ
µ(x)

fG =
∑

x∈{0,1}n

µ(x)xTLx =
∑

x{0,1}n

µ(1− x)xTLx = Ẽ
µ(1−x)

fG.

Our analysis on fG does not change if we instead consider 1
2 (µ(x) + µ(1− x)). Furthermore, this pseudo-

distribution satisfies Equation 1.
By Fact 6, the Quadratic Sampling lemma, we may efficiently sample from the Gaussian probability

distribution ξ ∼ N
(
Ẽµ x, Ẽµ xxT

)
on Rn. As each coordinate of ξ is centered at 1

2 , we can apply a threshold
function coordinate-wise at the value 1

2 to generate x′ ∈ {0, 1}n. In this manner, the Gaussian induces a
probability distribution µ′ on the hypercube.

Notice three properties about µ′. Consider two vertices, i, j ∈ [n]. Then

3



• Eµ(x′i)2 = Eµ(x′i) = 1
2 . Thus, Var[x′i] = 1

4 .

• Cov(xi, xj) = 1
4ρ = 1

4

(
Ẽµ xixj − 1

)
.

• (ξi, ξj) ∼ N
(

1
2 · 1,

1
4 ·

[
1 ρ

ρ 1

])
The following claim implies our result. It is completely geometric. Claim:

E
µ′(x′)

(x′i − x′j)2 ≥ 0.878 · Ẽ
µ(x)

(xi − xj)2.

To show, this, first we claim that:

E
µ′(x′)

(x′i − x′j)2 = cos−1 ρ

π
. (2)

This is most easily seen by the following diagram: And on the other hand, we have:

Ẽ
µ

(xi − xj)2 = Ẽ
µ
x2
i + x2

j − 2xixj = 1
2(1− ρ). (3)

Now, we obtain:

E
µ′

(x′i − x′j)2 = 2 cos−1 ρ

(1− ρ)π︸ ︷︷ ︸
≥0.878

· Ẽ
µ

(xi − xj)2.

Completing the proof: Eµ′(x′i − x′j)2 ≥ 0.878 · Ẽµ(xi − xj)2.

2 Cheeger’s Inequality
Definition 10. Let G be a d-regular graph, with vertex set V = [n]. For S ⊂ V , the expansion φG(S) is:

φG(S) = |E(S, V \ S)|
d
n · |S| · |V \ S|

.

Notice that there are nd/2 many edges out of a possible n(n − 1)/2 number of edges, on average, a
d/(n− 1) fraction of possible edges are realized. As there are |S| · |V \ S| possible number of edges between a
subset of size |S| and its complement, the denominator gives the expected number of edges between a subset
and its complement.
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Definition 11. The expansion φ(G) of a graph is the minimum φG(S) over all S. The min expansion
problem is to find a vertex set S ⊂ V that minimizes φG(S).

While it’s not obvious how to use SoS on a rational function, like φG, we have the following theorem:

Theorem 12 (Degree-2 SoS certificate for expansion). For every d-regular graph G with vertex set [n], the
following has a degree-2 SoS certificate:

fG(x)− 1
2φ(G)2 · d

n
|x|(n− |x|).
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